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Complexes of oriented matroids

topes T of L= maximal cells
+−−+

tope graph of graphic oriented matroid =
flip graph of acyclic orientations of graph G

tope graph of graphic COM =
flip graph of acyclic orientations of mixed graph G

 special case: linear extension graphs of posets

tope graph GT = incidence graph

”Representative” example:
arrangement of pseudospheres and
pseudosemispheres
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◦ Covector axioms: (E,L) oriented matroid
(FS) & (SE)

(Z) ∅ ∈ L

◦ Covector axioms: (E,L) affine oriented matroid
(FS) & (SE)
(A) something lengthy

◦ Covector axioms: (E,L) COM iff
(FS) L ◦ −L ⊆ L
(SE) ∀X,Y ∈ L and e ∈ S(X,Y )∃Z ∈ L :

Ze = 0 and Zf = Xf ◦ Yf for f /∈ S(X,Y ).

A common generalization

◦ Covector axioms: (E,L) lopsided set
(FS) & (SE)

(I) L ◦ {0,±}E ⊆ L

tope graphs are partia
l cubes and determine L

topes T = L ∩ {±}E
tope graph GT = subgraph of QE induced by T
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G partial cube :⇔ G isometric subgraph of hypercube

edges of partial cube naturally
partitioned into minimal cuts C
 minor-relation

tope graph of realizable COM
(arrangement of half and hyperplanes)

 yields new tope graph

G ⊆ Qn such that dG(v, w) = dQn(v, w)∀v, w ∈ G

Partial cubes and partial cube minors



some minor-closed classes

planar
partial
cubes

GCOM

graphs of arrangements
of half- and hyperplanes

Hypercellular graphs

partial cubes

Partial cube minors

median graphs

graphs of acyclic
ors of mixed graphs

distributive
lattices

bipartite cellular graphs



some minor-closed classes

planar
partial
cubes

GCOM

graphs of arrangements
of half- and hyperplanes

Hypercellular graphs

partial cubes

each has a family of excluded minors

Partial cube minors

median graphs

graphs of acyclic
ors of mixed graphs

distributive
lattices

bipartite cellular graphs



some minor-closed classes

planar
partial
cubes

GCOM

graphs of arrangements
of half- and hyperplanes

Hypercellular graphs

partial cubes

each has a family of excluded minors

F(Q−) =

Partial cube minors

median graphs

graphs of acyclic
ors of mixed graphs

distributive
lattices

Thm[K, Marc]

bipartite cellular graphs



some minor-closed classes

planar
partial
cubes

GCOM

graphs of arrangements
of half- and hyperplanes

Hypercellular graphs

partial cubes

each has a family of excluded minors

F(Q−) =

F( )

Partial cube minors

median graphs =

graphs of acyclic
ors of mixed graphs

F( ,
=

)

F( ,

=

)

F( ,

=

)

distributive
lattices

,

Thm[K, Marc]

Thm[Chepoi, K, Marc]

bipartite cellular graphs



some minor-closed classes

planar
partial
cubes

GCOM

graphs of arrangements
of half- and hyperplanes

Hypercellular graphs

partial cubes

each has a family of excluded minors

F(Q−) =

F( )

F(?)

=

F(?)

=

Partial cube minors

median graphs =

graphs of acyclic
ors of mixed graphs

F( ,
=

)

F( ,

=

)

F( ,

=

)

distributive
lattices

,

= F(?)

Thm[K, Marc]

Thm[Chepoi, K, Marc]

bipartite cellular graphs



Let G partial cube, then G′ ⊂ G convex ⇐⇒ G′ restriction of G

From partial cubes to sign vectors

shortest paths between
vertices of G′ stay in G′



Let G partial cube, then G′ ⊂ G convex ⇐⇒ G′ restriction of G

From partial cubes to sign vectors

shortest paths between
vertices of G′ stay in G′

intersection of halfspaces
X(G′) containing G′



Let G partial cube, then G′ ⊂ G convex ⇐⇒ G′ restriction of G

associate convex subgraph G′ with sign vector X(G′)

From partial cubes to sign vectors

shortest paths between
vertices of G′ stay in G′

intersection of halfspaces
X(G′) containing G′



Let G partial cube, then G′ ⊂ G convex ⇐⇒ G′ restriction of G

associate convex subgraph G′ with sign vector X(G′)

From partial cubes to sign vectors

shortest paths between
vertices of G′ stay in G′

intersection of halfspaces
X(G′) containing G′



Let G partial cube, then G′ ⊂ G convex ⇐⇒ G′ restriction of G

associate convex subgraph G′ with sign vector X(G′)

