A matroid extension result

James Oxley

Louisiana State University

Combinatorial Geometries, Marseille-Luminy, September, 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

<ロ>

・ロト ・四ト ・ヨト ・ヨト

æ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $M' \setminus d = M$

 $M' \setminus d = M$

A matroid M' is an extension of the matroid M by an element d if $M' \setminus d = M$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $M' \setminus d = M$

A matroid M' is an extension of the matroid M by an element d if $M' \setminus d = M$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Henry Crapo, 1965

<ロ>

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

V_8 rank = 4

$$V_8$$
 rank = 4

Non-spanning circuits $\{1, 2, 3, 4\}, \{3, 4, 5, 6\}, \{5, 6, 7, 8\}, \{7, 8, 1, 2\}, \{3, 4, 7, 8\}$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

$$V_8$$
 rank = 4

Non-spanning circuits $\{1,2,3,4\}, \{3,4,5,6\}, \{5,6,7,8\}, \{7,8,1,2\}, \{3,4,7,8\}$ Note. $\{1,2,5,6\}$ is a basis

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q (2)

$$V_8$$
 rank = 4

Non-spanning circuits $\{1, 2, 3, 4\}, \{3, 4, 5, 6\}, \{5, 6, 7, 8\}, \{7, 8, 1, 2\}, \{3, 4, 7, 8\}$ Note. $\{1, 2, 5, 6\}$ is a basis

Question

Can V_8 be extended by an element p that is on the lines spanned by $\{3,4\}$ and $\{7,8\}$?

Question

Can V_8 be extended by an element p that is on the lines spanned by $\{3,4\}$ and $\{7,8\}$?

Question

Can V_8 be extended by an element p that is on the lines spanned by $\{3,4\}$ and $\{7,8\}$? Note. $\{1,2,5,6\}$ is a basis.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Question

Can V_8 be extended by an element p that is on the lines spanned by $\{3,4\}$ and $\{7,8\}$? Note. $\{1,2,5,6\}$ is a basis.

Question

Can V_8 be extended by an element p that is on the lines spanned by $\{3,4\}$ and $\{7,8\}$? Note. $\{1,2,5,6\}$ is a basis.

Question

Can V_8 be extended by an element p that is on the lines spanned by $\{3,4\}$ and $\{7,8\}$? Note. $\{1,2,5,6\}$ is a basis.

Question

Can V_8 be extended by an element p that is on the lines spanned by $\{3,4\}$ and $\{7,8\}$? Note. $\{1,2,5,6\}$ is a basis.

 $r(\{1, 2, p\}) = 2$

Question

Can V_8 be extended by an element p that is on the lines spanned by $\{3,4\}$ and $\{7,8\}$? Note. $\{1,2,5,6\}$ is a basis.

 $r({5, 6, p}) = 2$

Question

Can V_8 be extended by an element p that is on the lines spanned by $\{3,4\}$ and $\{7,8\}$? Note. $\{1,2,5,6\}$ is a basis.

 $\{1, 2, 5, 6\}$ is **NOT** a basis.

The extension does not exist.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

<ロ> <@> < E> < E> E のQの

$$r(\{1,2,3,4\}) + r(\{5,6,7,8\}) - r(V_8) = 2$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

$$r(\{1,2,3,4\}) + r(\{5,6,7,8\}) - r(V_8) = 2$$

 $(\{1, 2, 3, 4\}), \{5, 6, 7, 8\})$ is a 3-separation of $M = V_8$, that is, a partition (A, B) of E(M) with

$$r(A) + r(B) - r(M) = 2$$
 and $|A|, |B| \ge 3$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

$$r(A) + r(B) - r(M) = 2$$
 and $|A|, |B| \ge 3$

<□ > < @ > < E > < E > E のQ @

$$r(A) + r(B) - r(M) = 2$$
 and $|A|, |B| \ge 3$

・ロト ・聞ト ・ヨト ・ヨト

æ

 $(\{1, 2, 3, 4\}), \{5, 6, 7, a, b, c\})$ is a 3-separation of M.

$$r(A) + r(B) - r(M) = 2$$
 and $|A|, |B| \ge 3$

< ∃⇒

æ

 $(\{1,2,3,4\}), \{5,6,7,a,b,c\})$ is a 3-separation of M. $(\{1,2,3,4,a,b\}), \{5,6,7,c\})$ is a 3-separation of M.

