Tope graphs of COMs

Kolja Knauer

Combinatorial Geometries 2018: matroids, oriented matroids and applications

Complexes of oriented matroids

"Representative" example: arrangement of pseudospheres and pseudosemispheres

Complexes of oriented matroids

"Representative" example: arrangement of pseudospheres and pseudosemispheres

$$
\text { topes } \mathcal{T} \text { of } \mathcal{L}=\text { maximal cells }
$$

tope graph $G_{\mathcal{T}}=$ incidence graph

Complexes of oriented matroids

"Representative" example: arrangement of pseudospheres and pseudosemispheres

$$
\text { topes } \mathcal{T} \text { of } \mathcal{L}=\text { maximal cells }
$$

tope graph $G_{\mathcal{T}}=$ incidence graph
tope graph of graphic oriented matroid $=$ flip graph of acyclic orientations of graph G

Complexes of oriented matroids

"Representative" example: arrangement of pseudospheres and pseudosemispheres

$$
\text { topes } \mathcal{T} \text { of } \mathcal{L}=\text { maximal cells }
$$

tope graph $G_{\mathcal{T}}=$ incidence graph
tope graph of graphic oriented matroid $=$ flip graph of acyclic orientations of graph G
tope graph of graphic COM =
flip graph of acyclic orientations of mixed graph G

Complexes of oriented matroids

"Representative" example: arrangement of pseudospheres and pseudosemispheres

$$
\text { topes } \mathcal{T} \text { of } \mathcal{L}=\text { maximal cells }
$$

$$
\text { tope graph } G_{\mathcal{T}}=\text { incidence graph }
$$

tope graph of graphic oriented matroid $=$
flip graph of acyclic orientations of graph G
tope graph of graphic COM =
flip graph of acyclic orientations of mixed graph G
\rightsquigarrow special case: linear extension graphs of posets

A common generalization

$$
\begin{aligned}
& \text { ० Covector axioms: }(E, \mathcal{L}) \text { COM iff } \\
& \text { (FS) } \mathcal{L} \circ-\mathcal{L} \subseteq \mathcal{L} \\
& \text { (SE) } \forall X, Y \in \mathcal{L} \text { and } e \in S(X, Y) \exists Z \in \mathcal{L}: \\
& \quad Z_{e}=0 \text { and } Z_{f}=X_{f} \circ Y_{f} \text { for } f \notin S(X, Y) .
\end{aligned}
$$

Covector axioms: (E, \mathcal{L}) oriented matroid (FS) \& (SE)
(Z) $\emptyset \in \mathcal{L}$

Covector axioms: (E, \mathcal{L}) lopsided set
(FS) \& (SE)
(I) $\mathcal{L} \circ\{0, \pm\}^{E} \subseteq \mathcal{L}$

Covector axioms: (E, \mathcal{L}) affine oriented matroid
(FS) \& (SE)
(A) something lengthy

A common generalization

$$
\begin{aligned}
& \text { ० Covector axioms: }(E, \mathcal{L}) \text { COM iff } \\
& \text { (FS) } \mathcal{L} \circ-\mathcal{L} \subseteq \mathcal{L} \\
& \text { (SE) } \forall X, Y \in \mathcal{L} \text { and } e \in S(X, Y) \exists Z \in \mathcal{L}: \\
& \quad Z_{e}=0 \text { and } Z_{f}=X_{f} \circ Y_{f} \text { for } f \notin S(X, Y) .
\end{aligned}
$$

Covector axioms: (E, \mathcal{L}) oriented matroid (FS) \& (SE)
(Z) $\emptyset \in \mathcal{L}$

Covector axioms: (E, \mathcal{L}) lopsided set
(FS) \& (SE)
(I) $\mathcal{L} \circ\{0, \pm\}^{E} \subseteq \mathcal{L}$

