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Outline

@ Summary of classical tree and arborescence packing results and
the matroid structure behind them
packing
= edge-disjoint subgraphs J

© Some basics of rigidity theory
© Summary of recent tree and arborescence packing result
© New result: matroid structure behind the above packing results
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Classical results The Tutte—Nash-Williams-theorem

Theorem (Tutte, Nash-Williams)
In a graph G = (V, E), there exists a packing of k spanning trees iff

ea(P) = k(P - 1)

holds for every partition P of V, where es(P) denotes the number of
edges that are not induced by any set of the partition.
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Classical results The Tutte—Nash-Williams-theorem

Theorem (Tutte, Nash-Williams)
In a graph G = (V, E), there exists a packing of k spanning trees iff

ea(P) = k(P - 1)

holds for every partition P of V, where es(P) denotes the number of
edges that are not induced by any set of the partition.

Matroid structure behind
Union of k spanning trees = bases of the k-sum of the graphic matroid.
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Classical results Edmonds’ theorem

s-arborescence = directed tree s.t. each node is reachable from its
root on a one-way path

o = the in-degree

N

Figure: An s-arborescence
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Classical results Edmonds’ theorem

s-arborescence = directed tree s.t. each node is reachable from its
root on a one-way path

o = the in-degree

Theorem (Edmonds)

In a rooted digraph D = (V + s, A), there exists a packing of k
spanning s-arborescences iff

o(X) > k

holds for every ) # X C V.
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s-arborescence = directed tree s.t. each node is reachable from its
root on a one-way path

o = the in-degree

Theorem (Edmonds)

In a rooted digraph D = (V + s, A), there exists a packing of k
spanning s-arborescences iff

o(X) > k

holds for every ) # X C V.

Remark

The Tutte—Nash-Williams-theorem follows from Edmonds’ theorem by
using Frank’s orientation theorems.
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Classical results Edmonds’ theorem

Theorem (Edmonds)

In a rooted digraph D = (V + s, A), there exists a packing of k
spanning s-arborescences iff

o(X) > k

holds for every ) # X C V.

Matroid structure behind

Let the independent sets of M be the arc sets of D with maximum
in-degree k on each v € V = direct sum of the uniform matroids of
rank k on the incoming arc sets of all vertices in V.

Union of k spanning arborescences = common bases of the k-sum of
the graphic matroid and M. = Efficient algorithm for the weighted
problem through the weighted matroid intersection algorithm.
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Classical results Generalizations

Kamiyama, Katoh, Takizawa: If there are no spanning
arborescences... When is it possible to pack edge-disjoint “maximal”

arborescences?
Reachability s-arborescence in D: an s-arborescence that spans each

vertex which is reachable from s on a one-way path of D.

Figure: A reachability s-arborescence
Csaba Kirdly (ELTE-EGRES) Packing arbs with matroids Marseille’18 5/26



Classical results Generalizations

Kamiyama, Katoh, Takizawa: If there are no spanning
arborescences... When is it possible to pack edge-disjoint “maximal”
arborescences?

Reachability s-arborescence in D: an s-arborescence that spans each
vertex which is reachable from s on a one-way path of D.

N

Figure: A packing of reachability s and s’-arborescences
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Classical results Generalizations

Kamiyama, Katoh, Takizawa: If there are no spanning
arborescences... When is it possible to pack edge-disjoint “maximal”
arborescences?

Reachability s-arborescence in D: an s-arborescence that spans each
vertex which is reachable from s on a one-way path of D.

Theorem (Kamiyama, Katoh and Takizawa)

In a digraph D = (V, A), let R :== {s4, ..., Sk} be a multiset of vertices in
V. There exists a packing of reachability si-arborescences in D
(i=1,... k)Iiff

o(X) = Pr(X)

holds for every X C V where pjr(X) denotes the number of s;’s for
which X is reachable from s; and s; & X.
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Matroid-based packings A problem from Rigidity Theory

bar-joint framework: A graph G = (V,E) and amap p: V — R called
a realization of G
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Matroid-based packings A problem from Rigidity Theory

bar-joint framework: A graph G = (V,E) and amap p : V — RY called
a realization of G — vertices correspond to flexible joints that connect
rigid bars.

infinitesimal motion of a bar-joint framework (G, p): m: V — R s.t.
(m(u) — m(v),p(u) — p(v)) =0 for every uv € E.