・ロト ・聞ト ・ヨト ・ヨト

æ

• $\{a, b, c\}$ is the guts line of the 3-separation.

- $\{a, b, c\}$ is the guts line of the 3-separation.
- *a* and *b* are fixed.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- $\{a, b, c\}$ is the guts line of the 3-separation.
- *a* and *b* are fixed.
- c is not fixed.

- $\{a, b, c\}$ is the guts line of the 3-separation.
- *a* and *b* are fixed.
- *c* is not fixed. It is freely placed on the guts line.

• *c* is the only non-fixed element.

• *c* is the only non-fixed element.

• *c* is the only non-fixed element.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

• *c* and *d* are independent clones.

• *c* is the only non-fixed element.

• *c* and *d* are independent clones.

The only way to add a clone of b is to add it parallel to b.

(日) (四) (王) (日) (日) (日)

Freely adding elements to the guts line of a 3-separation

Theorem (Geelen, Gerards, Whittle; 2006)

Given a 3-separation (A, B) in a matroid M, there is a unique extension N of M by independent clones x and y so that both are freely placed on the guts line of (A, B).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Freely adding elements to the guts line of a 3-separation

Theorem (Geelen, Gerards, Whittle; 2006)

Given a 3-separation (A, B) in a matroid M, there is a unique extension N of M by independent clones x and y so that both are freely placed on the guts line of (A, B).

- 4 周 ト 4 ヨ ト 4 ヨ ト

Freely adding elements to the guts line of a 3-separation

Theorem (Geelen, Gerards, Whittle; 2006)

Given a 3-separation (A, B) in a matroid M, there is a unique extension N of M by independent clones x and y so that both are freely placed on the guts line of (A, B).

(人間) くうり くうり

For sets X and Y in M, the local connectivity is

$$\sqcap(X,Y)=r(X)+r(Y)-r(X\cup Y).$$

For sets X and Y in M, the local connectivity is

$$\sqcap(X,Y)=r(X)+r(Y)-r(X\cup Y).$$

When M is a subset of a vector space,

$$\sqcap(X,Y) = \dim(\langle X \rangle \cap \langle Y \rangle).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\sqcap(X,Y)=r(X)+r(Y)-r(X\cup Y).$$

 $(A, B) = (\{1, 2, 3, 4\}, \{5, 6, 7, a, b, c\})$ is a 3-separation.

$$\sqcap(X,Y)=r(X)+r(Y)-r(X\cup Y).$$

 $(A, B) = (\{1, 2, 3, 4\}, \{5, 6, 7, a, b, c\})$ is a 3-separation.

 \bullet $\{1,2\},\{1,4\}$ and $\{2,3\}$ are <code>A-strands</code>,

$$\sqcap(X,Y)=r(X)+r(Y)-r(X\cup Y).$$

• $\{1,2\},\{1,4\}$ and $\{2,3\}$ are *A*-strands, that is, minimal subsets *X* of *A* such that $\sqcap(X,B) = 1$.

$$\sqcap(X,Y)=r(X)+r(Y)-r(X\cup Y).$$

• $\{1,2\},\{1,4\}$ and $\{2,3\}$ are *A*-strands, that is, minimal subsets *X* of *A* such that $\sqcap(X,B) = 1$.

▶ ▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ○ ○ ○

• $\{5,7\}$ and $\{a\}$ are examples of *B*-strands.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• \sqcap ({1,4}, {5,7}) = 1.

• \sqcap ({1,4}, {5,7}) = 1.

• *M* can be extended by *p* so that both $\{1, 4, p\}$ and $\{5, 7, p\}$ are circuits.

- \sqcap ({1,4}, {5,7}) = 1.
- *M* can be extended by *p* so that both $\{1, 4, p\}$ and $\{5, 7, p\}$ are circuits.

- $\sqcap(\{1,4\},\{5,7\}) = 1.$
- *M* can be extended by *p* so that both $\{1, 4, p\}$ and $\{5, 7, p\}$ are circuits.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

This forces $\{2, 3, p\}$ to be a circuit.

