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Motivation

Theorem (Whitney’s planarity criterion)
A graph is planar if, and only if its graphic matroid is cographic.

Corollary

If G is a plane graph, then M∗(G) = M(G∗), where G∗ is the
(geometric) dual of G.

Delta-matroids extend the previous corollary to any genus
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Definition

Definition (Matroids)
A non-empty collection B of subsets of a finite set E is the
collection of bases of a matroid if, and only if B satisfies the
exchange axiom:

For all A, B ∈ B and a ∈ A \ B there exists b ∈ B \ A such that
(A \ a) ∪ b ∈ B.

Definition (Delta-matroids)
A non-empty collection F of subsets of a finite set E is the
collection of feasible sets of a delta-matroid if, and only if F
satisfies the symmetric exchange axiom:

For all A, B ∈ F and a ∈ A4 B there exists b ∈ B4 A such that
A4 {a,b} ∈ F .
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Introduced by Bouchet in 1987.
Every matroid is a delta matroid.
Unless a delta-matroid is a matroid, feasible sets are not of
the same size.
Circuit and rank function axioms exist.
Deletion, contraction and duality are defined similarly:

if e is not a loop (i.e. not an element in no feasible set) of a
delta-matroid D = D(E ,F), then

FD/e = (F \ e, {F \ e : F ∈ F and such that e ∈ F})

if e is not an isthmus/coloop (i.e. not an element of every
feasible set), then

FD\e = (F \ e, {F : F ∈ F and F ⊆ F \ e})

D∗ = D∗(E ,F∗), where F ∗ = F 4 E = {F 4 E : F ∈ F}.
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Example: graphic delta-matroids

Consider a connected graph G cellularly embedded on a closed,
connected (orientable) surface X , i.e.

Vertices are points on the surface
Edges are arcs on the surface (not necessarily geodesic)
The connected components of X \G, called faces, are
homeomorphic to open 2-cells

Such embeddings are also called maps on surfaces, or dessins
d’enfants if one is interested in Galois theory (more precsely
Grothendieck-Teichmüller theory and anabelian geometry).
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Definition
Let G be a map on a surface X with edge-set E . A quasi-tree of
X is a subset A ⊆ E such that A (as a ribbon graph) is
spanning and has exactly one boundary component.

Theorem (Bouchet)
The collection of quasi-trees of X is a delta-matroid.

Example
If G is a plane map, then the collection of its spanning trees is a
delta-matroid.
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Example

1

2 3

4

Feasible sets: 3 and 123

The topological genus of the surface of embedding is encoded
by the width of the corresponding delta-matroid,

2g = max{|A| : A ∈ F} −min{|B| : B ∈ F}.
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Representability

Graphic delta-matroids are representable!

A map G on a surface X with edge-set E = {e1, . . . ,en} and
dual-edge-set E∗ = {e∗

1, . . . ,e
∗
n} is represented by an n-dimensional

isotropic subspace of the 2n-dimensional orthogonal vector space
QE ⊕QE∗

.

In general, the standard orthogonal 2n-space has a basis

{e1, . . . ,en,e∗
1, . . . ,e

∗
n}

and a symmetric bilinear form (·, ·) such that (ei ,e∗
i ) = (e∗

i ,ei) = 1
for all ei , and (ei ,ej) = 0 for ei 6= e∗

j .

A subspace W is isotropic if this form vanishes on it, i.e. (w1,w2) = 0
for all w1,w2 ∈W .
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Representability: example

Example

1

1∗ 2

2∗

3

3∗
1 2 3 1∗ 2∗ 3∗( )1 0 0 0 −1 0
0 1 0 1 0 0
0 0 0 0 0 1

.

Admissible 3-sets of column indices (i.e. those in which i and i∗

don’t appear together) such that the corresponding determinant
is non-zero correspond to the feasible sets of G:

{123∗,1∗2∗3∗}.

The feasible sets are obained by intersecting with E = {1,2,3}.
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Lagrangian matroids

The n-dimensional isotropic subspaces of a 2n-dimensional sym-
plectic or orthogonal space are called Lagrangian subspaces (n
is the maximal dimension of an isotropic subspace).

