A matroid extension result

James Oxley
Louisiana State University

Combinatorial Geometries, Marseille-Luminy, September, 2018

Extensions

Extensions

Extensions

Extensions

$M^{\prime} \backslash d=M$

Extensions

$$
M^{\prime} \backslash d=M
$$

A matroid M^{\prime} is an extension of the matroid M by an element d if $M^{\prime} \backslash d=M$.

Extensions

$$
M^{\prime} \backslash d=M
$$

A matroid M^{\prime} is an extension of the matroid M by an element d if $M^{\prime} \backslash d=M$.

Henry Crapo, 1965

Extending the Vámos matroid

Extending the Vámos matroid

Extending the Vámos matroid

$V_{8} \quad$ rank $=4$

Extending the Vámos matroid

$V_{8} \quad$ rank $=4$
Non-spanning circuits
$\{1,2,3,4\},\{3,4,5,6\},\{5,6,7,8\},\{7,8,1,2\},\{3,4,7,8\}$

Extending the Vámos matroid

$V_{8} \quad$ rank $=4$
Non-spanning circuits
$\{1,2,3,4\},\{3,4,5,6\},\{5,6,7,8\},\{7,8,1,2\},\{3,4,7,8\}$
Note. $\{1,2,5,6\}$ is a basis

Extending the Vámos matroid

$V_{8} \quad$ rank $=4$
Non-spanning circuits
$\{1,2,3,4\},\{3,4,5,6\},\{5,6,7,8\},\{7,8,1,2\},\{3,4,7,8\}$
Note. $\{1,2,5,6\}$ is a basis
Question
Can V_{8} be extended by an element p that is on the lines spanned by $\{3,4\}$ and $\{7,8\}$?

Extending the Vámos matroid

Question
Can V_{8} be extended by an element p that is on the lines spanned by $\{3,4\}$ and $\{7,8\}$?

Extending the Vámos matroid

Question
Can V_{8} be extended by an element p that is on the lines spanned by $\{3,4\}$ and $\{7,8\}$? Note. $\{1,2,5,6\}$ is a basis.

Extending the Vámos matroid

Question
Can V_{8} be extended by an element p that is on the lines spanned by $\{3,4\}$ and $\{7,8\}$? Note. $\{1,2,5,6\}$ is a basis.

Extending the Vámos matroid

Question
Can V_{8} be extended by an element p that is on the lines spanned by $\{3,4\}$ and $\{7,8\}$? Note. $\{1,2,5,6\}$ is a basis.

Extending the Vámos matroid

Question
Can V_{8} be extended by an element p that is on the lines spanned by $\{3,4\}$ and $\{7,8\}$? Note. $\{1,2,5,6\}$ is a basis.

Extending the Vámos matroid

Question
Can V_{8} be extended by an element p that is on the lines spanned by $\{3,4\}$ and $\{7,8\}$? Note. $\{1,2,5,6\}$ is a basis.

$$
r(\{1,2, p\})=2
$$

Extending the Vámos matroid

Question
Can V_{8} be extended by an element p that is on the lines spanned by $\{3,4\}$ and $\{7,8\}$? Note. $\{1,2,5,6\}$ is a basis.

$$
r(\{5,6, p\})=2
$$

Extending the Vámos matroid

Question

Can V_{8} be extended by an element p that is on the lines spanned by $\{3,4\}$ and $\{7,8\}$? Note. $\{1,2,5,6\}$ is a basis.

$\{1,2,5,6\}$ is NOT a basis.
The extension does not exist.

3-separations

3-separations

$$
r(\{1,2,3,4\})+r(\{5,6,7,8\})-r\left(V_{8}\right)=2
$$

3-separations

$$
r(\{1,2,3,4\})+r(\{5,6,7,8\})-r\left(V_{8}\right)=2
$$

$(\{1,2,3,4\}),\{5,6,7,8\})$ is a 3-separation of $M=V_{8}$, that is, a partition (A, B) of $E(M)$ with

$$
r(A)+r(B)-r(M)=2 \quad \text { and } \quad|A|,|B| \geq 3
$$

3-separations

$$
r(A)+r(B)-r(M)=2 \text { and }|A|,|B| \geq 3
$$

3-separations

$$
r(A)+r(B)-r(M)=2 \quad \text { and } \quad|A|,|B| \geq 3
$$

$(\{1,2,3,4\}),\{5,6,7, a, b, c\})$ is a 3-separation of M.

