Excluded Minor Results For Vf-Safe Delta–Matroids

Luminy 2018

Steve Noble Joe Bonin, Carolyn Chun, Irene Pivotto, Gordon Royle

Birkbeck, University of London

26/9/2018

Quick recap 1.

Definition (Bouchet)

- (E, \mathcal{F}) form a Δ -matroid if

 - ② For all $F_1, F_2 \in \mathcal{F}$ and $e \in F_1 \triangle F_2$, there exists $f \in F_1 \triangle F_2$ such that $F_1 \triangle \{e, f\} \in \mathcal{F}$.

We allow e = f in the definition.

 \mathcal{F} is the set of feasible sets.

Quick recap 1.

Definition (Bouchet)

 (E, \mathcal{F}) form a Δ -matroid if

② For all $F_1, F_2 \in \mathcal{F}$ and $e \in F_1 \triangle F_2$, there exists $f \in F_1 \triangle F_2$ such that $F_1 \triangle \{e, f\} \in \mathcal{F}$.

We allow e = f in the definition.

 \mathcal{F} is the set of feasible sets.

The set of quasi-trees of a ribbon graph form the feasible sets of a ribbon-graphic Δ -matroid.

Quick recap 2.

Let $D = (E, \mathcal{F})$ be a Δ -matroid and $A \subseteq E$. Then the partial dual D * A is the Δ -matroid such that F is feasible in D * A if and only if $F \bigtriangleup A$ is feasible in D.

Quick recap 2.

Let $D = (E, \mathcal{F})$ be a Δ -matroid and $A \subseteq E$. Then the partial dual D * A is the Δ -matroid such that F is feasible in D * A if and only if $F \bigtriangleup A$ is feasible in D.

Partial (local) duality of ribbon graphs is consistent with that of Δ -matroids.

A symmetric binary matrix

The non-singular principal sub-matrices

1234 124 134 12 13 34 4 Ø

A symmetric binary matrix

0	1	1	0
1	0	0	0
1	0	0	1
0	0	1	1

The non-singular principal sub-matrices

	1234	
124		134
12	13	34
	4	
	Ø	

Proposition (Bouchet)

The collection of (sets of column indices of) non-singular, principal sub-matrices of a symmetric binary matrix M form the feasible sets of a Δ -matroid D(M).

A symmetric binary matrix

$\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$

The non-singular principal sub-matrices

		1234	
1	24		134
	12	13	34
		4	
		Ø	

Proposition (Bouchet)

The collection of (sets of column indices of) non-singular, principal sub-matrices of a symmetric binary matrix M form the feasible sets of a Δ -matroid D(M).

These Δ -matroids are (confusingly) called graphic.

A Δ -matroid in which the empty set is feasible is called normal.

A Δ -matroid in which the empty set is feasible is called normal.

Every graphic Δ -matroid is normal.

A Δ -matroid in which the empty set is feasible is called normal.

Every graphic Δ -matroid is normal.

Definition (Bouchet)

A Δ -matroid is binary if it is a partial dual of a graphic Δ -matroid.

A Δ -matroid in which the empty set is feasible is called normal.

Every graphic Δ -matroid is normal.

Definition (Bouchet)

A Δ -matroid is binary if it is a partial dual of a graphic Δ -matroid.

Proposition (Bouchet)

1 Every normal binary Δ -matroid is graphic.

A Δ -matroid in which the empty set is feasible is called normal.

Every graphic Δ -matroid is normal.

Definition (Bouchet)

A Δ -matroid is binary if it is a partial dual of a graphic Δ -matroid.

Proposition (Bouchet)

- Every normal binary Δ -matroid is graphic.
- 2 Every binary matroid is a binary Δ -matroid.

A Δ -matroid in which the empty set is feasible is called normal.

Every graphic Δ -matroid is normal.

Definition (Bouchet)

A Δ -matroid is binary if it is a partial dual of a graphic Δ -matroid.

Proposition (Bouchet)

- Every normal binary Δ -matroid is graphic.
- 2 Every binary matroid is a binary Δ -matroid.
- 3 Every ribbon-graphic Δ -matroid is binary.

Half-Twists

A natural ribbon graph operation is the partial Petrial: apply a half-twist to an edge *e* to get $G^{\tau(e)}$.

