Delta-matroids of dessins d'enfants and an action of the absolute Galois group $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$

Goran Malic

Combinatorial Geometries 2018, CIRM Marseille-Luminy

September 26, 2018

Motivation

Theorem (Whitney's planarity criterion)

A graph is planar if, and only if its graphic matroid is cographic.
Corollary
If G is a plane graph, then $M^{*}(G)=M\left(G^{*}\right)$, where G^{*} is the (geometric) dual of G.
Delta-matroids extend the previous corollary to any genus

Motivation

Theorem (Whitney's planarity criterion)

A graph is planar if, and only if its graphic matroid is cographic.

Corollary

If G is a plane graph, then $\mathrm{M}^{*}(G)=\mathrm{M}\left(G^{*}\right)$, where G^{*} is the (geometric) dual of G.

Delta-matroids extend the previous corollary to any genus

Motivation

Theorem (Whitney's planarity criterion)

A graph is planar if, and only if its graphic matroid is cographic.

Corollary

If G is a plane graph, then $\mathrm{M}^{*}(G)=\mathrm{M}\left(G^{*}\right)$, where G^{*} is the (geometric) dual of G.

Delta-matroids extend the previous corollary to any genus

Motivation

Theorem (Whitney's planarity criterion)

A graph is planar if, and only if its graphic matroid is cographic.

Corollary

If G is a plane graph, then $\mathrm{M}^{*}(G)=\mathrm{M}\left(G^{*}\right)$, where G^{*} is the (geometric) dual of G.

Delta-matroids extend the previous corollary to any genus

Definition

Definition (Matroids)

A non-empty collection \mathcal{B} of subsets of a finite set E is the collection of bases of a matroid if, and only if \mathcal{B} satisfies the exchange axiom:

For all $A, B \in \mathcal{B}$ and $a \in A \backslash B$ there exists $b \in B \backslash A$ such that $(A \backslash a) \cup b \in \mathcal{B}$.

Definition

Definition (Matroids)

A non-empty collection \mathcal{B} of subsets of a finite set E is the collection of bases of a matroid if, and only if \mathcal{B} satisfies the exchange axiom:

For all $A, B \in \mathcal{B}$ and $a \in A \backslash B$ there exists $b \in B \backslash A$ such that $(A \backslash a) \cup b \in \mathcal{B}$.

Definition

Definition (Matroids)

A non-empty collection \mathcal{B} of subsets of a finite set E is the collection of bases of a matroid if, and only if \mathcal{B} satisfies the exchange axiom:

For all $A, B \in \mathcal{B}$ and $a \in A \backslash B$ there exists $b \in B \backslash A$ such that $(A \backslash a) \cup b \in \mathcal{B}$.

Definition (Delta-matroids)

A non-empty collection \mathcal{F} of subsets of a finite set E is the collection of feasible sets of a delta-matroid if, and only if \mathcal{F} satisfies the symmetric exchange axiom:

For all $A, B \in \mathcal{F}$ and $a \in A \triangle B$ there exists $b \in B \triangle A$ such that $A \triangle\{a, b\} \in \mathcal{F}$.

Introduced by Bouchet in 1987.

- Every matroid is a delta matroid.
- Unless a delta-matroid is a matroid, feasible sets are not of the same size.
- Circuit and rank function axioms exist.
- Deletion, contraction and duality are defined similarly:

Introduced by Bouchet in 1987.

- Every matroid is a delta matroid.
- Unless a delta-matroid is a matroid, feasible sets are not of the same size.
- Circuit and rank function axioms exist.
- Deletion, contraction and duality are defined similarly:

Introduced by Bouchet in 1987.

- Every matroid is a delta matroid.
- Unless a delta-matroid is a matroid, feasible sets are not of the same size.
- Circuit and rank function axioms exist.
- Deletion, contraction and duality are defined similarly:

Introduced by Bouchet in 1987.

- Every matroid is a delta matroid.
- Unless a delta-matroid is a matroid, feasible sets are not of the same size.
- Circuit and rank function axioms exist.
- Deletion, contraction and duality are defined similarly:

Introduced by Bouchet in 1987.

- Every matroid is a delta matroid.
- Unless a delta-matroid is a matroid, feasible sets are not of the same size.
- Circuit and rank function axioms exist.
- Deletion, contraction and duality are defined similarly:
- if e is not a loop (i.e. not an element in no feasible set) of a delta-matroid $D=D(E, \mathcal{F})$, then

$$
\mathcal{F}_{D / e}=(\mathcal{F} \backslash e,\{F \backslash e: F \in \mathcal{F} \text { and such that } e \in \mathcal{F}\})
$$

- if e is not an isthmus/coloop (i.e. not an element of every
feasible set), then

Introduced by Bouchet in 1987.

- Every matroid is a delta matroid.
- Unless a delta-matroid is a matroid, feasible sets are not of the same size.
- Circuit and rank function axioms exist.
- Deletion, contraction and duality are defined similarly:
- if e is not a loop (i.e. not an element in no feasible set) of a delta-matroid $D=D(E, \mathcal{F})$, then

$$
\mathcal{F}_{D / e}=(\mathcal{F} \backslash e,\{F \backslash e: F \in \mathcal{F} \text { and such that } e \in \mathcal{F}\})
$$

- if e is not an isthmus/coloop (i.e. not an element of every feasible set), then

$$
\mathcal{F}_{D \backslash e}=(\mathcal{F} \backslash e,\{F: F \in \mathcal{F} \text { and } F \subseteq \mathcal{F} \backslash e\})
$$

- $D^{*}=D^{*}\left(E, F^{*}\right)$, where F^{*}

Introduced by Bouchet in 1987.