Covector axioms: (E, \mathcal{L}) affine oriented matroid
(FS) \& (SE)
(A) something lengthy

$$
\text { topes } \mathcal{T}=\mathcal{L} \cap\{ \pm\}^{E}
$$

A common generalization

\circ Covector axioms: (E, \mathcal{L}) COM iff
(FS) $\mathcal{L} \circ-\mathcal{L} \subseteq \mathcal{L}$
(SE) $\forall X, Y \in \mathcal{L}$ and $e \in S(X, Y) \exists Z \in \mathcal{L}$:

$$
Z_{e}=0 \text { and } Z_{f}=X_{f} \circ Y_{f} \text { for } f \notin S(X, Y) \text {. }
$$

Covector axioms: (E, \mathcal{L}) oriented matroid
(FS) \& (SE)
(Z) $\emptyset \in \mathcal{L}$

Covector axioms: (E, \mathcal{L}) lopsided set
(FS) \& (SE)
(I) $\mathcal{L} \circ\{0, \pm\}^{E} \subseteq \mathcal{L}$

Covector axioms: (E, \mathcal{L}) affine oriented matroid
(FS) \& (SE)
(A) something lengthy

$$
\text { topes } \mathcal{T}=\mathcal{L} \cap\{ \pm\}^{E}
$$

tope graph $G_{\mathcal{T}}=$ subgraph of Q_{E} induced by \mathcal{T}

A common generalization

Partial cubes and partial cube minors

G partial cube : $\Leftrightarrow G$ isometric subgraph of hypercube
$G \subseteq Q^{n}$ such that $d_{G}(v, w)=d_{Q^{n}}(v, w) \forall v, w \in G$

Partial cubes and partial cube minors

G partial cube : $\Leftrightarrow G$ isometric subgraph of hypercube
$G \subseteq Q^{n}$ such that $d_{G}(v, w)=d_{Q^{n}}(v, w) \forall v, w \in G$
can label edges such that between two vertices all geodesics use same set of labels and no label twice.

Partial cubes and partial cube minors

G partial cube : $\Leftrightarrow G$ isometric subgraph of hypercube

$$
\overline{G \subseteq Q^{n}} \text { such that } d_{G}(v, w)=d_{Q^{n}}(v, w) \forall v, w \in G
$$

tope graph of realizable COM (arrangement of half and hyperplanes)

can label edges such that between two vertices all geodesics use same set of labels and no label twice.

Partial cubes and partial cube minors

G partial cube : $\Leftrightarrow G$ isometric subgraph of hypercube

$$
\overline{G \subseteq Q^{n}} \text { such that } d_{G}(v, w)=d_{Q^{n}}(v, w) \forall v, w \in G
$$

tope graph of realizable COM (arrangement of half and hyperplanes)

can label edges such that between two vertices all geodesics use same set of labels and no label twice.

Partial cubes and partial cube minors

G partial cube : $\Leftrightarrow G$ isometric subgraph of hypercube

$$
G \subseteq Q^{n} \text { such that } d_{G}(v, w)=d_{Q^{n}}(v, w) \forall v, w \in G
$$

tope graph of realizable COM (arrangement of half and hyperplanes)

can label edges such that between two vertices all geodesics use same set of labels and no label twice.

Partial cubes and partial cube minors

G partial cube : $\Leftrightarrow G$ isometric subgraph of hypercube
$G \subseteq Q^{n}$ such that $d_{G}(v, w)=d_{Q^{n}}(v, w) \forall v, w \in G$

can label edges such that between two vertices all geodesics use same set of labels and no label twice.
edges of partial cube naturally partitioned into minimal cuts \mathcal{C}

Partial cubes and partial cube minors

G partial cube : $\Leftrightarrow G$ isometric subgraph of hypercube
$G \subseteq Q^{n}$ such that $d_{G}(v, w)=d_{Q^{n}}(v, w) \forall v, w \in G$

can label edges such that between two vertices all geodesics use same set of labels and no label twice.
edges of partial cube naturally partitioned into minimal cuts \mathcal{C}
\rightsquigarrow minor-relation

