Tope graphs of COMs

Kolja Knauer LIS, Aix-Marseille Université

Tilen Marc FMF, Univerza v Ljubljani

Combinatorial Geometries 2018: matroids, oriented matroids and applications

"Representative" example: arrangement of pseudospheres and pseudosemispheres

"Representative" example: arrangement of pseudospheres and pseudosemispheres

topes $\mathcal T$ of $\mathcal L=$ maximal cells

tope graph $G_{\mathcal{T}} = \text{incidence graph}$

"Representative" example: arrangement of pseudospheres and pseudosemispheres

topes ${\mathcal T}$ of ${\mathcal L}=$ maximal cells

tope graph $G_{\mathcal{T}} = \text{incidence graph}$

tope graph of graphic oriented matroid = flip graph of acyclic orientations of graph G

"Representative" example: arrangement of pseudospheres and pseudosemispheres

topes ${\mathcal T}$ of ${\mathcal L}=$ maximal cells

tope graph $G_{\mathcal{T}} = \text{incidence graph}$

tope graph of graphic oriented matroid = flip graph of acyclic orientations of graph Gtope graph of graphic COM = flip graph of acyclic orientations of mixed graph G

"Representative" example: arrangement of pseudospheres and pseudosemispheres

topes ${\mathcal T}$ of ${\mathcal L}=$ maximal cells

tope graph $G_{\mathcal{T}} = \text{incidence graph}$

tope graph of graphic oriented matroid = flip graph of acyclic orientations of graph Gtope graph of graphic COM = flip graph of acyclic orientations of mixed graph G

→ special case: linear extension graphs of posets

topes $\mathcal{T} = \mathcal{L} \cap \{\pm\}^E$

topes $\mathcal{T} = \mathcal{L} \cap \{\pm\}^E$ tope graph $G_{\mathcal{T}} = \mathsf{subgraph}$ of Q_E induced by \mathcal{T}

G partial cube : $\Leftrightarrow G$ isometric subgraph of hypercube

 $G \subseteq Q^n$ such that $d_G(v,w) = d_{Q^n}(v,w) \forall v,w \in G$

G partial cube : $\Leftrightarrow G$ isometric subgraph of hypercube

 $G \subseteq Q^n$ such that $d_G(v,w) = d_{Q^n}(v,w) \forall v,w \in G$

tope graph of realizable COM (arrangement of half and hyperplanes)

tope graph of realizable COM (arrangement of half and hyperplanes)

tw set

G partial cube : $\Leftrightarrow G$ isometric subgraph of hypercube

G partial cube : $\Leftrightarrow G$ isometric subgraph of hypercube

 $G \subseteq Q^n$ such that $d_G(v,w) = d_{Q^n}(v,w) \forall v,w \in G$

can label edges such that between two vertices all geodesics use same set of labels and no label twice.

edges of partial cube naturally partitioned into minimal cuts $\ensuremath{\mathcal{C}}$

G partial cube : $\Leftrightarrow G$ isometric subgraph of hypercube

 $G \subseteq Q^n$ such that $d_G(v,w) = d_{Q^n}(v,w) \forall v,w \in G$

can label edges such that between two vertices all geodesics use same set of labels and no label twice.

edges of partial cube naturally partitioned into minimal cuts C \rightsquigarrow minor-relation

G partial cube : $\Leftrightarrow G$ isometric subgraph of hypercube

 $G \subseteq Q^n$ such that $d_G(v, w) = d_{Q^n}(v, w) \forall v, w \in G$

restriction to a side of a cut

edges of partial cube naturally partitioned into minimal cuts \mathcal{C} \rightsquigarrow minor-relation

G partial cube : $\Leftrightarrow G$ isometric subgraph of hypercube

 $G \subseteq Q^n$ such that $d_G(v, w) = d_{Q^n}(v, w) \forall v, w \in G$

restriction to a side of a cut

edges of partial cube naturally partitioned into minimal cuts C \rightsquigarrow minor-relation

contraction of a cut

G partial cube : $\Leftrightarrow G$ isometric subgraph of hypercube

 $G \subseteq Q^n$ such that $d_G(v, w) = d_{Q^n}(v, w) \forall v, w \in G$

restriction to a side of a cut

edges of partial cube naturally partitioned into minimal cuts C \rightsquigarrow minor-relation \rightsquigarrow yields new partial cube contraction of a cut

each has a family of excluded minors

each has a family of excluded minors

From partial cubes to sign vectors

Let G partial cube, then $G' \subset G$ convex $\iff G'$ restriction of G

shortest paths between 'vertices of G' stay in G'

From partial cubes to sign vectors

Gated subgraphs

 $G' \subseteq G$ gated if $\forall v \in G \ \exists v' \in G'$ s.th $\forall w \in G'$ there is a shortest (v, w)-path through v'

$G' \subseteq G$ gated if $\forall v \in G \ \exists v' \in G'$ s.th $\forall w \in G'$ there is a shortest (v, w)-path through v'

 $G' \subseteq G$ gated if $\forall v \in G \ \exists v' \in G'$ s.th $\forall w \in G'$ there is a shortest (v, w)-path through v'