 $(A, B) = (\{1, 2, 3, 4\}, \{5, 6, 7, 8\})$ is a 3-separation.

▲□▶ ▲圖▶ ★園▶ ★園▶ - 園 - のへで

 $(A, B) = (\{1, 2, 3, 4\}, \{5, 6, 7, 8\})$ is a 3-separation.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

• $\{1,2\}$ and $\{3,4\}$ are *A*-strands.

 $(A, B) = (\{1, 2, 3, 4\}, \{5, 6, 7, 8\})$ is a 3-separation.

- $\{1, 2\}$ and $\{3, 4\}$ are *A*-strands.
- $\{5, 6\}$ and $\{7, 8\}$ are *B*-strands.

 $(A, B) = (\{1, 2, 3, 4\}, \{5, 6, 7, 8\})$ is a 3-separation.

- $\{1, 2\}$ and $\{3, 4\}$ are *A*-strands.
- $\{5, 6\}$ and $\{7, 8\}$ are *B*-strands.
- $\sqcap(\{3,4\},\{7,8\}) = 1.$

 $(A, B) = (\{1, 2, 3, 4\}, \{5, 6, 7, 8\})$ is a 3-separation.

- $\{1,2\}$ and $\{3,4\}$ are *A*-strands.
- $\{5, 6\}$ and $\{7, 8\}$ are *B*-strands.
- $\sqcap(\{3,4\},\{7,8\}) = 1.$

We CANNOT add p so that $\{3, 4, p\}$ and $\{7, 8, p\}$ are circuits.

- 20

 $(A, B) = (\{1, 2, 3, 4\}, \{5, 6, 7, 8\})$ is a 3-separation.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $(A, B) = (\{1, 2, 3, 4\}, \{5, 6, 7, 8\})$ is a 3-separation.

- $\{1,2\}$ and $\{3,4\}$ are *A*-strands.
- $\{5, 6\}$ and $\{7, 8\}$ are *B*-strands.
- $\sqcap(\{3,4\},\{7,8\}) = 1.$

 $(A, B) = (\{1, 2, 3, 4\}, \{5, 6, 7, 8\})$ is a 3-separation.

- $\{1,2\}$ and $\{3,4\}$ are *A*-strands.
- $\{5, 6\}$ and $\{7, 8\}$ are *B*-strands.
- $\sqcap(\{3,4\},\{7,8\}) = 1.$
- $\sqcap(\{3,4\},\{5,6\}) = 1 = \sqcap(\{1,2\},\{7,8\}).$

 $(A, B) = (\{1, 2, 3, 4\}, \{5, 6, 7, 8\})$ is a 3-separation.

- $\{1,2\}$ and $\{3,4\}$ are A-strands.
- $\{5, 6\}$ and $\{7, 8\}$ are *B*-strands.
- $\sqcap(\{3,4\},\{7,8\}) = 1.$
- $\sqcap(\{3,4\},\{5,6\}) = 1 = \sqcap(\{1,2\},\{7,8\}).$
- $\bullet \ \sqcap (\{1,2\},\{5,6\}) = 0$

Theorem Suppose M has a 3-separation (A, B), an A-strand A_0 and a B-strand B_0 with

 $\sqcap(A_0, B_0) = 1.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem

Suppose M has a 3-separation (A, B), an A-strand A_0 and a B-strand B_0 with

 $\sqcap(A_0, B_0) = 1.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Then M has an extension by p such that $A_0 \cup p$ and $B_0 \cup p$ are circuits

Theorem

Suppose M has a 3-separation (A, B), an A-strand A_0 and a B-strand B_0 with

$$\sqcap (A_0, B_0) = 1.$$

Then M has an extension by p such that $A_0 \cup p$ and $B_0 \cup p$ are circuits iff M has no A-strand $A_1 \ (\neq A_0)$ and B-strand $B_1 \ (\neq B_0)$ with

Theorem

Suppose M has a 3-separation (A, B), an A-strand A_0 and a B-strand B_0 with

$$\sqcap (\mathbf{A_0}, \mathbf{B_0}) = 1.$$

Then *M* has an extension by *p* such that $A_0 \cup p$ and $B_0 \cup p$ are circuits iff *M* has no *A*-strand $A_1 \ (\neq A_0)$ and *B*-strand $B_1 \ (\neq B_0)$ with exactly two of $\sqcap (A_0, B_1), \sqcap (A_1, B_1)$, and $\sqcap (A_1, B_0)$ being one.