(M)
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Matroid-based packings A problem from Rigidity Theory

bar-joint framework: A graph G = (V,E) and amap p : V — RY called
a realization of G — vertices correspond to flexible joints that connect
rigid bars.

infinitesimal motion of a bar-joint framework (G, p): m: V — R s.t.
(m(u) — m(v),p(u) — p(v)) =0 for every uv € E.

rigidity matrix R(G, p)e R9VI*IEl: each row corresponding to an edge
uv is 0 except at the d + d coordinates corresponding to v and v
where its values are given by the RY vectors p(u) — p(v) and

p(v) — p(u), respectively — the space of infinitesimal motions is the
kernel of R(G, p)

0,1) (1,1)
1 01 0 00 0 0
100 00 0 1
RGP =10 0 0 101 0 0
0O 0 0 0 10 —10

(0,0) (1,0)
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Matroid-based packings A problem from Rigidity Theory

bar-joint framework: A graph G = (V,E) and amap p: V — R called
a realization of G — vertices correspond to flexible joints that connect
rigid bars.

infinitesimal motion of a bar-joint framework (G, p): m: V — R s.t.
(m(u) — m(v), p(u) — p(v)) = 0 for every uv € E.

rigidity matrix R(G. p)e R9VI*IEl: each row corresponding to an edge
uv is 0 except at the d + d coordinates corresponding to v and v
where its values are given by the RY vectors p(u) — p(v) and

p(v) — p(u), respectively — the space of infinitesimal motions is the
kernel of R(G, p)

infinitesimally rigid bar-joint framework: the rank of R(G, p) is

d|V| - (%}"), i.e. maximal as the isometries of RY imply (“}") trivial
infinitesimal motions
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over Q
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Matroid-based packings A problem from Rigidity Theory

bar-joint framework: A graph G = (V,E) and amap p: V — R called
a realization of G — vertices correspond to flexible joints that connect
rigid bars.

infinitesimal motion of a bar-joint framework (G, p): m: V — R s.t.
(m(u) — m(v), p(u) — p(v)) = 0 for every uv € E.

rigidity matrix R(G. p)e R9VI*IEl: each row corresponding to an edge
uv is 0 except at the d + d coordinates corresponding to v and v
where its values are given by the RY vectors p(u) — p(v) and

p(v) — p(u), respectively — the space of infinitesimal motions is the
kernel of R(G, p)

infinitesimally rigid bar-joint framework: the rank of R(G, p) is

d|V| - (%}"), i.e. maximal as the isometries of RY imply (“}") trivial
infinitesimal motions

generic framework: the coordinates of p are algebraically independent
over Q — when p is generic, rigidity does only depend on G

rigidity matroid: the linear matroid implied by the columns of R(G, p) (if
p is not given, then for generic p)
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Matroid-based packings A problem from Rigidity Theory

Theorem (Laman, Crapo)
Let G = (V, E) be a loop-colored graph. Then the following are
equivalent.

(i) For every/one generic realization p of G the corresponding bar-joint
framework is minimally (infinitesimally) rigid.
(ii) (Laman) The following sparsity conditions hold:

(L1) [El =2|V| -3,

(L2) |F| <2|V(F)| —3 forevery F C E.
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Matroid-based packings A problem from Rigidity Theory

Theorem (Laman, Crapo)

Let G = (V, E) be a loop-colored graph. Then the following are
equivalent.

(i) For every/one generic realization p of G the corresponding bar-joint
framework is minimally (infinitesimally) rigid.

(ii) (Laman) The following sparsity conditions hold:

(L1) [El =2|V| -3,
(L2) |F| <2|V(F)| —3 forevery F C E.

(iii) (Crapo) E has a partition { F1, Fo, F3} where F; is a forest such that

each vertex is covered by exactly two of them and and no two subtrees
span the same vertex set.

v
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Matroid-based packings A problem from Rigidity Theory

Rank function for rigidity matroid
Theorem (Edmonds, Rota)

Leth:2F — Z>p U {+o0} a monotone non-decreasing intersecting
submodular set function. Then

Ih={Y C S:|X| < h(X) forevery X C Y}

forms the independent set family of a matroid M, with rank function

XeP

m(Z) := min { > h(X)+|Z—|JP|: P asubpart. on} :
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Rank function for rigidity matroid
Theorem (Edmonds, Rota)

[..] Then T, ={Y C S: |X| < h(X) for every X C Y} forms the
independent set family of a matroid M, with rank function

Z) = min{z h(X)+1Z - JP|: P asubpart. on}.

XeP

Let h(F) := 2|V(F)| — 8 for F # (). As h(e) = 1 we can consider
partitions instead of subpartitions.