Partial cubes and partial cube minors

G partial cube : $\Leftrightarrow G$ isometric subgraph of hypercube
$G \subseteq Q^{n}$ such that $d_{G}(v, w)=d_{Q^{n}}(v, w) \forall v, w \in G$

restriction to a side of a cut

edges of partial cube naturally partitioned into minimal cuts \mathcal{C}
\rightsquigarrow minor-relation

Partial cubes and partial cube minors

G partial cube $: \Leftrightarrow G$ isometric subgraph of hypercube
$G \subseteq Q^{n}$ such that $d_{G}(v, w)=d_{Q^{n}}(v, w) \forall v, w \in G$
restriction to a side of a cut

contraction of a cut
edges of partial cube naturally partitioned into minimal cuts \mathcal{C}
\rightsquigarrow minor-relation

Partial cubes and partial cube minors

G partial cube : $\Leftrightarrow G$ isometric subgraph of hypercube
$G \subseteq Q^{n}$ such that $d_{G}(v, w)=d_{Q^{n}}(v, w) \forall v, w \in G$
restriction to a side of a cut

contraction of a cut
edges of partial cube naturally partitioned into minimal cuts \mathcal{C}
\rightsquigarrow minor-relation
\rightsquigarrow yields new partial cube

Partial cubes and partial cube minors

G partial cube $: \Leftrightarrow G$ isometric subgraph of hypercube

$G \subseteq Q^{n}$ such that $d_{G}(v, w)=d_{Q^{n}}(v, w) \forall v, w \in G$
tope graph of realizable COM (arrangement of half and hyperplanes)

edges of partial cube naturally partitioned into minimal cuts \mathcal{C}
\rightsquigarrow minor-relation
\rightsquigarrow yields new tope graph

Partial cube minors

some minor-closed classes

Partial cube minors

some minor-closed classes

Partial cube minors

some minor-closed classes

Partial cube minors

some minor-closed classes

Partial cube minors

some minor-closed classes

From partial cubes to sign vectors

Let G partial cube, then $G^{\prime} \subset G$ convex $\Longleftrightarrow G^{\prime}$ restriction of G
shortest paths between
vertices of G^{\prime} stay in G^{\prime}

From partial cubes to sign vectors

$$
\begin{array}{|cl|}
\hline \text { Let } G \text { partial cube, then } G^{\prime} \subset G \text { convex } & \Longleftrightarrow G^{\prime} \text { restriction of } G \\
\hline \text { shortest paths between } & \text { intersection of halfspaces } \\
\text { vertices of } G^{\prime} \text { stay in } G^{\prime} & X\left(G^{\prime}\right) \text { containing } G^{\prime}
\end{array}
$$

From partial cubes to sign vectors

associate convex subgraph G^{\prime} with sign vector $X\left(G^{\prime}\right)$

From partial cubes to sign vectors

associate convex subgraph G^{\prime} with sign vector $X\left(G^{\prime}\right)$

From partial cubes to sign vectors

 vertices of G^{\prime} stay in $G^{\prime} \quad X\left(G^{\prime}\right)$ containing G^{\prime}
associate convex subgraph G^{\prime} with sign vector $X\left(G^{\prime}\right)$

From partial cubes to sign vectors

Let G partial cube, then $G^{\prime} \subset G$ convex $\Longleftrightarrow G^{\prime}$ restriction of G shortest paths between intersection of halfspaces vertices of G^{\prime} stay in $G^{\prime} \quad X\left(G^{\prime}\right)$ containing G^{\prime}
associate convex subgraph G^{\prime} with sign vector $X\left(G^{\prime}\right)$

From partial cubes to sign vectors

Let G partial cube, then $G^{\prime} \subset G$ convex $\Longleftrightarrow G^{\prime}$ restriction of G shortest paths between intersection of halfspaces vertices of G^{\prime} stay in $G^{\prime} \quad X\left(G^{\prime}\right)$ containing G^{\prime}
associate convex subgraph G^{\prime} with sign vector $X\left(G^{\prime}\right)$

From partial cubes to sign vectors

\rightarrow associate convex subgraph G^{\prime} with sign vector $X\left(G^{\prime}\right)$