Half-Twists

A natural ribbon graph operation is the partial Petrial: apply a half-twist to an edge *e* to get $G^{\tau(e)}$.

Extends to sets of edges: $G^{\tau(A)}$ denotes *G* with half-twists added to the edges of *A*.

If *M* is a symmetric binary matrix, then M + e is formed from *M* by replacing $M_{e,e}$ by $1 - M_{e,e}$.

If *M* is a symmetric binary matrix, then M + e is formed from *M* by replacing $M_{e,e}$ by $1 - M_{e,e}$.

This can be extended to M + A in the obvious way.

If *M* is a symmetric binary matrix, then M + e is formed from *M* by replacing $M_{e,e}$ by $1 - M_{e,e}$.

This can be extended to M + A in the obvious way.

Proposition (Brijder, Hoogeboom) If $e \notin F$, then $F \in \mathcal{F}(D(M + e)) \Leftrightarrow F \in \mathcal{F}(D(M))$. If $e \in F$, then $F \in \mathcal{F}(D(M + e)) \Leftrightarrow F - e \in \mathcal{F}(D(M))$ xor $F \in \mathcal{F}(D(M))$.

If *M* is a symmetric binary matrix, then M + e is formed from *M* by replacing $M_{e,e}$ by $1 - M_{e,e}$.

This can be extended to M + A in the obvious way.

Proposition (Chun, Moffatt, N, Rueckriemen)If $e \notin F$, then $F \in \mathcal{F}(D(G^{\tau(e)})) \Leftrightarrow F \in \mathcal{F}(D(G))$.If $e \in F$, then
 $F \in \mathcal{F}(D(G^{\tau(e)})) \Leftrightarrow F - e \in \mathcal{F}(D(G))$ xor $F \in \mathcal{F}(D(G))$.

Try to extend this to all Δ -matroids by defining D + e to be the set system with feasible sets as before.

Try to extend this to all Δ -matroids by defining D + e to be the set system with feasible sets as before.

In general this construction does not give a Δ -matroid.

Try to extend this to all Δ -matroids by defining D + e to be the set system with feasible sets as before.

In general this construction does not give a Δ -matroid.

A Δ -matroid is vf-safe if all sequences of partial duals and loop complementations give Δ -matroids.

Try to extend this to all Δ -matroids by defining D + e to be the set system with feasible sets as before.

In general this construction does not give a Δ -matroid.

A Δ -matroid is vf-safe if all sequences of partial duals and loop complementations give Δ -matroids.

The vf-safe Δ -matroids form a minor-closed class.

Try to extend this to all Δ -matroids by defining D + e to be the set system with feasible sets as before.

In general this construction does not give a Δ -matroid.

A Δ -matroid is vf-safe if all sequences of partial duals and loop complementations give Δ -matroids.

The vf-safe Δ -matroids form a minor-closed class.

Open Question

What are the excluded minors for the class of vf-safe Δ -matroids?

Try to extend this to all Δ -matroids by defining D + e to be the set system with feasible sets as before.

In general this construction does not give a Δ -matroid.

A Δ -matroid is vf-safe if all sequences of partial duals and loop complementations give Δ -matroids.

The vf-safe Δ -matroids form a minor-closed class.

Open Question

What are the excluded minors for the class of vf-safe Δ -matroids?

Theorem

A matroid is vf-safe if and only if it has no minor isomorphic to $U_{2,6}$, $U_{4,6}$, P_6 , F_7^- or $(F_7^-)^*$.

The operations +e and *e act on set systems like two transpositions in Sym_3 .

Definition (Brijder and Hoogeboom)

If a set system S' may be obtained from S by a sequence of + and * operations, then S' is a twisted dual of S.

The operations +e and *e act on set systems like two transpositions in Sym_3 .

Definition (Brijder and Hoogeboom)

If a set system S' may be obtained from S by a sequence of + and * operations, then S' is a twisted dual of S.

The operations +e and *e act on set systems like two transpositions in Sym_3 .

Definition (Brijder and Hoogeboom)

If a set system S' may be obtained from S by a sequence of + and * operations, then S' is a twisted dual of S.

Thinking of $D \setminus e$ as (D * e)/e suggests a third minor operation Penrose contraction (D + e)/e.

• All three types of minor can be defined for arbitrary set systems.

The operations +e and *e act on set systems like two transpositions in Sym_3 .

