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Extending the Vámos matroid
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V8 rank = 4

Non-spanning circuits
{1, 2, 3, 4}, {3, 4, 5, 6}, {5, 6, 7, 8}, {7, 8, 1, 2}, {3, 4, 7, 8}
Note. {1, 2, 5, 6} is a basis

Question
Can V8 be extended by an element p that is on the lines spanned
by {3, 4} and {7, 8}?
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Extending the Vámos matroid

Question
Can V8 be extended by an element p that is on the lines spanned
by {3, 4} and {7, 8}? Note. {1, 2, 5, 6} is a basis.

8

1

2 3

5

7

4

6

p

{1, 2, 5, 6} is NOT a basis. The extension does not exist.
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r({1, 2, 3, 4}) + r({5, 6, 7, 8})− r(V8) = 2

({1, 2, 3, 4}), {5, 6, 7, 8}) is a 3-separation of M = V8, that is, a
partition (A,B) of E (M) with

r(A) + r(B)− r(M) = 2 and |A|, |B| ≥ 3
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• c is not fixed. It is freely placed on the guts line.
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The only way to add a clone of b is to add it parallel to b.
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Freely adding elements to the guts line of a 3-separation

Theorem (Geelen, Gerards, Whittle; 2006)

Given a 3-separation (A,B) in a matroid M, there is a unique
extension N of M by independent clones x and y so that both are
freely placed on the guts line of (A,B).
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Local connectivity
For sets X and Y in M, the local connectivity is

u(X ,Y ) = r(X ) + r(Y )− r(X ∪ Y ).
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• {1, 2}, {1, 4} and {2, 3} are A-strands, that is, minimal subsets
X of A such that u(X ,B) = 1.

• {5, 7} and {a} are examples of B-strands.
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• u({1, 4}, {5, 7}) = 1.

• M can be extended by p so that both {1, 4, p} and {5, 7, p} are
circuits.

This forces {2, 3, p} to be a circuit.
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6

1

2 3

5

7

8
4

(A,B) = ({1, 2, 3, 4}, {5, 6, 7, 8}) is a 3-separation.

• {1, 2} and {3, 4} are A-strands.

• {5, 6} and {7, 8} are B-strands.

• u({3, 4}, {7, 8}) = 1.

We CANNOT add p so that {3, 4, p} and {7, 8, p} are circuits.
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Main theorem

Theorem
Suppose M has a 3-separation (A,B), an A-strand A0 and a
B-strand B0 with

u(A0,B0) = 1.

Then M has an extension by p such that A0 ∪ p and B0 ∪ p are
circuits iff M has no A-strand A1 (6= A0) and B-strand B1 (6= B0)
with exactly two of u(A0,B1),u(A1,B1), and u(A1,B0) being one.
When M has an extension by p such that A0 ∪ p and B0 ∪ p are
circuits, it is unique.

The Vámos matroid encapsulates the core obstruction to this
extension.



Main theorem

Theorem
Suppose M has a 3-separation (A,B), an A-strand A0 and a
B-strand B0 with

u(A0,B0) = 1.

Then M has an extension by p such that A0 ∪ p and B0 ∪ p are
circuits

iff M has no A-strand A1 (6= A0) and B-strand B1 (6= B0)
with exactly two of u(A0,B1),u(A1,B1), and u(A1,B0) being one.
When M has an extension by p such that A0 ∪ p and B0 ∪ p are
circuits, it is unique.
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Multiple extensions
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Theorem
Let (X ,Y ,Z ) be a partition of a matroid where Y may be empty.
Let (X ,Y ∪ Z ) and (X ∪ Y ,Z ) be 3-separations.

• Assume X0 and Y0 are an X-strand and a (Y ∪ Z )-strand
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X0 ∪ p,Y0 ∪ p,Y1 ∪ q, and Z1 ∪ q are circuits.
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The Vámos matroid is the key obstruction
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Theorem
Suppose M has a 3-separation (A,B), an A-strand A0 and a
B-strand B0 with

u(A0,B0) = 1.

Then M has an extension by p such that A0 ∪ p and B0 ∪ p are
circuits iff M has no A-strand A1 (6= A0) and B-strand B1 (6= B0)
with exactly two of u(A0,B1),u(A1,B1), and u(A1,B0) being one.
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