- $\mathcal{L}=\left\{X\left(G^{\prime}\right) \mid G^{\prime} \subseteq G\right.$ convex $\} \subseteq\{0, \pm\}^{\mathcal{C}}$

From partial cubes to sign vectors

\section*{| Let G partial cube, then $G^{\prime} \subset G$ convex |
| :--- |$\Longleftrightarrow G^{\prime}$ restriction of G vertices of G^{\prime} stay in $G^{\prime} \quad X\left(G^{\prime}\right)$ containing G^{\prime}}

associate convex subgraph G^{\prime} with sign vector $X\left(G^{\prime}\right)$

- $\mathcal{L}=\left\{X\left(G^{\prime}\right) \mid G^{\prime} \subseteq G\right.$ convex $\} \subseteq\{0, \pm\}^{\mathcal{C}}$
- tope graph $G_{\mathcal{L}}=\mathcal{L} \cap\{ \pm 1\}^{\mathcal{C}} \subseteq Q_{\mathcal{C}}$ of \mathcal{L} is G

Gated subgraphs

$G^{\prime} \subseteq G$ gated if $\forall v \in G \exists v^{\prime} \in G^{\prime}$ s.th $\forall w \in G^{\prime}$ there is a shortest (v, w)-path through v^{\prime}

Gated subgraphs

$G^{\prime} \subseteq G$ gated if $\forall v \in G \exists v^{\prime} \in G^{\prime}$ s.th $\forall w \in G^{\prime}$ there is a shortest (v, w)-path through v^{\prime}
convex

Gated subgraphs

```
\(G^{\prime} \subseteq G\) gated if \(\forall v \in G \exists v^{\prime} \in G^{\prime}\) s.th \(\forall w \in G^{\prime}\) there is a shortest \((v, w)\)-path through \(v^{\prime}\)
```

no colors from G^{\prime}

Gated subgraphs

```
G}\subseteq\subseteqG gated if \forallv\inG \exists\mp@subsup{v}{}{\prime}\in\mp@subsup{G}{}{\prime}\mathrm{ s.th }\forallw\in\mp@subsup{G}{}{\prime there is a shortest \((v, w)\)-path through \(v^{\prime}\)
```

no colors from G^{\prime}

- $\mathcal{L}=\left\{X\left(G^{\prime}\right) \mid G^{\prime} \subseteq G\right.$ gated $\} \subseteq\{0, \pm\}^{\mathcal{C}}$

Gated subgraphs

```
G}\subseteq\subseteqG gated if \forallv\inG \exists\mp@subsup{v}{}{\prime}\in\mp@subsup{G}{}{\prime}\mathrm{ s.th }\forallw\in\mp@subsup{G}{}{\prime there is a shortest \((v, w)\)-path through \(v^{\prime}\)
```

no colors from G^{\prime}

- $\mathcal{L}=\left\{X\left(G^{\prime}\right) \mid G^{\prime} \subseteq G\right.$ gated $\} \subseteq\{0, \pm\}^{\mathcal{C}}$
- \mathcal{L} has $\mathcal{L} \circ \mathcal{L} \subseteq \mathcal{L}$ while $G_{\mathcal{L}}=G$

Antipodal gated subgraphs

G^{\prime} antipodal if $\forall v \in G^{\prime} \exists v^{\prime} \in G^{\prime}$ s. th. $\forall w \in G^{\prime}$ there is a shortest

Antipodal gated subgraphs

G^{\prime} antipodal if $\forall v \in G^{\prime} \exists v^{\prime} \in G^{\prime}$ s. th. $\forall w \in G^{\prime}$ there is a shortest

Antipodal gated subgraphs

G^{\prime} antipodal if $\forall v \in G^{\prime} \exists v^{\prime} \in G^{\prime}$ s. th. $\forall w \in G^{\prime}$ there is a shortest

