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Quick recap 1.

Definition (Bouchet)
(E ,F) form a ∆-matroid if

1 F 6= ∅.
2 For all F1,F2 ∈ F and e ∈ F1 4 F2, there exists f ∈ F1 4 F2 such

that F1 4 {e, f} ∈ F .

We allow e = f in the definition.

F is the set of feasible sets.

The set of quasi-trees of a ribbon graph form the feasible sets of a
ribbon-graphic ∆-matroid.
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Quick recap 2.

Let D = (E ,F) be a ∆-matroid and A ⊆ E . Then the partial dual D ∗ A
is the ∆-matroid such that F is feasible in D ∗ A if and only if F 4 A is
feasible in D.

Partial (local) duality of ribbon graphs is consistent with that of
∆-matroids.
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Binary ∆-matroids 1.

A symmetric binary matrix
0 1 1 0
1 0 0 0
1 0 0 1
0 0 1 1



The non-singular principal
sub-matrices

1234
124 134
12 13 34

4
∅

Proposition (Bouchet)
The collection of (sets of column indices of) non-singular, principal
sub-matrices of a symmetric binary matrix M form the feasible sets of
a ∆-matroid D(M).

These ∆-matroids are (confusingly) called graphic.
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Binary ∆-matroids 2.

A ∆-matroid in which the empty set is feasible is called normal.

Every graphic ∆-matroid is normal.

Definition (Bouchet)
A ∆-matroid is binary if it is a partial dual of a graphic ∆-matroid.

Proposition (Bouchet)

1 Every normal binary ∆-matroid is graphic.
2 Every binary matroid is a binary ∆-matroid.
3 Every ribbon-graphic ∆-matroid is binary.
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Half-Twists

A natural ribbon graph operation is the partial Petrial: apply a half-twist
to an edge e to get Gτ(e).

G Gτ(e)

Extends to sets of edges: Gτ(A) denotes G with half-twists added to
the edges of A.
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Loop complementation
If M is a symmetric binary matrix, then M + e is formed from M by
replacing Me,e by 1−Me,e.

0 v

v t M ′

This can be extended to M + A in the obvious way.
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If M is a symmetric binary matrix, then M + e is formed from M by
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If M is a symmetric binary matrix, then M + e is formed from M by
replacing Me,e by 1−Me,e.
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v t M ′
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Proposition (Chun, Moffatt, N, Rueckriemen)
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Vf-safe ∆-matroids

Try to extend this to all ∆-matroids by defining D + e to be the set
system with feasible sets as before.

In general this construction does not give a ∆-matroid.

A ∆-matroid is vf-safe if all sequences of partial duals and loop
complementations give ∆-matroids.

The vf-safe ∆-matroids form a minor-closed class.

Open Question
What are the excluded minors for the class of vf-safe ∆-matroids?

Theorem
A matroid is vf-safe if and only if it has no minor isomorphic to U2,6,
U4,6, P6, F−7 or (F−7 )∗.
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Vf-safe ∆-matroids

The operations +e and ∗e act on set systems like two transpositions in
Sym3.

Definition (Brijder and Hoogeboom)
If a set system S′ may be obtained from S by a sequence of + and ∗
operations, then S′ is a twisted dual of S.

Thinking of D \ e as (D ∗ e)/e suggests a third minor operation
Penrose contraction (D + e)/e.

All three types of minor can be defined for arbitrary set systems.

The order of operations matters,

but not if we take care to avoid
contracting loops, deleting coloops etc.

So there is a well-defined notion of 3-minors.
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Vf-safe ∆-matroids

Theorem (Bonin, C. Chun, N)
A set system is a vf-safe ∆-matroid if and only if it contains no 3-minor
isomorphic to a twisted dual of S3.

Proof.
Each member of S ∪ T contains a twisted dual of S3 as a 3-minor.
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Vertex minors 1.

Recall normal, binary ∆-matroids are graphic.

Two graphs are locally equivalent if one can be obtained from the other
by a sequence of the following:

adding / removing loops (loop complementations).
complementing adjacencies in the neighbourhood of a vertex
(local complementations).

G is a vertex minor of H if G may be obtained from H by a sequence of
local / loop complementations and deleting vertices.
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Vertex minors 2.

“Vertex minors and 3-minors are equivalent”.

Proposition
If G is a vertex minor of H, then D(G) is a twisted dual of a
3-minor of D(H).
If D1 is a 3-minor of a binary ∆-matroid D2, then there are graphs
G1 and G2 with D(Gi) a twisted dual of Di and G1 a vertex minor
of G2.
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Binary ∆-matroids

Theorem (Bouchet)
Up to partial duals there are 5 excluded minors for the class of binary
∆-matroids within the class of ∆-matroids.

Corollary (Bonin, Chun, N)
A vf-safe ∆-matroid is binary if and only if it has no 3-minor isomorphic
to a twisted dual of

B = ({a,b, c}, {∅, {a,b}, {a, c}, {b, c}, {a,b, c}}).

Corollary (Bonin, Chun, N)
A set system is a binary ∆-matroid if and only if it has no 3-minor
isomorphic to a twisted dual of S3 or B.
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Ribbon graphs

Theorem (Bouchet)
G is a circle graph (i.e. a ribbon graph with one vertex) if and only if G
has no vertex minor isomorphic to one of

G1 G2 G3 .

Theorem (Bonin, Chun, N)
A set system is a ribbon graphic ∆-matroid if and only if it has no
3-minor isomorphic to a twisted dual of S3, B1, D(G1), D(G2) or D(G3).
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