- Every matroid is a delta matroid.
- Unless a delta-matroid is a matroid, feasible sets are not of the same size.
- Circuit and rank function axioms exist.
- Deletion, contraction and duality are defined similarly:
- if e is not a loop (i.e. not an element in no feasible set) of a delta-matroid $D=D(E, \mathcal{F})$, then

$$
\mathcal{F}_{D / e}=(\mathcal{F} \backslash e,\{F \backslash e: F \in \mathcal{F} \text { and such that } e \in \mathcal{F}\})
$$

- if e is not an isthmus/coloop (i.e. not an element of every feasible set), then

$$
\mathcal{F}_{D \backslash e}=(\mathcal{F} \backslash e,\{F: F \in \mathcal{F} \text { and } F \subseteq \mathcal{F} \backslash e\})
$$

- $D^{*}=D^{*}\left(E, \mathcal{F}^{*}\right)$, where $F^{*}=F \triangle E=\{F \triangle E: F \in \mathcal{F}\}$.

Example: graphic delta-matroids

Consider a connected graph G cellularly embedded on a closed, connected (orientable) surface X, i.e.

- Vertices are points on the surface
- Edges are arcs on the surface (not necessarily geodesic)
- The connected components of $X \backslash G$, called faces, are homeomorphic to open 2-cells
Such embeddings are also called maps on surfaces, or dessins d'enfants if one is interested in Galois theory (more precsely Grothendieck-Teichmüller theory and anabelian geometry).

Example: graphic delta-matroids

Consider a connected graph G cellularly embedded on a closed, connected (orientable) surface X, i.e.

- Vertices are points on the surface
- Edges are arcs on the surface (not necessarily geodesic)
- The connected components of $X \backslash G$, called faces, are homeomorphic to open 2-cells
Such embeddings are also called maps on surfaces, or dessins d'enfants if one is interested in Galois theory (more precsely Grothendieck-Teichmüller theory and anabelian geometry).

Example: graphic delta-matroids

Consider a connected graph G cellularly embedded on a closed, connected (orientable) surface X, i.e.

- Vertices are points on the surface
- Edges are arcs on the surface (not necessarily geodesic)
- The connected components of $X \backslash G$, called faces, are homeomorphic to open 2-cells
Such embeddings are also called maps on surfaces, or dessins d'enfants if one is interested in Galois theory (more precsely
Grothendieck-Teichmüller theory and anabelian geometry).

Example: graphic delta-matroids

Consider a connected graph G cellularly embedded on a closed, connected (orientable) surface X, i.e.

- Vertices are points on the surface
- Edges are arcs on the surface (not necessarily geodesic)
- The connected components of $X \backslash G$, called faces, are homeomorphic to open 2-cells
Such embeddings are also called maps on surfaces, or dessins d'enfants if one is interested in Galois theory (more precsely
Grothendieck-Teichmüller theory and anabelian geometry).

Example: graphic delta-matroids

Consider a connected graph G cellularly embedded on a closed, connected (orientable) surface X, i.e.

- Vertices are points on the surface
- Edges are arcs on the surface (not necessarily geodesic)
- The connected components of $X \backslash G$, called faces, are homeomorphic to open 2-cells
Such embeddings are also called maps on surfaces, or dessins
d'enfants if one is interested in Galois theory (more precsely
Grothendieck-Teichmüller theory and anabelian geometry).

Example: graphic delta-matroids

Consider a connected graph G cellularly embedded on a closed, connected (orientable) surface X, i.e.

- Vertices are points on the surface
- Edges are arcs on the surface (not necessarily geodesic)
- The connected components of $X \backslash G$, called faces, are homeomorphic to open 2-cells
Such embeddings are also called maps on surfaces, or dessins d'enfants if one is interested in Galois theory (more precsely Grothendieck-Teichmüller theory and anabelian geometry).

Definition

Let G be a map on a surface X with edge-set E. A quasi-tree of X is a subset $A \subseteq E$ such that A (as a ribbon graph) is spanning and has exactly one boundary component.

Definition

Let G be a map on a surface X with edge-set E. A quasi-tree of X is a subset $A \subseteq E$ such that A (as a ribbon graph) is spanning and has exactly one boundary component.

Definition

Let G be a map on a surface X with edge-set E. A quasi-tree of X is a subset $A \subseteq E$ such that A (as a ribbon graph) is spanning and has exactly one boundary component.

Theorem (Bouchet)

The collection of quasi-trees of X is a delta-matroid.

Example
If G is a plane map, then the collection of its spanning trees is a delta-matroid.

Definition

Let G be a map on a surface X with edge-set E. A quasi-tree of X is a subset $A \subseteq E$ such that A (as a ribbon graph) is spanning and has exactly one boundary component.

Theorem (Bouchet)

The collection of quasi-trees of X is a delta-matroid.

Example

If G is a plane map, then the collection of its spanning trees is a delta-matroid.

Example

Feasible sets: 3 and 123

The topological genus of the surface of embedding is encoded by the width of the corresponding delta-matroid,

$$
2 g=\max \{|A|: A \in \mathcal{F}\}-\min \{|B|: B \in \mathcal{F}\} .
$$

Example

Feasible sets: 3 and 123

The topological genus of the surface of embedding is encoded by the width of the corresponding delta-matroid,

$$
2 g=\max \{|A|: A \in \mathcal{F}\}-\min \{|B|: B \in \mathcal{F}\} .
$$

Example

Feasible sets: 3 and 123

The topological genus of the surface of embedding is encoded by the width of the corresponding delta-matroid,

$$
2 g=\max \{|A|: A \in \mathcal{F}\}-\min \{|B|: B \in \mathcal{F}\} .
$$

Example

Feasible sets: 3 and 123

The topological genus of the surface of embedding is encoded by the width of the corresponding delta-matroid,

$$
2 g=\max \{|A|: A \in \mathcal{F}\}-\min \{|B|: B \in \mathcal{F}\} .
$$

Example

Feasible sets: 3 and 123

The topological genus of the surface of embedding is encoded by the width of the corresponding delta-matroid,