Representable delta-matroids are represented by Lagrangian sub-
spaces!

Definition
Let E = {e1, . . . ,en} and E∗ = {e∗

1, . . . ,e
∗
n}. A collection B of

admissible n-subsets of E ∪ E∗ is the set of bases of a
Lagrangian matroid if, and only if

for all A, B ∈ B and e,e∗ ∈ A4 B there exist f , f ∗ ∈ A4 B such
that A4 {e,e∗, f , f ∗} ∈ B.

Bases of Lagrangian matroids are all of the same size!
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Maps, revisited

Let G be a map on a surface X with edge set E = {e1, . . . ,en}
and dual-edge set E∗ = {e∗

1, . . . ,e
∗
n}. A base of G is an admis-

sible n-subset B of E ∪ E∗ such that X \ B is connected.

Example

1

1∗ 2

2∗

3

3∗
1 2 3 1∗ 2∗ 3∗( )1 0 0 0 −1 0
0 1 0 1 0 0
0 0 0 0 0 1

.

Bases: 123∗ and 1∗2∗3∗.

Theorem
The collection B of bases of a map is a Lagrangian matroid
orthogonally representable over Q.
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Symplectic matroids

Lagrangian matroids are a special case of Symplectic matroids.

Roughly speaking, symplectic matroids capture the combina-
torics of k -dimensional isotropic subspaces of 2n-symplectic spaces,
where 1 ≤ k ≤ n, similarly to how matroids capture the combi-
natorics of vector spaces.

When k = n symplectic matroids are called Lagrangian ma-
troids.

Open problem
Find a basis exchange axiom for symplectic matroids, if one
exists.

Open problem
Develop the theory of oriented symplectic matroids.
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General framework, Coxeter matroids

As with matroids, there are symplectic matroids that are not rep-
resentable, i.e. that do not arise from isotropic subspaces of
symplectic spaces. The general framework is provided by Cox-
eter groups and Coxeter matroids with respect to a finite reflec-
tion group W .

When W is of type An, the resulting Coxeter matroid is a
matroid.
When W is of type BCn, the resulting Coxeter matroid is a
symplectic matroid.
When W is of type Dn, the resulting Coxeter matroid is an
orthogonal matroid.

Open problem
The Gelfand-Serganova theorem describes the relationship
between Coxeter matroids and root systems. Is there a deep
theory connecting Coxeter matroids and the representation
theory of Lie algebras?

Goran Malic Delta-matroids and an action of Gal(Q/Q)



General framework, Coxeter matroids

As with matroids, there are symplectic matroids that are not rep-
resentable, i.e. that do not arise from isotropic subspaces of
symplectic spaces. The general framework is provided by Cox-
eter groups and Coxeter matroids with respect to a finite reflec-
tion group W .

When W is of type An, the resulting Coxeter matroid is a
matroid.
When W is of type BCn, the resulting Coxeter matroid is a
symplectic matroid.
When W is of type Dn, the resulting Coxeter matroid is an
orthogonal matroid.

Open problem
The Gelfand-Serganova theorem describes the relationship
between Coxeter matroids and root systems. Is there a deep
theory connecting Coxeter matroids and the representation
theory of Lie algebras?

Goran Malic Delta-matroids and an action of Gal(Q/Q)



General framework, Coxeter matroids

As with matroids, there are symplectic matroids that are not rep-
resentable, i.e. that do not arise from isotropic subspaces of
symplectic spaces. The general framework is provided by Cox-
eter groups and Coxeter matroids with respect to a finite reflec-
tion group W .

When W is of type An, the resulting Coxeter matroid is a
matroid.
When W is of type BCn, the resulting Coxeter matroid is a
symplectic matroid.
When W is of type Dn, the resulting Coxeter matroid is an
orthogonal matroid.

Open problem
The Gelfand-Serganova theorem describes the relationship
between Coxeter matroids and root systems. Is there a deep
theory connecting Coxeter matroids and the representation
theory of Lie algebras?