3-separations

$$
r(A)+r(B)-r(M)=2 \text { and }|A|,|B| \geq 3
$$

$(\{1,2,3,4\}),\{5,6,7, a, b, c\})$ is a 3 -separation of M. $(\{1,2,3,4, a, b\}),\{5,6,7, c\})$ is a 3-separation of M.

3-separations

- $\{a, b, c\}$ is the guts line of the 3-separation.

3-separations

- $\{a, b, c\}$ is the guts line of the 3-separation.
- a and b are fixed.

3-separations

- $\{a, b, c\}$ is the guts line of the 3-separation.
- a and b are fixed.
- c is not fixed.

3-separations

- $\{a, b, c\}$ is the guts line of the 3-separation.
- a and b are fixed.
- c is not fixed. It is freely placed on the guts line.

Fixed elements

- c is the only non-fixed element.

Fixed elements

- c is the only non-fixed element.

Fixed elements

- c is the only non-fixed element.

- c and d are independent clones.

Fixed elements

- c is the only non-fixed element.

- c and d are independent clones.

The only way to add a clone of b is to add it parallel to b.

Freely adding elements to the guts line of a 3-separation

Theorem (Geelen, Gerards, Whittle; 2006)
Given a 3-separation (A, B) in a matroid M, there is a unique extension N of M by independent clones x and y so that both are freely placed on the guts line of (A, B).

Freely adding elements to the guts line of a 3-separation

Theorem (Geelen, Gerards, Whittle; 2006)
Given a 3-separation (A, B) in a matroid M, there is a unique extension N of M by independent clones x and y so that both are freely placed on the guts line of (A, B).

Freely adding elements to the guts line of a 3-separation

Theorem (Geelen, Gerards, Whittle; 2006)
Given a 3-separation (A, B) in a matroid M, there is a unique extension N of M by independent clones x and y so that both are freely placed on the guts line of (A, B).

Local connectivity

For sets X and Y in M, the local connectivity is

$$
\sqcap(X, Y)=r(X)+r(Y)-r(X \cup Y)
$$

Local connectivity

For sets X and Y in M, the local connectivity is

$$
\sqcap(X, Y)=r(X)+r(Y)-r(X \cup Y)
$$

When M is a subset of a vector space,

$$
\sqcap(X, Y)=\operatorname{dim}(\langle X\rangle \cap\langle Y\rangle)
$$

Local connectivity

$$
\sqcap(X, Y)=r(X)+r(Y)-r(X \cup Y) .
$$

$(A, B)=(\{1,2,3,4\},\{5,6,7, a, b, c\})$ is a 3-separation.

Local connectivity

$$
\sqcap(X, Y)=r(X)+r(Y)-r(X \cup Y) .
$$

$(A, B)=(\{1,2,3,4\},\{5,6,7, a, b, c\})$ is a 3-separation.

- $\{1,2\},\{1,4\}$ and $\{2,3\}$ are A-strands,

Local connectivity

$$
\sqcap(X, Y)=r(X)+r(Y)-r(X \cup Y)
$$

- $\{1,2\},\{1,4\}$ and $\{2,3\}$ are A-strands, that is, minimal subsets X of A such that $\sqcap(X, B)=1$.

Local connectivity

$$
\sqcap(X, Y)=r(X)+r(Y)-r(X \cup Y)
$$

- $\{1,2\},\{1,4\}$ and $\{2,3\}$ are A-strands, that is, minimal subsets X of A such that $\sqcap(X, B)=1$.
- $\{5,7\}$ and $\{a\}$ are examples of B-strands.

Strands

- $\sqcap(\{1,4\},\{5,7\})=1$.

Strands

- $\sqcap(\{1,4\},\{5,7\})=1$.
- M can be extended by p so that both $\{1,4, p\}$ and $\{5,7, p\}$ are circuits.

Strands

- $\sqcap(\{1,4\},\{5,7\})=1$.
- M can be extended by p so that both $\{1,4, p\}$ and $\{5,7, p\}$ are circuits.

Strands

- $\sqcap(\{1,4\},\{5,7\})=1$.
- M can be extended by p so that both $\{1,4, p\}$ and $\{5,7, p\}$ are circuits.

This forces $\{2,3, p\}$ to be a circuit.

Back to the Vámos

$(A, B)=(\{1,2,3,4\},\{5,6,7,8\})$ is a 3-separation.

Back to the Vámos

$(A, B)=(\{1,2,3,4\},\{5,6,7,8\})$ is a 3-separation.