$$
2 g=\max \{|A|: A \in \mathcal{F}\}-\min \{|B|: B \in \mathcal{F}\} .
$$

Example

Feasible sets: 3 and 123

The topological genus of the surface of embedding is encoded by the width of the corresponding delta-matroid,

$$
2 g=\max \{|A|: A \in \mathcal{F}\}-\min \{|B|: B \in \mathcal{F}\} .
$$

Example

Feasible sets: 3 and 123

The topological genus of the surface of embedding is encoded by the width of the corresponding delta-matroid,

$$
2 g=\max \{|A|: A \in \mathcal{F}\}-\min \{|B|: B \in \mathcal{F}\}
$$

Example

Feasible sets: 3 and 123

The topological genus of the surface of embedding is encoded by the width of the corresponding delta-matroid,

$$
2 g=\max \{|A|: A \in \mathcal{F}\}-\min \{|B|: B \in \mathcal{F}\}
$$

Representability

Graphic delta-matroids are representable!
A map G on a surface X with edge-set $E=\left\{e_{1}, \ldots, e_{n}\right\}$ and dual-edge-set $E^{*}=\left\{e_{1}^{*}, \ldots, e_{n}^{*}\right\}$ is represented by an n-dimensional isotropic subspace of the $2 n$-dimensional orthogonal vector space $\mathbb{Q}^{E} \oplus \mathbb{Q}^{E^{*}}$
In general, the standard orthogonal $2 n$-space has a basis

$$
\left\{e_{1}, \ldots, e_{n}, e_{1}^{*}, \ldots, e_{n}^{*}\right\}
$$

and a symmetric bilinear form (\cdot, \cdot) such that $\left(e_{i}, e_{i}^{*}\right)=\left(e_{i}^{*}, e_{i}\right)=1$ for all e_{i}, and $\left(e_{i}, e_{j}\right)=0$ for $e_{i} \neq e_{j}^{*}$.
A subspace W is isotropic if this form vanishes on it, i.e. $\left(w_{1}, w_{2}\right)=0$ for all $w_{1}, w_{2} \in W$.

Representability

Graphic delta-matroids are representable!
A map G on a surface X with edge-set $E=\left\{e_{1}, \ldots, e_{n}\right\}$ and dual-edge-set $E^{*}=\left\{e_{1}^{*}, \ldots, e_{n}^{*}\right\}$ is represented by an n-dimensional isotropic subspace of the $2 n$-dimensional orthogonal vector space $\mathbb{Q}^{E} \oplus \mathbb{Q}^{E^{*}}$.
In general, the standard orthogonal $2 n$-space has a basis

$$
\left\{e_{1}, \ldots, e_{n}, e_{1}^{*}, \ldots, e_{n}^{*}\right\}
$$

and a symmetric bilinear form (\cdot, \cdot) such that $\left(e_{i}, e_{i}^{*}\right)=\left(e_{i}^{*}, e_{i}\right)=1$ for all e_{i}, and $\left(e_{i}, e_{j}\right)=0$ for $e_{i} \neq e_{j}^{*}$
A subspace W is isotropic if this form vanishes on it, i.e. $\left(w_{1}, w_{2}\right)=0$ for all $w_{1}, w_{2} \in W$.

Representability

Graphic delta-matroids are representable!
A map G on a surface X with edge-set $E=\left\{e_{1}, \ldots, e_{n}\right\}$ and dual-edge-set $E^{*}=\left\{e_{1}^{*}, \ldots, e_{n}^{*}\right\}$ is represented by an n-dimensional isotropic subspace of the $2 n$-dimensional orthogonal vector space $\mathbb{Q}^{E} \oplus \mathbb{Q}^{E^{*}}$.
In general, the standard orthogonal $2 n$-space has a basis

$$
\left\{e_{1}, \ldots, e_{n}, e_{1}^{*}, \ldots, e_{n}^{*}\right\}
$$

and a symmetric bilinear form (\cdot, \cdot) such that $\left(e_{i}, e_{i}^{*}\right)=\left(e_{i}^{*}, e_{i}\right)=1$ for all e_{i}, and $\left(e_{i}, e_{j}\right)=0$ for $e_{i} \neq e_{j}^{*}$
A subspace W is isotropic if this form vanishes on it, i.e. $\left(w_{1}, w_{2}\right)=0$ for all $w_{1}, w_{2} \in W$.

Representability

Graphic delta-matroids are representable!
A map G on a surface X with edge-set $E=\left\{e_{1}, \ldots, e_{n}\right\}$ and dual-edge-set $E^{*}=\left\{e_{1}^{*}, \ldots, e_{n}^{*}\right\}$ is represented by an n-dimensional isotropic subspace of the $2 n$-dimensional orthogonal vector space $\mathbb{Q}^{E} \oplus \mathbb{Q}^{E^{*}}$.
In general, the standard orthogonal $2 n$-space has a basis

$$
\left\{e_{1}, \ldots, e_{n}, e_{1}^{*}, \ldots, e_{n}^{*}\right\}
$$

and a symmetric bilinear form (\cdot, \cdot) such that $\left(e_{i}, e_{i}^{*}\right)=\left(e_{i}^{*}, e_{i}\right)=1$ for all e_{i},
A subspace W is isotropic if this form vanishes on it, i.e. $\left(w_{1}, w_{2}\right)=0$ for all $w_{1}, w_{2} \in W$.