 $G' \subseteq G$ gated if $\forall v \in G \exists v' \in G'$ s.th $\forall w \in G'$ there is a shortest (v, w)-path through v'

• $\mathcal{L} = \{ X(G') \mid G' \subseteq G \text{ gated } \} \subseteq \{0, \pm\}^{\mathcal{C}}$

 $G' \subseteq G$ gated if $\forall v \in G \exists v' \in G'$ s.th $\forall w \in G'$ there is a shortest (v, w)-path through v'

 $G' \text{ antipodal if } \forall v \in G' \exists v' \in G' \text{ s. th. } \forall w \in G' \text{ there is a shortest}$ (v, v')-path through w ((antipodal \Rightarrow convex))

G' antipodal if $\forall v \in G' \exists v' \in G'$ s. th. $\forall w \in G'$ there is a shortest ((antipodal \Rightarrow convex)) antipodal and gated

• $\mathcal{L} = \{X(G') \mid G' \subseteq G \text{ antipodal and gated } \} \subseteq \{0, \pm\}^{\mathcal{C}}$ (FS) $\mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L}$

• $\mathcal{L} = \{X(G') \mid G' \subseteq G \text{ antipodal and gated } \} \subseteq \{0, \pm\}^{\mathcal{C}}$ (FS) $\mathcal{L} \circ -\mathcal{L} \subseteq \mathcal{L}$ $\rightsquigarrow G$ tope graph of COM

 \implies antipodal subgraphs gated

 $AG = \{G \text{ partial cube} | \text{ all antipodal subgraphs gated} \}$

all these are minor-minimally non AG

Characterization

THM[K, Marc '17]:

- for a partial cube G the following are equivalent:
 - $\circ~G$ is tope graph of a COM
 - $\,\circ\,$ all antipodal subgraphs of G are gated
 - $\circ~G$ has no partial cube minor from \mathcal{Q}^-
 - all iterated zone-graphs are partial cubes

Corollaries:

- characterizations for oriented matroids, affine oriented matroids, and lopsided sets
- polytime recognition

Characterization

THM[K, Marc '17]:

- for a partial cube G the following are equivalent:
 - $\circ~G$ is tope graph of a COM
 - $\circ\,$ all antipodal subgraphs of G are gated da Silva/Lawrence
 - $\circ~G$ has no partial cube minor from \mathcal{Q}^-
 - all iterated zone-graphs are partial cubes

Corollaries:

- characterizations for oriented matroids, affine oriented matroids, and lopsided sets
- polytime recognition

Characterization

THM[K, Marc '17]:

- for a partial cube G the following are equivalent:
 - $\circ~G$ is tope graph of a COM
 - $\circ\,$ all antipodal subgraphs of G are gated da Silva/Lawrence
 - $\circ~G$ has no partial cube minor from \mathcal{Q}^-
 - all iterated zone-graphs are partial cubes

Handa

Corollaries:

- characterizations for oriented matroids, affine oriented matroids, and lopsided sets
- polytime recognition

A common generalization

THM[K, Marc 17]:

G tope graph of COM iff G partial cube such that all antipodal subgraphs gated.

COR:

G tope graph of OM iff G antipodal partial cube such that all antipodal subgraphs gated. *da Silva*

COR:

G tope graph of LOP iff *G* partial cube and all antipodal subgraphs hypercubes.

G tope graph of AOM iff G affine partial cube such that all antipodal and conformal subgraphs gated.

Recognition

THM[K, Marc 17]:

G tope graph of COM iff G partial cube such that all antipodal subgraphs gated.

rank $r(\mathcal{L})$ of \mathcal{L} =largest Q_r pc-minor of $G_{\mathcal{T}}$

rank $r(\mathcal{L})$ of \mathcal{L} =largest Q_r pc-minor of $G_{\mathcal{T}}$

Conjecture [Las Vergnas '80]: for every OM \mathcal{L} , the mindegree $\delta(G_{\mathcal{T}}) \leq r(\mathcal{L})$.

rank $r(\mathcal{L})$ of \mathcal{L} =largest Q_r pc-minor of $G_{\mathcal{T}}$

Conjecture [Las Vergnas '80]: for every OM \mathcal{L} , the mindegree $\delta(G_{\mathcal{T}}) \leq r(\mathcal{L})$.

true for $r\leq 3$

rank $r(\mathcal{L})$ of \mathcal{L} =largest Q_r pc-minor of $G_{\mathcal{T}}$

Conjecture [Las Vergnas '80]: for every OM \mathcal{L} , the mindegree $\delta(G_{\mathcal{T}}) \leq r(\mathcal{L})$.

true for $r\leq 3$

THM[K, Marc 18+]:

True for antipodal partial cubes of $r \leq 3$ and for antipodal partial cubes with $E \leq 7$.

rank $r(\mathcal{L})$ of \mathcal{L} =largest Q_r pc-minor of G_T Conjecture [Las Vergnas '80]: for every OM \mathcal{L} , the mindegree $\delta(G_T) \leq r(\mathcal{L})$.

true for $r\leq 3$

E	2	3	4	5	6
antipodal	1	2	4	13	115
OM	1	2	4	9	35

THM[K, Marc 18+]:

True for antipodal partial cubes of $r \leq 3$ and for antipodal partial cubes with $E \leq 7$.

rank $r(\mathcal{L})$ of $\mathcal{L}=$ largest Q_r pc-minor of G_T Conjecture [Las Vergnas '80]: for every OM \mathcal{L} , the mindegree $\delta(G_T) \leq r(\mathcal{L})$.

true for $r\leq 3$

THM[K, Marc 18+]:

True for antipodal partial cubes of $r \leq 3$ and for antipodal partial cubes with $E \leq 7$.