Theorem (Lovasz, Yemini)
The rank function of the rigidity matroid is the following:

= min {Z 2|V(F)| — 3 : P a partition ofE}
FeP
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Matroid-based packings A problem from Rigidity Theory

loop-colored graph: a multigraph G = (V, E) without multiple edges
with a coloring ¢ : L — {cy,...,cx} onits loopset L C E
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Matroid-based packings A problem from Rigidity Theory

loop-colored graph: a multigraph G = (V, E) without multiple edges
with a coloring c: L — {cy,...,cc} onits loop set L C E
bar-joint-slider framework on the plane: a bar-joint framework where a
part of the joints are constrained by using line-sliders some of which
may be parallel (i.e., the infinitesimal velocity on a joint constrained by
a slider in direction x must by parallel to x)

loop=slider; color=direction
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Matroid-based packings A problem from Rigidity Theory

loop-colored graph: a multigraph G = (V, E) without multiple edges
with a coloring c: L — {cy,...,cc} onits loop set L C E
bar-joint-slider framework on the plane: a bar-joint framework where a
part of the joints are constrained by using line-sliders some of which
may be parallel (i.e., the infinitesimal velocity on a joint constrained by
a slider in direction x must by parallel to x)

loop=slider; color=direction

rooted-forest colored in one color: a ('loop-rooted’) forest where each
component contains a loop of the same color
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Matroid-based packings A problem from Rigidity Theory

Theorem (Katoh, Tanigawa)

Let G = (V, E) be a loop-colored graph. Then the following are
equivalent.
(i) For every (injective) mapping of the colors {cy ..., cx} toS' and any
generic realization p of G the corresponding bar-joint-slider framework
is minimally (infinitesimally) rigid.
(i) The following sparsity conditions hold:

(KT1) |E[ = 2]V]

(KT2) |F| <2|V(F)|—3 forevery F CE—L,

(KT3) |F| <2|V(F)| forevery F C E,

(KT4) |F| <2|V(F)| —1 forevery F C E containing only monochromatic

loops.

(iii) E has a partition {Fy, ..., Fx} where F; is a rooted-forest colored in
color c¢; such that each vertex is covered by exactly two of them and
and no two subtrees span the same vertex set.

4
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Matroid-based packings A problem from Rigidity Theory

Theorem (Katoh, Tanigawa)

Let G = (V, E) be a loop-colored graph. Then the following are
equivalent.

(ii) The following sparsity conditions hold:
(KT1) |E| =2|V|
KT2’) |F| < 2|V(F)|-23forevery F CE—L,
KT3) |F| <2|V(F)| forevery F C E,

(KT4) |F| <2|V(F)| —1 for every F C E containing only monochromatic
loops.

(iii) E has a partition {F1, ..., Fx} where F; is a rooted-forest colored in
color c; such that each vertex is covered by exactly two of them and
and-no-two-subtrees-span-the-same-vertex-set.

4
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Matroid-based packings The problems

Definition
@ matroid-rooted graph/digraph (G = (V + s, E), M)/
(D= (V + s, A), M): a matroid M is given on the set of root
edges/arcs (leaving s).

Figure: a matroid-rooted digraph
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Matroid-based packings The problems

Definition
@ matroid-rooted graph/digraph (G = (V + s, E), M)/
(D= (V+s,A), M): amatroid M is given on the set of root
edges/arcs (leaving s).
@ M-based packing of (s, t)-paths: if the root edges/arcs form a
base of M.

Figure: an M-based packing of (s, t)-paths
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Matroid-based packings The problems

Definition
@ matroid-rooted graph/digraph (G = (V + s, E), M)/
(D= (V+s,A), M): amatroid M is given on the set of root
edges/arcs (leaving s).
@ M-based packing of (s, t)-paths: if the root edges/arcs form a
base of M.

Figure: Not an M-based packing of (s, t)-paths
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Matroid-based packings The problems

Definition
@ matroid-rooted graph/digraph (G = (V + s, E), M)/
(D= (V + s, A), M): a matroid M is given on the set of root
edges/arcs (leaving s).
@ M-based packing of (s, t)-paths: if the root edges/arcs form a
base of M.
© M-based packing of s-trees/arborescences: if the packing of

(s, t)-paths provided by the trees/arborescences is M-based
vVte V.