Theorem

Suppose M has a 3-separation (A, B), an A-strand A_0 and a B-strand B_0 with

$$\sqcap (\mathbf{A_0}, \mathbf{B_0}) = 1.$$

Then *M* has an extension by *p* such that $A_0 \cup p$ and $B_0 \cup p$ are circuits iff *M* has no *A*-strand $A_1 \ (\neq A_0)$ and *B*-strand $B_1 \ (\neq B_0)$ with exactly two of $\sqcap (A_0, B_1), \sqcap (A_1, B_1)$, and $\sqcap (A_1, B_0)$ being one. When *M* has an extension by *p* such that $A_0 \cup p$ and $B_0 \cup p$ are circuits, it is unique.

Theorem

Suppose M has a 3-separation (A, B), an A-strand A_0 and a B-strand B_0 with

$$\sqcap (\mathbf{A_0}, \mathbf{B_0}) = 1.$$

Then *M* has an extension by *p* such that $A_0 \cup p$ and $B_0 \cup p$ are circuits iff *M* has no *A*-strand $A_1 \ (\neq A_0)$ and *B*-strand $B_1 \ (\neq B_0)$ with exactly two of $\sqcap (A_0, B_1), \sqcap (A_1, B_1)$, and $\sqcap (A_1, B_0)$ being one. When *M* has an extension by *p* such that $A_0 \cup p$ and $B_0 \cup p$ are circuits, it is unique.

The Vámos matroid encapsulates the core obstruction to this extension.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem

Let (X, Y, Z) be a partition of a matroid where Y may be empty. Let $(X, Y \cup Z)$ and $(X \cup Y, Z)$ be 3-separations.

 Assume X₀ and Y₀ are an X-strand and a (Y ∪ Z)-strand with ⊓(X₀, Y₀) = 1 such that M has an extension by p so that X₀ ∪ p and Y₀ ∪ p are circuits.

Theorem

Let (X, Y, Z) be a partition of a matroid where Y may be empty. Let $(X, Y \cup Z)$ and $(X \cup Y, Z)$ be 3-separations.

- Assume X₀ and Y₀ are an X-strand and a (Y ∪ Z)-strand with ⊓(X₀, Y₀) = 1 such that M has an extension by p so that X₀ ∪ p and Y₀ ∪ p are circuits.
- Assume Y₁ and Z₁ are an (X ∪ Y)-strand and a Z-strand with ⊓(Y₁, Z₁) = 1 such that M has an extension by q so that Y₁ ∪ q and Z₁ ∪ q are circuits.

Theorem

Let (X, Y, Z) be a partition of a matroid where Y may be empty. Let $(X, Y \cup Z)$ and $(X \cup Y, Z)$ be 3-separations.

- Assume X₀ and Y₀ are an X-strand and a (Y ∪ Z)-strand with ⊓(X₀, Y₀) = 1 such that M has an extension by p so that X₀ ∪ p and Y₀ ∪ p are circuits.
- Assume Y₁ and Z₁ are an (X ∪ Y)-strand and a Z-strand with ⊓(Y₁, Z₁) = 1 such that M has an extension by q so that Y₁ ∪ q and Z₁ ∪ q are circuits.

The Vámos matroid is the key obstruction

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The Vámos matroid is the key obstruction

The Vámos matroid is the key obstruction

Theorem

Suppose M has a 3-separation (A, B), an A-strand A_0 and a B-strand B_0 with

$$\neg (A_0, B_0) = 1.$$

Then *M* has an extension by *p* such that $A_0 \cup p$ and $B_0 \cup p$ are circuits iff *M* has no *A*-strand $A_1 \ (\neq A_0)$ and *B*-strand $B_1 \ (\neq B_0)$ with exactly two of $\sqcap (A_0, B_1), \sqcap (A_1, B_1)$, and $\sqcap (A_1, B_0)$ being one.