++– – +( )

From partial cubes to sign vectors

shortest paths between
vertices of G′ stay in G′

intersection of halfspaces
X(G′) containing G′



Let G partial cube, then G′ ⊂ G convex ⇐⇒ G′ restriction of G

associate convex subgraph G′ with sign vector X(G′)

++– – +( )

+– – – 0( )

From partial cubes to sign vectors

shortest paths between
vertices of G′ stay in G′

intersection of halfspaces
X(G′) containing G′



Let G partial cube, then G′ ⊂ G convex ⇐⇒ G′ restriction of G

associate convex subgraph G′ with sign vector X(G′)

++– – +( )

+– – – 0( )

0 0 – – 0( )

From partial cubes to sign vectors

shortest paths between
vertices of G′ stay in G′

intersection of halfspaces
X(G′) containing G′



Let G partial cube, then G′ ⊂ G convex ⇐⇒ G′ restriction of G

associate convex subgraph G′ with sign vector X(G′)

++– – +( )

+– – – 0( )

0 0 – – 0( )

From partial cubes to sign vectors

L = {X(G′) | G′ ⊆ G convex } ⊆ {0,±}C

shortest paths between
vertices of G′ stay in G′

intersection of halfspaces
X(G′) containing G′



Let G partial cube, then G′ ⊂ G convex ⇐⇒ G′ restriction of G

associate convex subgraph G′ with sign vector X(G′)

++– – +( )

+– – – 0( )

0 0 – – 0( )

From partial cubes to sign vectors

L = {X(G′) | G′ ⊆ G convex } ⊆ {0,±}C
tope graph GL = L ∩ {±1}C ⊆ QC of L is G

shortest paths between
vertices of G′ stay in G′

intersection of halfspaces
X(G′) containing G′
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v

G′

no colors from G′

v′

gate of v in G′

convex

G′ ⊆ G gated if ∀v ∈ G ∃v′ ∈ G′ s.th ∀w ∈ G′
there is a shortest (v, w)-path through v′

Gated subgraphs

L = {X(G′) | G′ ⊆ G gated } ⊆ {0,±}C
L has L ◦ L ⊆ L while GL = G
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G′ antipodal if ∀v ∈ G′ ∃v′ ∈ G′ s. th. ∀w ∈ G′ there is a shortest
(v, v′)-path through w ((antipodal ⇒ convex)

gated and not antipodal

convex, not gated nor antipodal

antipodal and gated

Antipodal gated subgraphs

L = {X(G′) | G′ ⊆ G antipodal and gated } ⊆ {0,±}C
(FS) L ◦ −L ⊆ L  G tope graph of COM

=⇒ antipodal subgraphs gated
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Antipodal gated partial cubes and Q−
AG= {G partial cube| all antipodal subgraphs gated}

all these are minor-minimally non AG but more generally:

Qd
Qd

Qd
Qd

Qd
Qd

Qd
Qd

Q−
Lemma: AG is minor-closed =⇒ AG ⊆ F(Q−)
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THM[K, Marc ’17]:
for a partial cube G the following are equivalent:

◦ G is tope graph of a COM
◦ all antipodal subgraphs of G are gated
◦ G has no partial cube minor from Q−
◦ all iterated zone-graphs are partial cubes

Corollaries:
◦ characterizations for oriented matroids,

affine oriented matroids, and lopsided sets
◦ polytime recognition

Characterization

da Silva/Lawrence
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THM[K, Marc 17]:
G tope graph of COM iff G partial cube
such that all antipodal subgraphs gated.

COR:
G tope graph of OM iff G antipodal
partial cube such that all antipodal
subgraphs gated.

A common generalization

COR:
G tope graph of LOP iff G partial cube
and all antipodal subgraphs hypercubes.
COR:
G tope graph of AOM iff G affine partial
cube such that all antipodal and
conformal subgraphs gated.

da Silva

Lawrence



◦ check if partial cube O(n2)
◦ find antipodal subgraphs O(n2) shortest path intervals

– check if antipodal
◦ for each check if gated do some distances

naive polytime alogrithm

THM[K, Marc 17]:
G tope graph of COM iff G partial cube
such that all antipodal subgraphs gated.

Recognition
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Further things

Conjecture [Bandelt, Chepoi, K ’15]:
every GCOM is convex subgraph of GOM.

rank r(L) of L=largest Qr pc-minor of GT

Conjecture [Las Vergnas ’80]: for every
OM L, the mindegree δ(GT ) ≤ r(L).

would yield
◦ Topological Representation Theorem

with pseudohyperplanes and
pseudohalfspaces for COMs

◦ ideas for duality