- $\{1,2\}$ and $\{3,4\}$ are A-strands.

Back to the Vámos

$(A, B)=(\{1,2,3,4\},\{5,6,7,8\})$ is a 3-separation.

- $\{1,2\}$ and $\{3,4\}$ are A-strands.
- $\{5,6\}$ and $\{7,8\}$ are B-strands.

Back to the Vámos

$(A, B)=(\{1,2,3,4\},\{5,6,7,8\})$ is a 3-separation.

- $\{1,2\}$ and $\{3,4\}$ are A-strands.
- $\{5,6\}$ and $\{7,8\}$ are B-strands.
- $\sqcap(\{3,4\},\{7,8\})=1$.

Back to the Vámos

$$
(A, B)=(\{1,2,3,4\},\{5,6,7,8\}) \text { is a 3-separation. }
$$

- $\{1,2\}$ and $\{3,4\}$ are A-strands.
- $\{5,6\}$ and $\{7,8\}$ are B-strands.
- $\sqcap(\{3,4\},\{7,8\})=1$.

We CANNOT add p so that $\{3,4, p\}$ and $\{7,8, p\}$ are circuits.

Back to the Vámos

$(A, B)=(\{1,2,3,4\},\{5,6,7,8\})$ is a 3-separation.

Back to the Vámos

$$
(A, B)=(\{1,2,3,4\},\{5,6,7,8\}) \text { is a 3-separation. }
$$

- $\{1,2\}$ and $\{3,4\}$ are A-strands.
- $\{5,6\}$ and $\{7,8\}$ are B-strands.
- $\sqcap(\{3,4\},\{7,8\})=1$.

Back to the Vámos

$$
(A, B)=(\{1,2,3,4\},\{5,6,7,8\}) \text { is a 3-separation. }
$$

- $\{1,2\}$ and $\{3,4\}$ are A-strands.
- $\{5,6\}$ and $\{7,8\}$ are B-strands.
- $\sqcap(\{3,4\},\{7,8\})=1$.
- $\sqcap(\{3,4\},\{5,6\})=1=\sqcap(\{1,2\},\{7,8\})$.

Back to the Vámos

$$
(A, B)=(\{1,2,3,4\},\{5,6,7,8\}) \text { is a 3-separation. }
$$

- $\{1,2\}$ and $\{3,4\}$ are A-strands.
- $\{5,6\}$ and $\{7,8\}$ are B-strands.
- $\sqcap(\{3,4\},\{7,8\})=1$.
- $\sqcap(\{3,4\},\{5,6\})=1=\sqcap(\{1,2\},\{7,8\})$.
- $\sqcap(\{1,2\},\{5,6\})=0$

Main theorem

Theorem
Suppose M has a 3-separation (A, B), an A-strand A_{0} and a B-strand B_{0} with

$$
\sqcap\left(A_{0}, B_{0}\right)=1
$$

Main theorem

Theorem
Suppose M has a 3-separation (A, B), an A-strand A_{0} and a B-strand B_{0} with

$$
\sqcap\left(A_{0}, B_{0}\right)=1
$$

Then M has an extension by p such that $A_{0} \cup p$ and $B_{0} \cup p$ are circuits

Main theorem

Theorem
Suppose M has a 3-separation (A, B), an A-strand A_{0} and a B-strand B_{0} with

$$
\sqcap\left(A_{0}, B_{0}\right)=1
$$

Then M has an extension by p such that $A_{0} \cup p$ and $B_{0} \cup p$ are circuits iff M has no A-strand $A_{1}\left(\neq A_{0}\right)$ and B-strand $B_{1}\left(\neq B_{0}\right)$ with

Main theorem

Theorem
Suppose M has a 3-separation (A, B), an A-strand A_{0} and a B-strand B_{0} with

$$
\sqcap\left(A_{0}, B_{0}\right)=1
$$

Then M has an extension by p such that $A_{0} \cup p$ and $B_{0} \cup p$ are circuits iff M has no A-strand $A_{1}\left(\neq A_{0}\right)$ and B-strand $B_{1}\left(\neq B_{0}\right)$ with exactly two of $\sqcap\left(A_{0}, B_{1}\right), \sqcap\left(A_{1}, B_{1}\right)$, and $\sqcap\left(A_{1}, B_{0}\right)$ being one.