Representability

Graphic delta-matroids are representable!
A map G on a surface X with edge-set $E=\left\{e_{1}, \ldots, e_{n}\right\}$ and dual-edge-set $E^{*}=\left\{e_{1}^{*}, \ldots, e_{n}^{*}\right\}$ is represented by an n-dimensional isotropic subspace of the $2 n$-dimensional orthogonal vector space $\mathbb{Q}^{E} \oplus \mathbb{Q}^{E^{*}}$.
In general, the standard orthogonal $2 n$-space has a basis

$$
\left\{e_{1}, \ldots, e_{n}, e_{1}^{*}, \ldots, e_{n}^{*}\right\}
$$

and a symmetric bilinear form (\cdot, \cdot) such that $\left(e_{i}, e_{i}^{*}\right)=\left(e_{i}^{*}, e_{i}\right)=1$ for all e_{i}, and $\left(e_{i}, e_{j}\right)=0$ for $e_{i} \neq e_{j}^{*}$.
A subspace W is isotropic if this form vanishes on it, i.e. $\left(w_{1}, w_{2}\right)=0$ for all $w_{1}, w_{2} \in W$.

Graphic delta-matroids are representable!
A map G on a surface X with edge-set $E=\left\{e_{1}, \ldots, e_{n}\right\}$ and dual-edge-set $E^{*}=\left\{e_{1}^{*}, \ldots, e_{n}^{*}\right\}$ is represented by an n-dimensional isotropic subspace of the $2 n$-dimensional orthogonal vector space $\mathbb{Q}^{E} \oplus \mathbb{Q}^{E^{*}}$.
In general, the standard orthogonal $2 n$-space has a basis

$$
\left\{e_{1}, \ldots, e_{n}, e_{1}^{*}, \ldots, e_{n}^{*}\right\}
$$

and a symmetric bilinear form (\cdot, \cdot) such that $\left(e_{i}, e_{i}^{*}\right)=\left(e_{i}^{*}, e_{i}\right)=1$ for all e_{i}, and $\left(e_{i}, e_{j}\right)=0$ for $e_{i} \neq e_{j}^{*}$.
A subspace W is isotropic if this form vanishes on it, i.e. $\left(w_{1}, w_{2}\right)=0$ for all $w_{1}, w_{2} \in W$.

Representability: example

Example

Admissible 3-sets of column indices (i.e. those in which i and i^{*} don't appear together) such that the corresponding determinant is non-zero correspond to the feasible sets of G :

The feasible sets are obained by intersecting with $E=\{1,2,3\}$

Representability: example

Example

Admissible 3-sets of column indices (i.e. those in which i and i^{*} don't appear together) such that the corresponding determinant is non-zero correspond to the feasible sets of G :

The feasible sets are obained by intersecting with $E=\{1,2,3\}$

Representability: example

Example

Admissible 3-sets of column indices (i.e. those in which i and i^{*} don't appear together) such that the corresponding determinant is non-zero correspond to the feasible sets of G :

The feasible sets are obained by intersecting with $E=\{1,2,3\}$

Representability: example

Example

Admissible 3-sets of column indices (i.e. those in which i and i^{*} don't appear together) such that the corresponding determinant is non-zero correspond to the feasible sets of G :

$$
\left\{123^{*}, 1^{*} 2^{*} 3^{*}\right\}
$$

The feasible sets are obained by intersecting with $E=\{1,2,3\}$.

Representability: example

Example

Admissible 3-sets of column indices (i.e. those in which i and i^{*} don't appear together) such that the corresponding determinant is non-zero correspond to the feasible sets of G :

$$
\left\{123^{*}, 1^{*} 2^{*} 3^{*}\right\} .
$$

The feasible sets are obained by intersecting with $E=\{1,2,3\}$.

Lagrangian matroids

The n-dimensional isotropic subspaces of a $2 n$-dimensional symplectic or orthogonal space are called Lagrangian subspaces (n is the maximal dimension of an isotropic subspace).

Representable delta-matroids are represented by Lagrangian subspaces!

Bases of Lagrangian matroids are all of the same size!

Lagrangian matroids

The n-dimensional isotropic subspaces of a $2 n$-dimensional symplectic or orthogonal space are called Lagrangian subspaces (n is the maximal dimension of an isotropic subspace).

Representable delta-matroids are represented by Lagrangian subspaces!

Bases of Lagrangian matroids are all of the same size!

Lagrangian matroids

The n-dimensional isotropic subspaces of a $2 n$-dimensional symplectic or orthogonal space are called Lagrangian subspaces (n is the maximal dimension of an isotropic subspace).

Representable delta-matroids are represented by Lagrangian subspaces!

Definition

Let $E=\left\{e_{1}, \ldots, e_{n}\right\}$ and $E^{*}=\left\{e_{1}^{*}, \ldots, e_{n}^{*}\right\}$. A collection \mathcal{B} of admissible n-subsets of $E \cup E^{*}$ is the set of bases of a Lagrangian matroid if, and only if for all $A, B \in \mathcal{B}$ and $e, e^{*} \in A \triangle B$ there exist $f, f^{*} \in A \triangle B$ such that $A \triangle\left\{e, e^{*}, f, f^{*}\right\} \in \mathcal{B}$.

Bases of Lagrangian matroids are all of the same size!

Lagrangian matroids

The n-dimensional isotropic subspaces of a $2 n$-dimensional symplectic or orthogonal space are called Lagrangian subspaces (n is the maximal dimension of an isotropic subspace).

Representable delta-matroids are represented by Lagrangian subspaces!

Definition

Let $E=\left\{e_{1}, \ldots, e_{n}\right\}$ and $E^{*}=\left\{e_{1}^{*}, \ldots, e_{n}^{*}\right\}$. A collection \mathcal{B} of admissible n-subsets of $E \cup E^{*}$ is the set of bases of a Lagrangian matroid if, and only if for all $A, B \in \mathcal{B}$ and $e, e^{*} \in A \triangle B$ there exist $f, f^{*} \in A \triangle B$ such that $A \triangle\left\{e, e^{*}, f, f^{*}\right\} \in \mathcal{B}$.

Bases of Lagrangian matroids are all of the same size!

Lagrangian matroids

The n-dimensional isotropic subspaces of a $2 n$-dimensional symplectic or orthogonal space are called Lagrangian subspaces (n is the maximal dimension of an isotropic subspace).

