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Classical results The Tutte–Nash-Williams-theorem

Theorem (Tutte, Nash-Williams)

In a graph G = (V ,E), there exists a packing of k spanning trees iff

eG(P) ≥ k(|P| − 1)

holds for every partition P of V , where eG(P) denotes the number of
edges that are not induced by any set of the partition.

Matroid structure behind
Union of k spanning trees = bases of the k -sum of the graphic matroid.
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Classical results Edmonds’ theorem

s-arborescence = directed tree s.t. each node is reachable from its
root on a one-way path

% = the in-degree

s

Figure: An s-arborescence

Theorem (Edmonds)

In a rooted digraph D = (V + s,A), there exists a packing of k
spanning s-arborescences iff

%(X ) ≥ k

holds for every ∅ 6= X ⊆ V.

Remark
The Tutte–Nash-Williams-theorem follows from Edmonds’ theorem by
using Frank’s orientation theorems.
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Classical results Edmonds’ theorem

Theorem (Edmonds)

In a rooted digraph D = (V + s,A), there exists a packing of k
spanning s-arborescences iff

%(X ) ≥ k

holds for every ∅ 6= X ⊆ V.

Matroid structure behind
Let the independent sets ofM0 be the arc sets of D with maximum
in-degree k on each v ∈ V = direct sum of the uniform matroids of
rank k on the incoming arc sets of all vertices in V .
Union of k spanning arborescences = common bases of the k -sum of
the graphic matroid andM0. ⇒ Efficient algorithm for the weighted
problem through the weighted matroid intersection algorithm.
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Classical results Generalizations

Kamiyama, Katoh, Takizawa: If there are no spanning
arborescences... When is it possible to pack edge-disjoint “maximal”
arborescences?
Reachability s-arborescence in D: an s-arborescence that spans each
vertex which is reachable from s on a one-way path of D.

s

Figure: A reachability s-arborescence

Theorem (Kamiyama, Katoh and Takizawa)

In a digraph D = (V ,A), let R := {s1, ..., sk} be a multiset of vertices in
V . There exists a packing of reachability si -arborescences in D
(i = 1, . . . , k) iff

%(X ) ≥ p′R(X )

holds for every X ⊆ V where p′R(X ) denotes the number of si ’s for
which X is reachable from si and si 6∈ X.
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Figure: A packing of reachability s and s′-arborescences
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Matroid-based packings A problem from Rigidity Theory

bar-joint framework: A graph G = (V ,E) and a map p : V → Rd called
a realization of G→ vertices correspond to flexible joints that connect
rigid bars.
infinitesimal motion of a bar-joint framework (G,p): m : V → Rd s.t.
〈m(u)−m(v),p(u)− p(v)〉 = 0 for every uv ∈ E .
rigidity matrix R(G,p)∈ Rd |V |×|E |: each row corresponding to an edge
uv is 0 except at the d + d coordinates corresponding to u and v
where its values are given by the Rd vectors p(u)− p(v) and
p(v)− p(u), respectively→ the space of infinitesimal motions is the
kernel of R(G,p)
infinitesimally rigid bar-joint framework: the rank of R(G,p) is
d |V | −

(d+1
2

)
, i.e. maximal as the isometries of Rd imply

(d+1
2

)
trivial

infinitesimal motions
generic framework: the coordinates of p are algebraically independent
over Q→ when p is generic, rigidity does only depend on G
rigidity matroid: the linear matroid implied by the columns of R(G,p) (if
p is not given, then for generic p)
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Matroid-based packings A problem from Rigidity Theory

Theorem (Laman, Crapo)

Let G = (V ,E) be a loop-colored graph. Then the following are
equivalent.
(i) For every/one generic realization p of G the corresponding bar-joint
framework is minimally (infinitesimally) rigid.
(ii) (Laman) The following sparsity conditions hold:
(L1) |E | = 2|V | − 3,
(L2) |F | ≤ 2|V (F )| − 3 for every F ⊆ E.
(iii) (Crapo) E has a partition {F1,F2,F3} where Fi is a forest such that
each vertex is covered by exactly two of them and and no two subtrees
span the same vertex set.
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Matroid-based packings A problem from Rigidity Theory

Rank function for rigidity matroid

Theorem (Edmonds, Rota)

Let h : 2E → Z≥0 ∪ {+∞} a monotone non-decreasing intersecting
submodular set function. Then

Ih = {Y ⊆ S : |X | ≤ h(X ) for every X ⊆ Y}

forms the independent set family of a matroid Mh with rank function

rh(Z ) := min

{∑
X∈P

h(X ) + |Z −
⋃
P| : P a subpart. of Z

}
.