Goran Malic Delta-matroids and an action of Gal(Q/Q)



General framework, Coxeter matroids

As with matroids, there are symplectic matroids that are not rep-
resentable, i.e. that do not arise from isotropic subspaces of
symplectic spaces. The general framework is provided by Cox-
eter groups and Coxeter matroids with respect to a finite reflec-
tion group W .

When W is of type An, the resulting Coxeter matroid is a
matroid.
When W is of type BCn, the resulting Coxeter matroid is a
symplectic matroid.
When W is of type Dn, the resulting Coxeter matroid is an
orthogonal matroid.

Open problem
The Gelfand-Serganova theorem describes the relationship
between Coxeter matroids and root systems. Is there a deep
theory connecting Coxeter matroids and the representation
theory of Lie algebras?

Goran Malic Delta-matroids and an action of Gal(Q/Q)



General framework, Coxeter matroids

As with matroids, there are symplectic matroids that are not rep-
resentable, i.e. that do not arise from isotropic subspaces of
symplectic spaces. The general framework is provided by Cox-
eter groups and Coxeter matroids with respect to a finite reflec-
tion group W .

When W is of type An, the resulting Coxeter matroid is a
matroid.
When W is of type BCn, the resulting Coxeter matroid is a
symplectic matroid.
When W is of type Dn, the resulting Coxeter matroid is an
orthogonal matroid.

Open problem
The Gelfand-Serganova theorem describes the relationship
between Coxeter matroids and root systems. Is there a deep
theory connecting Coxeter matroids and the representation
theory of Lie algebras?

Goran Malic Delta-matroids and an action of Gal(Q/Q)



General framework, Coxeter matroids

As with matroids, there are symplectic matroids that are not rep-
resentable, i.e. that do not arise from isotropic subspaces of
symplectic spaces. The general framework is provided by Cox-
eter groups and Coxeter matroids with respect to a finite reflec-
tion group W .

When W is of type An, the resulting Coxeter matroid is a
matroid.
When W is of type BCn, the resulting Coxeter matroid is a
symplectic matroid.
When W is of type Dn, the resulting Coxeter matroid is an
orthogonal matroid.

Open problem
The Gelfand-Serganova theorem describes the relationship
between Coxeter matroids and root systems. Is there a deep
theory connecting Coxeter matroids and the representation
theory of Lie algebras?

Goran Malic Delta-matroids and an action of Gal(Q/Q)



Dessins d’enfants

Definition
A dessin d’enfant is a connected bipartite graph embedded
cellularly on a closed, connected and orientable surface X .

Definition
Equivalently, a dessin d’enfant is a pair (X , f ) of a compact
Riemann surface X and a holomorphic ramified covering of the
Riemann sphere f : X → CP1, ramified at most over a subset of
{0,1,∞}.

Theorem (Belyi’s theorem)
A smooth projective algebraic curve X defined over C is defined
over Q if, and only if X admits a holomorphic ramified covering
of the Riemann sphere f : X → CP1, ramified at most over a
subset of {0,1,∞}.
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The absolute Galois group of Q

Belyi’s theorem tells us that any dessin d’enfant (X , f ) is defined
over Q, i.e. the coefficients of X and f are algebraic. Therefore,
there is a natural action of the absolute Galois group Gal(Q/Q).

The absolute Galois group Gal(Q/Q) is the group of all field au-
tomorphisms of Q which fix the rationals point-wise.

Open problem

What is the structure of Gal(Q/Q)? Are all finite groups Galois
over Q? Are all sporadic simple groups Galois over Q?
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Galois action

Gal(Q/Q) acts on a dessin d’enfant (X , f ) by simultaneously act-
ing on the coefficients of X and f :

X: y2 = x(x− 1)(x− (3 + 2
√
3))

f : (x, y) 7→ x 7→ − (x−1)3(x−9)
64x

Xθ: y2 = x(x− 1)(x− (3− 2
√
3))

f θ: (x, y) 7→ x 7→ − (x−1)3(x−9)
64x
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Faithful action

This action is faithful, so in principle the elements of Gal(Q/Q)
are completely encoded by the orbits of this action on dessins.