Representable delta-matroids are represented by Lagrangian subspaces!

Definition

Let $E=\left\{e_{1}, \ldots, e_{n}\right\}$ and $E^{*}=\left\{e_{1}^{*}, \ldots, e_{n}^{*}\right\}$. A collection \mathcal{B} of admissible n-subsets of $E \cup E^{*}$ is the set of bases of a Lagrangian matroid if, and only if for all $A, B \in \mathcal{B}$ and $e, e^{*} \in A \triangle B$ there exist $f, f^{*} \in A \triangle B$ such that $A \triangle\left\{e, e^{*}, f, f^{*}\right\} \in \mathcal{B}$.

Bases of Lagrangian matroids are all of the same size!

Lagrangian matroids

The n-dimensional isotropic subspaces of a $2 n$-dimensional symplectic or orthogonal space are called Lagrangian subspaces (n is the maximal dimension of an isotropic subspace).

Representable delta-matroids are represented by Lagrangian subspaces!

Definition

Let $E=\left\{e_{1}, \ldots, e_{n}\right\}$ and $E^{*}=\left\{e_{1}^{*}, \ldots, e_{n}^{*}\right\}$. A collection \mathcal{B} of admissible n-subsets of $E \cup E^{*}$ is the set of bases of a Lagrangian matroid if, and only if for all $A, B \in \mathcal{B}$ and $e, e^{*} \in A \triangle B$ there exist $f, f^{*} \in A \triangle B$ such that $A \triangle\left\{e, e^{*}, f, f^{*}\right\} \in \mathcal{B}$.

Bases of Lagrangian matroids are all of the same size!

Maps, revisited

Let G be a map on a surface X with edge set $E=\left\{e_{1}, \ldots, e_{n}\right\}$ and dual-edge set $E^{*}=\left\{e_{1}^{*}, \ldots, e_{n}^{*}\right\}$. A base of G is an admissible n-subset B of $E \cup E^{*}$ such that $X \backslash B$ is connected.

Maps, revisited

Let G be a map on a surface X with edge set $E=\left\{e_{1}, \ldots, e_{n}\right\}$ and dual-edge set $E^{*}=\left\{e_{1}^{*}, \ldots, e_{n}^{*}\right\}$. A base of G is an admissible n-subset B of $E \cup E^{*}$ such that $X \backslash B$ is connected.

Maps, revisited

Let G be a map on a surface X with edge set $E=\left\{e_{1}, \ldots, e_{n}\right\}$ and dual-edge set $E^{*}=\left\{e_{1}^{*}, \ldots, e_{n}^{*}\right\}$. A base of G is an admissible n-subset B of $E \cup E^{*}$ such that $X \backslash B$ is connected.

Example

Bases: 123^{*} and $1^{*} 2^{*} 3^{*}$.

[^0]
Maps, revisited

Let G be a map on a surface X with edge set $E=\left\{e_{1}, \ldots, e_{n}\right\}$ and dual-edge set $E^{*}=\left\{e_{1}^{*}, \ldots, e_{n}^{*}\right\}$. A base of G is an admissible n-subset B of $E \cup E^{*}$ such that $X \backslash B$ is connected.

Example

Bases: 123* and $1^{*} 2^{*} 3^{*}$.

Theorem

The collection \mathcal{B} of bases of a map is a Lagrangian matroid orthogonally representable over \mathbb{Q}.

Symplectic matroids

Lagrangian matroids are a special case of Symplectic matroids.
Roughly speaking, symplectic matroids capture the combina-
torics of k-dimensional isotropic subspaces of $2 n$-symplectic spaces,
where $1 \leq k \leq n$, similarly to how matroids capture the combinatorics of vector spaces.

When $k=n$ symplectic matroids are called Lagrangian matroids.

Symplectic matroids

Lagrangian matroids are a special case of Symplectic matroids.
Roughly speaking, symplectic matroids capture the combinatorics of k-dimensional isotropic subspaces of $2 n$-symplectic spaces, where $1 \leq k \leq n$, similarly to how matroids capture the combinatorics of vector spaces.

When $k=n$ symplectic matroids are called Lagrangian matroids.

Lagrangian matroids are a special case of Symplectic matroids.
Roughly speaking, symplectic matroids capture the combinatorics of k-dimensional isotropic subspaces of $2 n$-symplectic spaces, where $1 \leq k \leq n$, similarly to how matroids capture the combinatorics of vector spaces.

When $k=n$ symplectic matroids are called Lagrangian matroids.

Symplectic matroids

Lagrangian matroids are a special case of Symplectic matroids.
Roughly speaking, symplectic matroids capture the combinatorics of k-dimensional isotropic subspaces of $2 n$-symplectic spaces, where $1 \leq k \leq n$, similarly to how matroids capture the combinatorics of vector spaces.

When $k=n$ symplectic matroids are called Lagrangian matroids.

Open problem

Find a basis exchange axiom for symplectic matroids, if one exists.

Develop the theory of oriented symplectic matroids.

Symplectic matroids

Lagrangian matroids are a special case of Symplectic matroids.
Roughly speaking, symplectic matroids capture the combinatorics of k-dimensional isotropic subspaces of $2 n$-symplectic spaces, where $1 \leq k \leq n$, similarly to how matroids capture the combinatorics of vector spaces.

When $k=n$ symplectic matroids are called Lagrangian matroids.

Open problem

Find a basis exchange axiom for symplectic matroids, if one exists.

Open problem

Develop the theory of oriented symplectic matroids.

General framework, Coxeter matroids

As with matroids, there are symplectic matroids that are not representable, i.e. that do not arise from isotropic subspaces of symplectic spaces.
eter groups and Coxeter matroids with respect to a finite reflec-
tion group W.

General framework, Coxeter matroids

As with matroids, there are symplectic matroids that are not representable, i.e. that do not arise from isotropic subspaces of symplectic spaces. The general framework is provided by Coxeter groups and Coxeter matroids with respect to a finite reflection group W.