Let h(F ) := 2|V (F )| − 3 for F 6= ∅. As h(e) = 1 we can consider
partitions instead of subpartitions.

Theorem (Lovász, Yemini)
The rank function of the rigidity matroid is the following:

r(E) = min

{∑
F∈P

2|V (F )| − 3 : P a partition of E

}
.
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Matroid-based packings A problem from Rigidity Theory

loop-colored graph: a multigraph G = (V ,E) without multiple edges
with a coloring c : L→ {c1, . . . , ck} on its loop set L ⊆ E
bar-joint-slider framework on the plane: a bar-joint framework where a
part of the joints are constrained by using line-sliders some of which
may be parallel (i.e., the infinitesimal velocity on a joint constrained by
a slider in direction x must by parallel to x)
loop=slider; color=direction
rooted-forest colored in one color: a (’loop-rooted’) forest where each
component contains a loop of the same color
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Matroid-based packings A problem from Rigidity Theory

Theorem (Katoh,Tanigawa)

Let G = (V ,E) be a loop-colored graph. Then the following are
equivalent.
(i) For every (injective) mapping of the colors {c1 . . . , ck} to S1 and any
generic realization p of G the corresponding bar-joint-slider framework
is minimally (infinitesimally) rigid.
(ii) The following sparsity conditions hold:

(KT1) |E | = 2|V |
(KT2) |F | ≤ 2|V (F )| − 3 for every F ⊆ E − L,
(KT3) |F | ≤ 2|V (F )| for every F ⊆ E,
(KT4) |F | ≤ 2|V (F )| − 1 for every F ⊆ E containing only monochromatic

loops.
(iii) E has a partition {F1, . . . ,Fk} where Fi is a rooted-forest colored in
color ci such that each vertex is covered by exactly two of them and
and no two subtrees span the same vertex set.
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Matroid-based packings The problems

Definition
1 matroid-rooted graph/digraph (G = (V + s,E),M)/

(D = (V + s,A),M): a matroidM is given on the set of root
edges/arcs (leaving s).

2 M-based packing of (s, t)-paths: if the root edges/arcs form a
base ofM.

3 M-based packing of s-trees/arborescences: if the packing of
(s, t)-paths provided by the trees/arborescences isM-based
∀t ∈ V .

a

b

c d

a b c d

s

Figure: a matroid-rooted digraph
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3 M-based packing of s-trees/arborescences: if the packing of
(s, t)-paths provided by the trees/arborescences isM-based
∀t ∈ V .
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Remark
Menger type characterization: ∃ anM-based packing of (s, t)-paths iff
%(X ) ≥ r(∂s(V ))− r(∂s(X )) (∀t ∈ X ⊆ V ).

Csaba Király (ELTE-EGRES) Packing arbs with matroids Marseille’18 11 / 26



Matroid-based packings The problems

Definition
1 matroid-rooted graph/digraph (G = (V + s,E),M)/

(D = (V + s,A),M): a matroidM is given on the set of root
edges/arcs (leaving s).

2 M-based packing of (s, t)-paths: if the root edges/arcs form a
base ofM.

3 M-based packing of s-trees/arborescences: if the packing of
(s, t)-paths provided by the trees/arborescences isM-based
∀t ∈ V .

Remark
Menger type characterization: ∃ anM-based packing of (s, t)-paths iff
%(X ) ≥ r(∂s(V ))− r(∂s(X )) (∀t ∈ X ⊆ V ).

Question
Can the above theorems be extended forM-based packings?
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Matroid-based packings Undirected case

Theorem (Katoh, Tanigawa)

In a matroid-rooted graph (G = (V + s,E),M) there exists an
M-based packing of spanning s-trees iff

eG(P) ≥ r(M)|P| −
∑
X∈P

r(∂s(X )) for every partition P of V .