Main theorem

Theorem
Suppose M has a 3-separation (A, B), an A-strand A_{0} and a B-strand B_{0} with

$$
\sqcap\left(A_{0}, B_{0}\right)=1
$$

Then M has an extension by p such that $A_{0} \cup p$ and $B_{0} \cup p$ are circuits iff M has no A-strand $A_{1}\left(\neq A_{0}\right)$ and B-strand $B_{1}\left(\neq B_{0}\right)$ with exactly two of $\sqcap\left(A_{0}, B_{1}\right), \sqcap\left(A_{1}, B_{1}\right)$, and $\sqcap\left(A_{1}, B_{0}\right)$ being one. When M has an extension by p such that $A_{0} \cup p$ and $B_{0} \cup p$ are circuits, it is unique.

Main theorem

Theorem
Suppose M has a 3-separation (A, B), an A-strand A_{0} and a B-strand B_{0} with

$$
\sqcap\left(A_{0}, B_{0}\right)=1
$$

Then M has an extension by p such that $A_{0} \cup p$ and $B_{0} \cup p$ are circuits iff M has no A-strand $A_{1}\left(\neq A_{0}\right)$ and B-strand $B_{1}\left(\neq B_{0}\right)$ with exactly two of $\sqcap\left(A_{0}, B_{1}\right), \sqcap\left(A_{1}, B_{1}\right)$, and $\sqcap\left(A_{1}, B_{0}\right)$ being one. When M has an extension by p such that $A_{0} \cup p$ and $B_{0} \cup p$ are circuits, it is unique.

The Vámos matroid encapsulates the core obstruction to this extension.

Multiple extensions

Multiple extensions

Theorem
Let (X, Y, Z) be a partition of a matroid where Y may be empty. Let $(X, Y \cup Z)$ and $(X \cup Y, Z)$ be 3-separations.

- Assume X_{0} and Y_{0} are an X-strand and a $(Y \cup Z)$-strand with $\sqcap\left(X_{0}, Y_{0}\right)=1$ such that M has an extension by p so that $X_{0} \cup p$ and $Y_{0} \cup p$ are circuits.

Multiple extensions

Theorem
Let (X, Y, Z) be a partition of a matroid where Y may be empty. Let $(X, Y \cup Z)$ and $(X \cup Y, Z)$ be 3-separations.

- Assume X_{0} and Y_{0} are an X-strand and a $(Y \cup Z)$-strand with $\sqcap\left(X_{0}, Y_{0}\right)=1$ such that M has an extension by p so that $X_{0} \cup p$ and $Y_{0} \cup p$ are circuits.
- Assume Y_{1} and Z_{1} are an $(X \cup Y)$-strand and a Z-strand with $\sqcap\left(Y_{1}, Z_{1}\right)=1$ such that M has an extension by q so that $Y_{1} \cup q$ and $Z_{1} \cup q$ are circuits.

Multiple extensions

Theorem
Let (X, Y, Z) be a partition of a matroid where Y may be empty. Let $(X, Y \cup Z)$ and $(X \cup Y, Z)$ be 3-separations.

- Assume X_{0} and Y_{0} are an X-strand and a $(Y \cup Z)$-strand with $\sqcap\left(X_{0}, Y_{0}\right)=1$ such that M has an extension by p so that $X_{0} \cup p$ and $Y_{0} \cup p$ are circuits.
- Assume Y_{1} and Z_{1} are an $(X \cup Y)$-strand and a Z-strand with $\sqcap\left(Y_{1}, Z_{1}\right)=1$ such that M has an extension by q so that $Y_{1} \cup q$ and $Z_{1} \cup q$ are circuits.
Then M has a unique extension by p and q such that all of $X_{0} \cup p, Y_{0} \cup p, Y_{1} \cup q$, and $Z_{1} \cup q$ are circuits,

The Vámos matroid is the key obstruction

The Vámos matroid is the key obstruction

The Vámos matroid is the key obstruction

Theorem

Suppose M has a 3-separation (A, B), an A-strand A_{0} and a B-strand B_{0} with

$$
\sqcap\left(A_{0}, B_{0}\right)=1
$$

Then M has an extension by p such that $A_{0} \cup p$ and $B_{0} \cup p$ are circuits iff M has no A-strand $A_{1}\left(\neq A_{0}\right)$ and B-strand $B_{1}\left(\neq B_{0}\right)$ with exactly two of $\sqcap\left(A_{0}, B_{1}\right), \sqcap\left(A_{1}, B_{1}\right)$, and $\sqcap\left(A_{1}, B_{0}\right)$ being one.