Definition (Brijder and Hoogeboom)

If a set system S' may be obtained from S by a sequence of + and * operations, then S' is a twisted dual of S.

- All three types of minor can be defined for arbitrary set systems.
- The order of operations matters,

The operations +e and *e act on set systems like two transpositions in Sym_3 .

Definition (Brijder and Hoogeboom)

If a set system S' may be obtained from S by a sequence of + and * operations, then S' is a twisted dual of S.

- All three types of minor can be defined for arbitrary set systems.
- The order of operations matters, but not if we take care to avoid contracting loops, deleting coloops etc.

The operations +e and *e act on set systems like two transpositions in Sym_3 .

Definition (Brijder and Hoogeboom)

If a set system S' may be obtained from S by a sequence of + and * operations, then S' is a twisted dual of S.

- All three types of minor can be defined for arbitrary set systems.
- The order of operations matters, but not if we take care to avoid contracting loops, deleting coloops etc.
- So there is a well-defined notion of 3-minors.

Theorem (Bonin, C. Chun, N)

A set system is a vf-safe \triangle -matroid if and only if it contains no 3-minor isomorphic to a twisted dual of S_3 .

Theorem (Bonin, C. Chun, N)

A set system is a vf-safe Δ -matroid if and only if it contains no 3-minor isomorphic to a twisted dual of S_3 .

Proof.

Each member of $S \cup T$ contains a twisted dual of S_3 as a 3-minor.

Vertex minors 1.

Recall normal, binary Δ -matroids are graphic.

Vertex minors 1.

Recall normal, binary Δ -matroids are graphic.

Two graphs are locally equivalent if one can be obtained from the other by a sequence of the following:

- adding / removing loops (loop complementations).
- complementing adjacencies in the neighbourhood of a vertex (local complementations).

Vertex minors 1.

Recall normal, binary Δ -matroids are graphic.

Two graphs are locally equivalent if one can be obtained from the other by a sequence of the following:

- adding / removing loops (loop complementations).
- complementing adjacencies in the neighbourhood of a vertex (local complementations).

G is a vertex minor of H if G may be obtained from H by a sequence of local / loop complementations and deleting vertices.

Vertex minors 2.

"Vertex minors and 3-minors are equivalent".

Vertex minors 2.

"Vertex minors and 3-minors are equivalent".

Proposition

- If G is a vertex minor of H, then D(G) is a twisted dual of a 3-minor of D(H).
- If D₁ is a 3-minor of a binary △-matroid D₂, then there are graphs G₁ and G₂ with D(G_i) a twisted dual of D_i and G₁ a vertex minor of G₂.

Theorem (Bouchet)

Up to partial duals there are 5 excluded minors for the class of binary Δ -matroids within the class of Δ -matroids.

Binary ∆-matroids

Theorem (Bouchet)

Up to partial duals there are 5 excluded minors for the class of binary Δ -matroids within the class of Δ -matroids.

Corollary (Bonin, Chun, N)

A vf-safe Δ -matroid is binary if and only if it has no 3-minor isomorphic to a twisted dual of

$$B = (\{a, b, c\}, \{\emptyset, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}).$$

Binary ∆-matroids

Theorem (Bouchet)

Up to partial duals there are 5 excluded minors for the class of binary Δ -matroids within the class of Δ -matroids.

Corollary (Bonin, Chun, N)

A vf-safe Δ -matroid is binary if and only if it has no 3-minor isomorphic to a twisted dual of

$$B = (\{a, b, c\}, \{\emptyset, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}).$$

Corollary (Bonin, Chun, N)

A set system is a binary Δ -matroid if and only if it has no 3-minor isomorphic to a twisted dual of S_3 or B.

Ribbon graphs

Theorem (Bouchet)

G is a circle graph (i.e. a ribbon graph with one vertex) if and only if G has no vertex minor isomorphic to one of

Ribbon graphs

Theorem (Bouchet)

G is a circle graph (i.e. a ribbon graph with one vertex) if and only if *G* has no vertex minor isomorphic to one of

Theorem (Bonin, Chun, N)

A set system is a ribbon graphic Δ -matroid if and only if it has no 3-minor isomorphic to a twisted dual of S_3 , B_1 , $D(G_1)$, $D(G_2)$ or $D(G_3)$.