Matroid structure behind
Katoh and Tanigawa also proved that theM-based packings of s-trees
form the bases of the matroid induced by the following non-negative
integer valued, monotone and intersecting submodular function:

b′(H) := k |V (H)− s| − k + r(H ∩ ∂s(V )) ∀∅ 6= H ⊆ A,

i.e. the matroidMb′ with independent sets

Ib′ := {B ⊆ A : |H| ≤ b′(H) ∀∅ 6= H ⊆ B}.
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Matroid-based packings Directed case

Theorem (Durand de Gevigney, Nguyen and Szigeti)

In a matroid-rooted digraph (D = (V + s,A),M) there exists an
M-based packing of spanning s-arborescences iff there exists an
M-based packing of (s, v)-paths for every v ∈ V, i.e.

%(X ) ≥ r(M)− r(∂s(X )) (∀∅ 6= X ⊆ V ).

Remark
The Katoh–Tanigawa-theorem follows from this theorem by using
Frank’s orientation theorems.

Matroid structure behind
Edge sets ofM-based packing of s-arborescences = common bases
ofMb′ andM0.
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Matroid-based packings A dead end

Conjecture (Bérczi, Frank, T. Király, Kobayashi)

In a matroid-rooted digraph (D = (V + s,A),M) there exists an
M-based packing of spanning s-arborescences iff

%(X ) ≥ r(M)− r(∂s(X )) (∀∅ 6= X ⊆ V ).
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Matroid-based packings A dead end

Examples
1 Free : all subsets of a set,
2 Graphic : edge-sets of forests of a graph,
3 Transversal: end-nodes in S of matchings of bipartite graph

(S,T ;E)

4 Fano: subsets of sets of size 3 not being a line in the Fano plane.

a

b

c d

T

S
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Matroid-based packings A dead end

Conjecture (Bérczi, Frank, T. Király, Kobayashi)

In a matroid-rooted digraph (D = (V + s,A),M) there exists an
M-based packing of spanning s-arborescences iff

%(X ) ≥ r(M)− r(∂s(X )) (∀∅ 6= X ⊆ V ).

Theorem (Fortier, K., Szigeti, Tanigawa)
The conjecture is true when the matroidM

has rank at most 2 or
is graphic or
is transversal.

The conjecture is false!
The corresponding decision problem is NP-hard.
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Matroid-based packings A dead end

Counterexample
Digraph : acyclic, in-degree 3 for all v ∈ V , 46 nodes and 135 arcs,
Matroid : parallel extension of Fano with 64 elements,
Remark : matroid-based packing of (s, t)-paths exists for all t .
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Reachability-based packings Preliminaries

P(X ) = {v ∈ V : ∃ a one-way path from v to X}. (X ⊆ P(X ))
M-reachability-based packing of (s, t)-paths: if the root arcs form a
base ofM|∂s(P(t)).
M-reachability-based packing of s-arborescences: if the packing of
(s, t)-paths provided by the arborescences isM-reachability-based
∀t ∈ V .

Theorem (K.)

In a matroid-rooted digraph (D = (V + s,A),M) there exists an
M-reachability-based packing of s-arborescences iff

%(X ) ≥ r(∂s(P(X )))− r(∂s(X )) (∀X ⊆ V ).
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Reachability-based packings Matroids from bi-set functions

Definitions

Biset X = (XO,XI): XI ⊆ XO ⊆ V
P2 = all bisets on V
X ∩ Y = (XO ∩ YO,XI ∩ YI)
X ∪ Y = (XO ∪ YO,XI ∪ YI)
X and Y are intersecting = XI ∩ YI 6= ∅
b : P2 → Z+ ∪ {∞} is intersecting submodular =
b(X) + b(Y) ≥ b(X ∪ Y) + b(X ∩ Y) for every intersecting X,Y ∈ P2.
D = (V ,A), B ⊆ A, X ∈ P2.
B(X) = arcs in B with tail in XO and head in XI.
iB(X) = |B(X)|
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Reachability-based packings Matroids from bi-set functions

Matroids from submodular bi-set functions

Theorem (Edmonds, Rota)

Let h : 2E → Z≥0 ∪ {+∞} a monotone non-decreasing intersecting
submodular set function. Then

Ih = {Y ⊆ S : |X | ≤ h(X ) for every X ⊆ Y}

forms the independent set family of a matroid Mh.