How to distinguish between the orbits? We look for invariants
that can be computed (in a reasonable amount of time).

Some known invariants:
The genus
The degree sequence (the passport)
The automorphism group
The monodromy group
Generalised monodromy groups

Goran Malic Delta-matroids and an action of Gal(Q/Q)



Faithful action

This action is faithful, so in principle the elements of Gal(Q/Q)
are completely encoded by the orbits of this action on dessins.

How to distinguish between the orbits? We look for invariants
that can be computed (in a reasonable amount of time).

Some known invariants:
The genus
The degree sequence (the passport)
The automorphism group
The monodromy group
Generalised monodromy groups

Goran Malic Delta-matroids and an action of Gal(Q/Q)



Faithful action

This action is faithful, so in principle the elements of Gal(Q/Q)
are completely encoded by the orbits of this action on dessins.

How to distinguish between the orbits? We look for invariants
that can be computed (in a reasonable amount of time).

Some known invariants:
The genus
The degree sequence (the passport)
The automorphism group
The monodromy group
Generalised monodromy groups

Goran Malic Delta-matroids and an action of Gal(Q/Q)



Faithful action

This action is faithful, so in principle the elements of Gal(Q/Q)
are completely encoded by the orbits of this action on dessins.

How to distinguish between the orbits? We look for invariants
that can be computed (in a reasonable amount of time).

Some known invariants:
The genus
The degree sequence (the passport)
The automorphism group
The monodromy group
Generalised monodromy groups

Goran Malic Delta-matroids and an action of Gal(Q/Q)



Faithful action

This action is faithful, so in principle the elements of Gal(Q/Q)
are completely encoded by the orbits of this action on dessins.

How to distinguish between the orbits? We look for invariants
that can be computed (in a reasonable amount of time).

Some known invariants:
The genus
The degree sequence (the passport)
The automorphism group
The monodromy group
Generalised monodromy groups

Goran Malic Delta-matroids and an action of Gal(Q/Q)



Faithful action

This action is faithful, so in principle the elements of Gal(Q/Q)
are completely encoded by the orbits of this action on dessins.

How to distinguish between the orbits? We look for invariants
that can be computed (in a reasonable amount of time).

Some known invariants:
The genus
The degree sequence (the passport)
The automorphism group
The monodromy group
Generalised monodromy groups

Goran Malic Delta-matroids and an action of Gal(Q/Q)



Faithful action

This action is faithful, so in principle the elements of Gal(Q/Q)
are completely encoded by the orbits of this action on dessins.

How to distinguish between the orbits? We look for invariants
that can be computed (in a reasonable amount of time).

Some known invariants:
The genus
The degree sequence (the passport)
The automorphism group
The monodromy group
Generalised monodromy groups

Goran Malic Delta-matroids and an action of Gal(Q/Q)



Faithful action

This action is faithful, so in principle the elements of Gal(Q/Q)
are completely encoded by the orbits of this action on dessins.

How to distinguish between the orbits? We look for invariants
that can be computed (in a reasonable amount of time).

Some known invariants:
The genus
The degree sequence (the passport)
The automorphism group
The monodromy group
Generalised monodromy groups

Goran Malic Delta-matroids and an action of Gal(Q/Q)



Faithful action

This action is faithful, so in principle the elements of Gal(Q/Q)
are completely encoded by the orbits of this action on dessins.

How to distinguish between the orbits? We look for invariants
that can be computed (in a reasonable amount of time).

Some known invariants:
The genus
The degree sequence (the passport)
The automorphism group
The monodromy group
Generalised monodromy groups

Goran Malic Delta-matroids and an action of Gal(Q/Q)



What about matroids?

Question (A. Borovik)

Are Lagrangian matroids an invariant of the action of Gal(Q/Q)
on the set of dessins?

Answer (GM, 2013-14)
No.

Example

1

1∗
2

2∗

3

3∗

4

4∗

1

234

1

2

3 4
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Thank you!
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Merci Monsieur Chat!
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