General framework, Coxeter matroids

As with matroids, there are symplectic matroids that are not representable, i.e. that do not arise from isotropic subspaces of symplectic spaces. The general framework is provided by Coxeter groups and Coxeter matroids with respect to a finite reflection group W.

- When W is of type A_{n}, the resulting Coxeter matroid is a matroid.

```
- When \(W\) is of type \(B C_{n}\), the resulting Coxeter matroid is a
symplectic matroid.
- When \(W\) is of type \(D_{n}\), the resulting Coxeter matroid is an
orthogonal matroid
```

\squareThe Gelfand-Serganova theorem describes the relationship
\square theory connecting Coxeter matroids and the representation theory of Lie algebras?

General framework, Coxeter matroids

As with matroids, there are symplectic matroids that are not representable, i.e. that do not arise from isotropic subspaces of symplectic spaces. The general framework is provided by Coxeter groups and Coxeter matroids with respect to a finite reflection group W.

- When W is of type A_{n}, the resulting Coxeter matroid is a matroid.
- When W is of type $B C_{n}$, the resulting Coxeter matroid is a symplectic matroid.
- When W is of type D_{n}, the resulting Coxeter matroid is an orthogonal matroid.
\square
The Gelfand-Serganova theorem describes the relationship between Coxeter matroids and root systems. Is there a deep theory connecting Coxeter matroids and the representation theory of I ie algebras?

General framework, Coxeter matroids

As with matroids, there are symplectic matroids that are not representable, i.e. that do not arise from isotropic subspaces of symplectic spaces. The general framework is provided by Coxeter groups and Coxeter matroids with respect to a finite reflection group W.

- When W is of type A_{n}, the resulting Coxeter matroid is a matroid.
- When W is of type $B C_{n}$, the resulting Coxeter matroid is a symplectic matroid.
- When W is of type D_{n}, the resulting Coxeter matroid is an orthogonal matroid.

> Open problem
> The Gelfand-Serganova theorem describes the relationship between Coxeter matroids and root systems. Is there a deep theory connecting Coxeter matroids and the representation theory of Lie algebras?

General framework, Coxeter matroids

As with matroids, there are symplectic matroids that are not representable, i.e. that do not arise from isotropic subspaces of symplectic spaces. The general framework is provided by Coxeter groups and Coxeter matroids with respect to a finite reflection group W.

- When W is of type A_{n}, the resulting Coxeter matroid is a matroid.
- When W is of type $B C_{n}$, the resulting Coxeter matroid is a symplectic matroid.
- When W is of type D_{n}, the resulting Coxeter matroid is an orthogonal matroid.

Open problem

The Gelfand-Serganova theorem describes the relationship between Coxeter matroids and root systems. Is there a deep theory connecting Coxeter matroids and the representation theory of Lie algebras?

Dessins d'enfants

Definition

A dessin d'enfant is a connected bipartite graph embedded cellularly on a closed, connected and orientable surface X.

Definition
Equivalently, a dessin d'enfant is a pair (X, f) of a compact Riemann surface X

Dessins d'enfants

Definition

A dessin d'enfant is a connected bipartite graph embedded cellularly on a closed, connected and orientable surface X.

Definition

Equivalently, a dessin d'enfant is a pair (X, f) of a compact Riemann surface X \qquad Riemann sphere $f: X \rightarrow \mathbb{C P}^{1}$, ramified at most over a subset of

Dessins d'enfants

Definition

A dessin d'enfant is a connected bipartite graph embedded cellularly on a closed, connected and orientable surface X.

Definition

Equivalently, a dessin d'enfant is a pair (X, f) of a compact Riemann surface X \qquad Riemann sphere $f: X \rightarrow \mathbb{C P}^{1}$, ramified at most over a subset of

Dessins d'enfants

Definition

A dessin d'enfant is a connected bipartite graph embedded cellularly on a closed, connected and orientable surface X.

Definition

Equivalently, a dessin d'enfant is a pair (X, f) of a compact Riemann surface X and a holomorphic ramified covering of the Riemann sphere $f: X \rightarrow \mathbb{C P}^{1}$, ramified at most over a subset of

Dessins d'enfants

Definition

A dessin d'enfant is a connected bipartite graph embedded cellularly on a closed, connected and orientable surface X.

Definition

Equivalently, a dessin d'enfant is a pair (X, f) of a compact Riemann surface X and a holomorphic ramified covering of the Riemann sphere $f: X \rightarrow \mathbb{C P}^{1}$, ramified at most over a subset of $\{0,1, \infty\}$.

Dessins d'enfants

Definition

A dessin d'enfant is a connected bipartite graph embedded cellularly on a closed, connected and orientable surface X.

Definition

Equivalently, a dessin d'enfant is a pair (X, f) of a compact Riemann surface X and a holomorphic ramified covering of the Riemann sphere $f: X \rightarrow \mathbb{C P}^{1}$, ramified at most over a subset of $\{0,1, \infty\}$.

Theorem (Belyi's theorem)

A smooth projective algebraic curve X defined over \mathbb{C} is defined over $\overline{\mathbb{Q}}$ if, and only if X admits a holomorphic ramified covering of the Riemann sphere f
ramified at most over a subset of \{0,

Dessins d'enfants

Definition

A dessin d'enfant is a connected bipartite graph embedded cellularly on a closed, connected and orientable surface X.

Definition

Equivalently, a dessin d'enfant is a pair (X, f) of a compact Riemann surface X and a holomorphic ramified covering of the Riemann sphere $f: X \rightarrow \mathbb{C P}^{1}$, ramified at most over a subset of $\{0,1, \infty\}$.

Theorem (Belyi's theorem)

A smooth projective algebraic curve X defined over \mathbb{C} is defined over $\overline{\mathbb{Q}}$ if, and only if X admits a holomorphic ramified covering of the Riemann sphere f
ramified at most over a subset of \{0,

Dessins d'enfants

Definition

A dessin d'enfant is a connected bipartite graph embedded cellularly on a closed, connected and orientable surface X.