THM[Mandel '82]:

True for "Mandel" OMs.

 $(realizable \subseteq Euclidean \subseteq Mandel)$

rank $r(\mathcal{L})$ of \mathcal{L} =largest Q_r pc-minor of $G_{\mathcal{T}}$ Conjecture [Las Vergnas '80]: for every OM \mathcal{L} , the mindegree $\delta(G_{\mathcal{T}}) \leq r(\mathcal{L})$.

true for r < 3

23456 -THM[K, Marc 18+]:

antipodal 1 2 4 13 115 True for antipodal partial cubes of $r \leq 3$ and for antipodal partial cubes with $E \leq 7$.

THM[Mandel '82]:

True for "Mandel" OMs.

(realizable \subseteq Euclidean \subseteq Mandel)

Conjecture [Mandel '82]: all OMs are Mandel.
rank $r(\mathcal{L})$ of \mathcal{L} =largest Q_r pc-minor of $G_{\mathcal{T}}$ Conjecture [Las Vergnas '80]: for every OM \mathcal{L} , the mindegree $\delta(G_{\mathcal{T}}) \leq r(\mathcal{L})$.

true for r < 3

|E|

|2 3 4 5 6 | THM[K, Marc 18+]:

antipodal 1 2 4 13 115 True for antipodal partial cubes of $r \leq 3$ and for OM 124 9 35 antipodal partial cubes with $E \leq 7$.

THM[Mandel '82]:

True for "Mandel" OMs.

(realizable \subseteq Euclidean \subseteq Mandel)

Conjecture [Mandel '82]: all OMs are Mandel.

THM[K, Marc 18+]:

If $G_{\mathcal{T}}$ Mandel, then every coordinate incident to vertex of degree r.

rank $r(\mathcal{L})$ of $\mathcal{L}=$ largest Q_r pc-minor of $G_{\mathcal{T}}$ Conjecture [Las Vergnas '80]: for every OM \mathcal{L} , the mindegree $\delta(G_{\mathcal{T}}) \leq r(\mathcal{L})$. true

true for $r\leq 3$

E	2	3	4	5	6
antipodal	1	2	4	13	115
OM	1	2	4	9	35

THM[K, Marc 18+]:

True for antipodal partial cubes of $r \leq 3$ and for antipodal partial cubes with $E \leq 7$.

THM[Mandel '82]:

True for "Mandel" OMs.

 $(realizable \subseteq Euclidean \subseteq Mandel)$

Conjecture [Mandel '82]: all OMs are Mandel.

THM[K, Marc 18+]:

If $G_{\mathcal{T}}$ Mandel, then every coordinate incident to vertex of degree r.

 \exists OMs w/o this property

with E = 21, 17, 13 (Richter-Gebert '93, Bokowski/Rohlfs '01, Tracy Hall '04)

rank $r(\mathcal{L})$ of $\mathcal{L}=$ largest Q_r pc-minor of $G_{\mathcal{T}}$ Conjecture [Las Vergnas '80]: for every OM \mathcal{L} , the mindegree $\delta(G_{\mathcal{T}}) \leq r(\mathcal{L})$.
tr

true for $r\leq 3$

THM[K, Marc 18+]:

True for antipodal partial cubes of $r \leq 3$ and for antipodal partial cubes with $E \leq 7$.

THM[Mandel '82]:

True for "Mandel" OMs.

 $(realizable \subseteq Euclidean \subseteq Mandel)$

Conjecture Mandel '02]. all Civis are Mandel.

THM[K, Marc 18+]:

If $G_{\mathcal{T}}$ Mandel, then every coordinate incident to vertex of degree r.

 \exists OMs w/o this property

with E = 21, 17, 13 (Richter-Gebert '93, Bokowski/Rohlfs '01, Tracy Hall '04)

rank $r(\mathcal{L})$ of \mathcal{L} =largest Q_r pc-minor of $G_{\mathcal{T}}$ Conjecture [Las Vergnas '80]: for every OM \mathcal{L} , the mindegree $\delta(G_{\mathcal{T}}) \leq r(\mathcal{L})$.

Conjecture [Bandelt, Chepoi, K '15]: every G_{COM} is convex subgraph of G_{OM} .

would yield

- Topological Representation Theorem with pseudohyperplanes and pseudohalfspaces for COMs
- ideas for duality