Antipodal gated subgraphs

Antipodal gated subgraphs

- $\mathcal{L}=\left\{X\left(G^{\prime}\right) \mid G^{\prime} \subseteq G\right.$ antipodal and gated $\} \subseteq\{0, \pm\}^{\mathcal{C}}$
(FS) $\mathcal{L} \circ-\mathcal{L} \subseteq \mathcal{L}$

Antipodal gated subgraphs

- $\mathcal{L}=\left\{X\left(G^{\prime}\right) \mid G^{\prime} \subseteq G\right.$ antipodal and gated $\} \subseteq\{0, \pm\}^{\mathcal{C}}$
(FS) $\mathcal{L} \circ-\mathcal{L} \subseteq \mathcal{L}$
$\rightsquigarrow G$ tope graph of COM
\Longrightarrow antipodal subgraphs gated

Antipodal gated partial cubes and \mathcal{Q}^{-}

$\mathrm{AG}=\{G$ partial cube \mid all antipodal subgraphs gated $\}$

Antipodal gated partial cubes and \mathcal{Q}^{-}

$\mathrm{AG}=\{G$ partial cube| all antipodal subgraphs gated $\}$

$\notin \mathrm{AG}$

Antipodal gated partial cubes and \mathcal{Q}^{-}

$\mathrm{AG}=\{G$ partial cube| all antipodal subgraphs gated $\}$

Antipodal gated partial cubes and \mathcal{Q}^{-}

$\mathrm{AG}=\{G$ partial cube| all antipodal subgraphs gated $\}$

Antipodal gated partial cubes and \mathcal{Q}^{-}

$\mathrm{AG}=\{G$ partial cube| all antipodal subgraphs gated $\}$

Antipodal gated partial cubes and \mathcal{Q}^{-}

$\mathrm{AG}=\{G$ partial cube| all antipodal subgraphs gated $\}$

all these are minor-minimally non AG

Antipodal gated partial cubes and \mathcal{Q}^{-}

$\mathrm{AG}=\{G$ partial cube| all antipodal subgraphs gated $\}$

all these are minor-minimally non AG

but more generally:

Antipodal gated partial cubes and \mathcal{Q}^{-}

$\mathrm{AG}=\{G$ partial cube| all antipodal subgraphs gated $\}$

all these are minor-minimally non AG

but more generally:

Antipodal gated partial cubes and \mathcal{Q}^{-}

$\mathrm{AG}=\{G$ partial cube| all antipodal subgraphs gated $\}$

all these are minor-minimally non AG

but more generally:

Antipodal gated partial cubes and \mathcal{Q}^{-}

$\mathrm{AG}=\{G$ partial cube| all antipodal subgraphs gated $\}$

all these are minor-minimally non AG

but more generally:

Antipodal gated partial cubes and \mathcal{Q}^{-}

$\mathrm{AG}=\{G$ partial cube| all antipodal subgraphs gated $\}$

all these are minor-minimally non AG

but more generally:

\mathcal{Q}^{-}

Antipodal gated partial cubes and \mathcal{Q}^{-}

$\mathrm{AG}=\{G$ partial cube| all antipodal subgraphs gated $\}$

all these are minor-minimally non AG

but more generally:

Lemma: AG is minor-closed \mathcal{Q}^{-}

Antipodal gated partial cubes and \mathcal{Q}^{-}

$\mathrm{AG}=\{G$ partial cube| all antipodal subgraphs gated $\}$

all these are minor-minimally non AG

but more generally:

Lemma: AG is minor-closed \mathcal{Q}^{-}

$$
\Longrightarrow \mathrm{AG} \subseteq \mathcal{F}\left(\mathcal{Q}^{-}\right)
$$

Characterization

THM[K, Marc '17]:
for a partial cube G the following are equivalent:

- G is tope graph of a COM
- all antipodal subgraphs of G are gated
- G has no partial cube minor from \mathcal{Q}^{-}
- all iterated zone-graphs are partial cubes

Corollaries:

- characterizations for oriented matroids, affine oriented matroids, and lopsided sets
- polytime recognition

Characterization

THM[K, Marc '17]:
for a partial cube G the following are equivalent:

- G is tope graph of a COM
- all antipodal subgraphs of G are gatedda Silva/Lawrence
- G has no partial cube minor from \mathcal{Q}^{-}
- all iterated zone-graphs are partial cubes

Corollaries:

- characterizations for oriented matroids, affine oriented matroids, and lopsided sets
- polytime recognition

Characterization

THM[K, Marc '17]:
for a partial cube G the following are equivalent:

- G is tope graph of a COM
- all antipodal subgraphs of G are gatedda Silva/Lawrence
- G has no partial cube minor from \mathcal{Q}^{-}
- all iterated zone-graphs are partial cubes

Corollaries:

- characterizations for oriented matroids, affine oriented matroids, and lopsided sets
- polytime recognition

A common generalization

THM[K, Marc 17]:
G tope graph of COM iff G partial cube such that all antipodal subgraphs gated.

COR:
G tope graph of OM iff G antipodal partial cube such that all antipodal subgraphs gated. da Silva
COR:
G tope graph of LOP iff G partial cube and all antipodal subgraphs hypercubes. COR:
G tope graph of AOM iff G affine partial cube such that all antipodal and conformal subgraphs gated.

Recognition

THM[K, Marc 17]:

G tope graph of COM iff G partial cube such that all antipodal subgraphs gated.

naive polytime alogrithm

- check if partial cube
- find antipodal subgraphs
$O\left(n^{2}\right)$ shortest path intervals
- check if antipodal
- for each check if gated

Further things

Further things

rank $r(\mathcal{L})$ of $\mathcal{L}=$ largest Q_{r} pc-minor of $G_{\mathcal{T}}$

Further things

rank $r(\mathcal{L})$ of $\mathcal{L}=$ largest Q_{r} pc-minor of $G_{\mathcal{T}}$
Conjecture [Las Vergnas '80]: for every
OM \mathcal{L}, the mindegree $\delta\left(G_{\mathcal{T}}\right) \leq r(\mathcal{L})$.

Further things

rank $r(\mathcal{L})$ of $\mathcal{L}=$ largest Q_{r} pc-minor of $G_{\mathcal{T}}$
Conjecture [Las Vergnas '80]: for every
OM \mathcal{L}, the mindegree $\delta\left(G_{\mathcal{T}}\right) \leq r(\mathcal{L})$.

Further things

rank $r(\mathcal{L})$ of $\mathcal{L}=$ largest Q_{r} pc-minor of $G_{\mathcal{T}}$
Conjecture [Las Vergnas '80]: for every
$\mathrm{OM} \mathcal{L}$, the mindegree $\delta\left(G_{\mathcal{T}}\right) \leq r(\mathcal{L})$.

$$
\text { true for } r \leq 3
$$

THM[K, Marc 18+]:
True for antipodal partial cubes of $r \leq 3$ and for antipodal partial cubes with $E \leq 7$.

Further things

rank $r(\mathcal{L})$ of $\mathcal{L}=$ largest Q_{r} pc-minor of $G_{\mathcal{T}}$
Conjecture [Las Vergnas '80]: for every
OM \mathcal{L}, the mindegree $\delta\left(G_{\mathcal{T}}\right) \leq r(\mathcal{L})$.

```
true for r s 3
```

| \|E| | 23456 | THM[K, Marc 18+]: |
| :---: | :---: | :---: |
| antipodal | 12413115 | True for antipodal partial cubes of $r \leq 3$ and for |
| OM | 124935 | antipodal partial cubes with $E \leq 7$. |

Further things

rank $r(\mathcal{L})$ of $\mathcal{L}=$ largest Q_{r} pc-minor of $G_{\mathcal{T}}$
Conjecture [Las Vergnas '80]: for every
$\mathrm{OM} \mathcal{L}$, the mindegree $\delta\left(G_{\mathcal{T}}\right) \leq r(\mathcal{L})$.

```
true for r s 3
```


Further things

rank $r(\mathcal{L})$ of $\mathcal{L}=$ largest Q_{r} pc-minor of $G_{\mathcal{T}}$
Conjecture [Las Vergnas '80]: for every
OM \mathcal{L}, the mindegree $\delta\left(G_{\mathcal{T}}\right) \leq r(\mathcal{L})$.

```
true for r 
```


Conjecture [Mandel '82]: all OMs are Mandel.