Definition

Equivalently, a dessin d'enfant is a pair (X, f) of a compact Riemann surface X and a holomorphic ramified covering of the Riemann sphere $f: X \rightarrow \mathbb{C P}^{1}$, ramified at most over a subset of $\{0,1, \infty\}$.

Theorem (Belyi's theorem)

A smooth projective algebraic curve X defined over \mathbb{C} is defined over $\overline{\mathbb{Q}}$ if, and only if X admits a holomorphic ramified covering of the Riemann sphere $f: X \rightarrow \mathbb{C P}^{1}$, ramified at most over a subset of $\{0,1, \infty\}$.

The absolute Galois group of \mathbb{Q}

Belyi's theorem tells us that any dessin d'enfant (X, f) is defined over $\overline{\mathbb{Q}}$, i.e. the coefficients of X and f are algebraic. Therefore, there is a natural action of the absolute Galois group $\operatorname{Gal}(\mathbb{Q} / \mathbb{Q})$.

The absolute Galois group $\operatorname{Gal}(\mathbb{Q} / \mathbb{Q})$ is the group of all field automorphisms of $\overline{\mathbb{Q}}$ which fix the rationals point-wise.

The absolute Galois group of \mathbb{Q}

Belyi's theorem tells us that any dessin d'enfant (X, f) is defined over $\overline{\mathbb{Q}}$, i.e. the coefficients of X and f are algebraic. there is a natural action of the absolute Galois group $\operatorname{Gal}(\mathbb{Q} / \mathbb{Q})$.

The absolute Galois group $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ is the group of all field automorphisms of $\overline{\mathbb{Q}}$ which fix the rationals point-wise.

The absolute Galois group of \mathbb{Q}

Belyi's theorem tells us that any dessin d'enfant (X, f) is defined over $\overline{\mathbb{Q}}$, i.e. the coefficients of X and f are algebraic. Therefore, there is a natural action of the absolute Galois group $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$.

The absolute Galois group $\operatorname{Gal}(\mathbb{Q} / \mathbb{Q})$ is the group of all field automorphisms of $\overline{\mathbb{Q}}$ which fix the rationals point-wise.

The absolute Galois group of \mathbb{Q}

Belyi's theorem tells us that any dessin d'enfant (X, f) is defined over $\overline{\mathbb{Q}}$, i.e. the coefficients of X and f are algebraic. Therefore, there is a natural action of the absolute Galois group $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$.

The absolute Galois group $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ is the group of all field automorphisms of $\overline{\mathbb{Q}}$ which fix the rationals point-wise.

The absolute Galois group of \mathbb{Q}

Belyi's theorem tells us that any dessin d'enfant (X, f) is defined over $\overline{\mathbb{Q}}$, i.e. the coefficients of X and f are algebraic. Therefore, there is a natural action of the absolute Galois group $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$.
The absolute Galois group $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ is the group of all field automorphisms of $\overline{\mathbb{Q}}$ which fix the rationals point-wise.

Open problem

What is the structure of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$?

The absolute Galois group of \mathbb{Q}

Belyi's theorem tells us that any dessin d'enfant (X, f) is defined over $\overline{\mathbb{Q}}$, i.e. the coefficients of X and f are algebraic. Therefore, there is a natural action of the absolute Galois group $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$.
The absolute Galois group $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ is the group of all field automorphisms of $\overline{\mathbb{Q}}$ which fix the rationals point-wise.

Open problem

What is the structure of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$?

The absolute Galois group of \mathbb{Q}

Belyi's theorem tells us that any dessin d'enfant (X, f) is defined over $\overline{\mathbb{Q}}$, i.e. the coefficients of X and f are algebraic. Therefore, there is a natural action of the absolute Galois group $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$.
The absolute Galois group $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ is the group of all field automorphisms of $\overline{\mathbb{Q}}$ which fix the rationals point-wise.

Open problem

What is the structure of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$? Are all finite groups Galois over \mathbb{Q} ?

The absolute Galois group of \mathbb{Q}

Belyi's theorem tells us that any dessin d'enfant (X, f) is defined over $\overline{\mathbb{Q}}$, i.e. the coefficients of X and f are algebraic. Therefore, there is a natural action of the absolute Galois group $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$. The absolute Galois group $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ is the group of all field automorphisms of $\overline{\mathbb{Q}}$ which fix the rationals point-wise.

Open problem

What is the structure of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$? Are all finite groups Galois over \mathbb{Q} ? Are all sporadic simple groups Galois over \mathbb{Q} ?

Galois action

Gal $(\overline{\mathbb{Q}} / \mathbb{Q})$ acts on a dessin d'enfant (X, f) by simultaneously acting on the coefficients of X and f :

Galois action

Gal $(\overline{\mathbb{Q}} / \mathbb{Q})$ acts on a dessin d'enfant (X, f) by simultaneously acting on the coefficients of X and f :

$$
\begin{gathered}
X: y^{2}=x(x-1)(x-(3+2 \sqrt{3})) \\
f:(x, y) \mapsto x \mapsto-\frac{(x-)^{3}(x-9)}{64 x}
\end{gathered}
$$

Galois action

Gal $(\overline{\mathbb{Q}} / \mathbb{Q})$ acts on a dessin d'enfant (X, f) by simultaneously acting on the coefficients of X and f :

$$
\begin{gathered}
X: y^{2}=x(x-1)(x-(3+2 \sqrt{3})) \\
\quad f:(x, y) \mapsto x \mapsto-\frac{(x-1)^{3}(x-9)}{64 x}
\end{gathered}
$$

$$
\begin{gathered}
X^{\theta}: y^{2}=x(x-1)(x-(3-2 \sqrt{3})) \\
f^{\theta}:(x, y) \mapsto x \mapsto-\frac{(x-1)^{3}(x-9)}{64 x}
\end{gathered}
$$

This action is faithful, so in principle the elements of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ are completely encoded by the orbits of this action on dessins.

