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~~ special case: linear extension graphs of posets
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G’ antipodal if Vv € G/ 30" € G’ s. th. Yw € G’ there is a shortest

(v,v")-path throughy—-—’ ((antipodal = convex)

antipodal and gated

® \gated and not antipodal

e £L={X(G") | G' C G antipodal and gated } C {0, £}¢

(FS) Lo—LCL ~+ (G tope graph of COM
—> antipodal subgraphs gated
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Lemma: AG is minor-closed Qo — AG C F(Q)
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for a partial cube GG the following are equivalent:
> (7 is tope graph of a COM
o all antipodal subgraphs of G are gatedda Silva/Lawrence
o (G has no partial cube minor from O~
o all iterated zone-graphs are partial cubes Handa
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A common generalization

THMIK, Marc 17]:
GG tope graph of COM iff G partial cube
such that all antipodal subgraphs gated.

COR:

GG tope graph of OM iff G antipodal

partial cube such that all antipodal
subgraphs gated. da Silva

COR:
Lawren

(G tope graph of LOP iff G partial cube
and all antipodal subgraphs hypercubes.

COR:

GG tope graph of AOM iff GG affine partial
cube such that all antipodal and
conformal subgraphs gated.




Recognition

THMI[K, Marc 17]:
GG tope graph of COM iff G partial cube
such that all antipodal subgraphs gated.

naive polytime alogrithm

o check if partial cube O(n?)

o find antipodal subgraphs O(n?) shortest path intervals
— check if antipodal

o for each check if gated do some distances
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Further things

rank (L) of L=largest @), pc-minor of G

Conjecture [Las Vergnas '80]: for every
OM L, the mindegree §(G 1) < r(L).

Conjecture [Bandelt, Chepoi, K '15]:
every Gcoowm IS convex subgraph of Goy.

would vyield
o Topological Representation Theorem
with pseudohyperplanes and
pseudohalfspaces for COMs
o ideas for duality