Further things

rank $r(\mathcal{L})$ of $\mathcal{L}=$ largest Q_{r} pc-minor of $G_{\mathcal{T}}$
Conjecture [Las Vergnas '80]: for every
OM \mathcal{L}, the mindegree $\delta\left(G_{\mathcal{T}}\right) \leq r(\mathcal{L})$.
true for $r \leq 3$

$\|E\|$	23456	THM[K, Marc 18+]:
antipodal OM	$\begin{array}{ccccc} 1 & 2 & 4 & 13 & 115 \\ 1 & 2 & 4 & 9 & 35 \end{array}$	True for antipodal partial cubes of $r \leq 3$ and for antipodal partial cubes with $E \leq 7$.
		$\begin{aligned} & \hline \text { THM[Mandel '82]: } \\ & \hline \text { True for "Mandel" OMs. } \\ & \text { (realizable } \subseteq \text { Euclidean } \subseteq \text { Mandel) } \\ & \hline \end{aligned}$

Conjecture [Mandel '82]: all OMs are Mandel.
THM[K, Marc 18+]:
If $G_{\mathcal{T}}$ Mandel, then every coordinate incident to vertex of degree r.

Further things

rank $r(\mathcal{L})$ of $\mathcal{L}=$ largest Q_{r} pc-minor of $G_{\mathcal{T}}$
Conjecture [Las Vergnas '80]: for every
OM \mathcal{L}, the mindegree $\delta\left(G_{\mathcal{T}}\right) \leq r(\mathcal{L})$.
true for $r \leq 3$

\| E	23456	THM[K, Marc 18+]:
antipodal OM	$\begin{array}{lllll} 1 & 2 & 4 & 13 & 115 \\ 1 & 2 & 4 & 9 & 35 \end{array}$	True for antipodal partial cubes of $r \leq 3$ and for antipodal partial cubes with $E \leq 7$.
		THM[Mandel '82]: True for "Mandel" OMs. (realizable \subseteq Euclidean \subseteq Mandel)

Conjecture [Mandel '82]: all OMs are Mandel.
THM[K, Marc 18+]:
If $G_{\mathcal{T}}$ Mandel, then every coordinate incident to
\exists OMs w/o this property vertex of degree r.
with $E=21,17,13$ (Richter-Gebert '93, Bokowski/Rohlfs '01, Tracy Hall '04)

Further things

rank $r(\mathcal{L})$ of $\mathcal{L}=$ largest Q_{r} pc-minor of $G_{\mathcal{T}}$
Conjecture [Las Vergnas '80]: for every
OM \mathcal{L}, the mindegree $\delta\left(G_{\mathcal{T}}\right) \leq r(\mathcal{L})$.
true for $r \leq 3$

Coniecture [ivintuc 02]. an-ivic are Mandel.

THM[K, Marc 18+]:
If $G_{\mathcal{T}}$ Mandel, then every coordinate incident to vertex of degree r.
\exists OMs w/o this property with $E=21,17,13$ (Richter-Gebert '93, Bokowski/Rohlfs '01, Tracy Hall '04)

Further things

rank $r(\mathcal{L})$ of $\mathcal{L}=$ largest Q_{r} pc-minor of $G_{\mathcal{T}}$
Conjecture [Las Vergnas '80]: for every
OM \mathcal{L}, the mindegree $\delta\left(G_{\mathcal{T}}\right) \leq r(\mathcal{L})$.

Conjecture [Bandelt, Chepoi, K '15]: every G_{COM} is convex subgraph of G_{OM}.

would yield

- Topological Representation Theorem with pseudohyperplanes and pseudohalfspaces for COMs
- ideas for duality