How to distinguish between the orbits? We look for invariants that can be computed (in a reasonable amount of time).

Some known invariants:

This action is faithful, so in principle the elements of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ are completely encoded by the orbits of this action on dessins.

How to distinguish between the orbits? We look for invariants that can be computed (in a reasonable amount of time).

Some known invariants:

This action is faithful, so in principle the elements of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ are completely encoded by the orbits of this action on dessins. How to distinguish between the orbits? We look for invariants that can be computed (in a reasonable amount of time).

Some known invariants:

This action is faithful, so in principle the elements of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ are completely encoded by the orbits of this action on dessins. How to distinguish between the orbits? We look for invariants that can be computed (in a reasonable amount of time).

Some known invariants:

This action is faithful, so in principle the elements of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ are completely encoded by the orbits of this action on dessins.

How to distinguish between the orbits? We look for invariants that can be computed (in a reasonable amount of time).

Some known invariants:

- The genus
- The degree sequence (the passport)
- The automorphism group
- The monodromy group
- Generalised monodromy groups

This action is faithful, so in principle the elements of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ are completely encoded by the orbits of this action on dessins.

How to distinguish between the orbits? We look for invariants that can be computed (in a reasonable amount of time).

Some known invariants:

- The genus
- The degree sequence (the passport)
- The automorphism group
- The monodromy group
- Generalised monodromy groups

This action is faithful, so in principle the elements of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ are completely encoded by the orbits of this action on dessins.

How to distinguish between the orbits? We look for invariants that can be computed (in a reasonable amount of time).

Some known invariants:

- The genus
- The degree sequence (the passport)
- The automorphism group
- The monodromy group
- Generalised monodromy groups

This action is faithful, so in principle the elements of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ are completely encoded by the orbits of this action on dessins.

How to distinguish between the orbits? We look for invariants that can be computed (in a reasonable amount of time).

Some known invariants:

- The genus
- The degree sequence (the passport)
- The automorphism group
- The monodromy group
- Generalised monodromy groups

This action is faithful, so in principle the elements of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ are completely encoded by the orbits of this action on dessins.

How to distinguish between the orbits? We look for invariants that can be computed (in a reasonable amount of time).

Some known invariants:

- The genus
- The degree sequence (the passport)
- The automorphism group
- The monodromy group
- Generalised monodromy groups

What about matroids?

Question (A. Borovik)
Are Lagrangian matroids an invariant of the action of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ on the set of dessins?

Answer (GM, 2013-14)

Example

What about matroids?

Question (A. Borovik)

Are Lagrangian matroids an invariant of the action of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ on the set of dessins?

Answer (GM, 2013-14)

No.

What about matroids?

Question (A. Borovik)

Are Lagrangian matroids an invariant of the action of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ on the set of dessins?

Answer (GM, 2013-14)
No.

Example

What about matroids?

Question (A. Borovik)

Are Lagrangian matroids an invariant of the action of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ on the set of dessins?

Answer (GM, 2013-14)
No.

Example

What about matroids?

Question (A. Borovik)

Are Lagrangian matroids an invariant of the action of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ on the set of dessins?

Answer (GM, 2013-14)
No.

Example

Thank you!

Merci Monsieur Chat!

- Malic, G. Dessins, their delta-matroids and partial duals. In: Siran, Jajcay (Eds.), Symmetries in Graphs, Maps and Polytopes, Springer Proceedings in Mathematics and Statistics, pp. 213-248, 2016.
- Malic, G. Grothendieck's dessins d'enfants and the combinatorics of Coxeter groups. PhD Thesis, University of Manchester (2016).
- Borovik A.V., Gelfand I.M., White N. (2003) Coxeter Matroids. In: Coxeter Matroids. Progress in Mathematics, vol 216. Birkhäuser Boston
- Bouchet, A. Greedy algorithm and symmetric matroids, Math. Program. 38 (1987) 147-159.
- Bouchet, A. Maps and Δ-matroids. Discrete Math 78.1-2 (1989): 59-71.
- Chun C., Moffatt I., Noble S., and Rueckriemen R. Matroids, delta-matroids, and embedded graphs, arXiv:1403.0920.
- Chun C., Moffatt I., Noble S., and Rueckriemen R. On the interplay between embedded graphs and delta-matroids. Proceedings of the LMS, 2018.

Structural theorem:

- Oum S. Rank-width and Well-quasi-ordering of skew-symmetric or symmetric matrices, Linear Algebra Appl. 436(April 1, 2012)(7), pp. 2008-2036.
Excluded-minor characterisation for graphic delta-matroids:
- Bouchet A., Duchamp A. Representability of delta-matroids over GF(2). Linear Algebra Appl. 146 (1991) 67-78.
- Geelen J., and Oum, S. Circle graph obstructions under pivoting. J. Graph Theory 61 (2009) 1-11.

Dessins d'enfants

- Grothendieck A. Esquisse d'un Programme/Sketch of a program. In: "Geometric Galois Actions", L. Schneps, P. Lochak, eds., London Math. Soc. Lecture Notes 242, Cambridge University Press (1997) pp. 5-48; English translation, ibid., pp. 243-283.
- Schneps L. The Grothendieck Theory of Dessins d'enfants, LMS Lecture Notes Series 200, Cambridge University Press, Cambridge (1994).
- Lando S and Zvonkin A. Graphs on Surfaces and Their Applications. Springer-Verlag, 2004.
- Jones G and Wolfart J. Dessins d'Enfants on Riemann Surfaces. Springer, 2016.

[^0]: Theorem
 The collection B of bases of a map is a Lagrangian matroid orthogonally representable over \mathbb{Q}.