Theorem
Let D = (V ,A) be a digraph and b : P2 → Z+ ∪ {∞} an intersecting
submodular bi-set function. Then

I := {B ⊆ A : iB(X) ≤ b(X) ∀X ∈ P2}

forms the family of independent sets of a matroidMb on A.
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Reachability-based packings Matroid structure behind

Matroid structure behind reachability-based packings

For simplicity we assume the following:

Assumption

(A1) ∂s(v) is independent inM for every v ∈ V .

This can be assumed by adding an extra vertex in the middle of each.

We define matroidM′0 (similarly toM0): for each v ∈ V we take a
matroidM′v on the arcs entering v to be the direct sum of the free
matroid on ∂s(v) and the uniform matroid of rank m(v)− |∂s(v)| on
∂V (v) where m(v) := r(∂s(P(v))). M′0 :=

⊕
v∈V M′v .
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Reachability-based packings Matroid structure behind

Matroid structure behind reachability-based packings

u∼v = P(u) = P(v)
Atoms = equivalence classes of ∼
m̃(X ):=

∑
v∈X m(v)

F := {X ∈ P2 : ∃ atom A : ∅ 6= XI ⊆ A, (XO \ XI) ∩ A = ∅},
IX := {ei ∈ ∂A

s (V ) : XI ⊆ Ui,ei /∈ ∂A
s (XI), (XO \ XI) ∩ Ui = ∅} (∀X ∈ F),

JX := {ei ∈ ∂A
s (V ) : XI ⊆ Ui} \ IX (∀X ∈ F),

b(X) := m̃(XI)− |∂A
s (XI)| − r(IX ∪ JX) + r(JX) (∀X ∈ F),

:= +∞ (∀X 6∈ F).

Remark

IX ∪ JX = ∂s(P(XI)).
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IX := {ei ∈ ∂A

s (V ) : XI ⊆ Ui,ei /∈ ∂A
s (XI), (XO \ XI) ∩ Ui = ∅} (∀X ∈ F),

JX := {ei ∈ ∂A
s (V ) : XI ⊆ Ui} \ IX (∀X ∈ F),

b(X) := m̃(XI)− |∂A
s (XI)| − r(IX ∪ JX) + r(JX) (∀X ∈ F),

:= +∞ (∀X 6∈ F).

Remark

IX ∪ JX = ∂s(P(XI)).
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Reachability-based packings Matroid structure behind

b(X) := m̃(XI)− |∂A
s (XI)| − (r(IX ∪ JX)− r(JX)) (∀X ∈ F)

Lemma (implicitly in Bérczi, T. Király, Kobayashi)

Let B ⊆ A for a given D = (V + s,A). The following two conditions are
equivalent:

|∂B
V (X )| ≥ r(∂A

s (PD(X )))− r(∂A
s (X )) (∀X ⊆ V )

|∂B
V (X)| ≥ r(IX ∪ JX)− r(JX) (∀X ∈ F)

Theorem (K.)

In a matroid-rooted digraph (D = (V + s,A),M) there exists an
M-reachability-based packing of s-arborescences iff

%(X ) = |∂A(X )| ≥ r(∂A
s (P(X )))− r(∂A

s (X )) (∀X ⊆ V ).
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Reachability-based packings Matroid structure behind

Lemma
b is an intersecting submodular bi-set function.

I∗ := {B ⊆ A : iB(X) ≤ b(X) ∀X ∈ P2}

forms the family of independent sets of a matroidM∗ on A.

Theorem
Let (D = (V + s,A),M) be a matroid-rooted digraph. Suppose that
(A1) is satisfied. Then B ⊆ A is the arc set of anM-reachability-based
packing of s-arborescences if and only if B is a common independent
set ofM′0 andM∗ of size m̃(V ).
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Reachability-based packings Corollary

Theorem
Let (D = (V + s,A),M) be a matroid-rooted digraph. There exists a
polynomial algorithm to find anM-reachability-based packing of
s-arborescences in D of minimum weight if D has at least one such
packing.

Theorem
Let (D = (V + s,A),M1) be a matroid-rooted digraph with another
matroidM2 = ⊕v∈VMv on A. There exists anM1-reachability-based
M2-restricted packing of s-arborescences in D if and only if

r(F ) + r2(∂(X )− F ) ≥ r1(∂s(P(X ))) for all X ⊆ V and F ⊆ ∂s(X ).
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Concluding remarks

Thank you for your attention!
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