Figure: an M-based packing of s-arborescences
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Matroid-based packings The problems

Definition
@ matroid-rooted graph/digraph (G = (V + s, E), M)/
(D= (V + s, A), M): a matroid M is given on the set of root
edges/arcs (leaving s).
@ M-based packing of (s, t)-paths: if the root edges/arcs form a
base of M.
© M-based packing of s-trees/arborescences: if the packing of

(s, t)-paths provided by the trees/arborescences is M-based
vVte V.

Figure: an M-based packing of spanning s-arborescences
Csaba Kirdly (ELTE-EGRES) Packing arbs with matroids Marseille’'18 11/26



Matroid-based packings The problems

Definition
@ matroid-rooted graph/digraph (G = (V + s, E), M)/
(D= (V +s,A), M): amatroid M is given on the set of root
edges/arcs (leaving s).
@ M-based packing of (s, t)-paths: if the root edges/arcs form a
base of M.
© M-based packing of s-trees/arborescences: if the packing of

(s, t)-paths provided by the trees/arborescences is M-based
Vte V.

Remark

Menger type characterization: 3 an M-based packing of (s, t)-paths iff
o(X) > r(9s(V)) — r(0s(X)) (Vt e X C V).
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Matroid-based packings The problems

Definition

@ matroid-rooted graph/digraph (G = (V + s, E), M)/
(D= (V+s,A), M): amatroid M is given on the set of root
edges/arcs (leaving s).

@ M-based packing of (s, t)-paths: if the root edges/arcs form a
base of M.

© M-based packing of s-trees/arborescences: if the packing of
(s, t)-paths provided by the trees/arborescences is M-based
vVte V.

Remark

Menger type characterization: 3 an M-based packing of (s, t)-paths iff
o(X) > r(9s(V)) — r(0s(X)) (Vte X C V).

v

Question
Can the above theorems be extended for M-based packings?

v
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Matroid-based packings Undirected case

Theorem (Katoh, Tanigawa)

In a matroid-rooted graph (G = (V + s, E), M) there exists an
M-based packing of spanning s-trees iff

ec(P) = r(M)|P| = Y _ r(ds(X)) for every partition P of V.
XeP
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Matroid-based packings Undirected case

Theorem (Katoh, Tanigawa)

In a matroid-rooted graph (G = (V + s, E), M) there exists an
M-based packing of spanning s-trees iff

ec(P) = r(M)|P| = Y _ r(ds(X)) for every partition P of V.
XeP

Matroid structure behind

Katoh and Tanigawa also proved that the M-based packings of s-trees
form the bases of the matroid induced by the following non-negative
integer valued, monotone and intersecting submodular function:

b/(H) = k|V(H) — s| — k+ r(HN 8s(V)) V0 £ H C A,

i.e. the matroid M, with independent sets

Ty = {BC A:|H| < b(H)Y)+£HC B}.

v
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Matroid-based packings Directed case

Theorem (Durand de Gevigney, Nguyen and Szigeti)

In a matroid-rooted digraph (D = (V + s, A), M) there exists an
M -based packing of spanning s-arborescences iff there exists an
M-based packing of (s, v)-paths for every v € V, i.e.

o(X) =2 r(M) — r(9s(X)) (V0 # X C V).
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Matroid-based packings Directed case

Theorem (Durand de Gevigney, Nguyen and Szigeti)

In a matroid-rooted digraph (D = (V + s, A), M) there exists an
M -based packing of spanning s-arborescences iff there exists an
M-based packing of (s, v)-paths for every v € V, i.e.

o(X) =2 r(M) — r(9s(X)) (V0 # X C V).

Remark

The Katoh—Tanigawa-theorem follows from this theorem by using
Frank’s orientation theorems.
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Matroid-based packings Directed case

Theorem (Durand de Gevigney, Nguyen and Szigeti)

In a matroid-rooted digraph (D = (V + s, A), M) there exists an
M -based packing of spanning s-arborescences iff there exists an
M-based packing of (s, v)-paths for every v € V, i.e.

o(X) =2 r(M) — r(9s(X)) (V0 # X C V).

Remark

The Katoh—Tanigawa-theorem follows from this theorem by using
Frank’s orientation theorems.

Matroid structure behind

Edge sets of M-based packing of s-arborescences = common bases
of My and M.
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Matroid-based packings A dead end

Conjecture (Bérczi, Frank, T. Kiraly, Kobayashi)

In a matroid-rooted digraph (D = (V + s, A), M) there exists an
M-based packing of spanning s-arborescences iff

o(X) = (M) — r(8s(X)) (¥0 # X C V).

Csaba Kirdly (ELTE-EGRES) Packing arbs with matroids Marseille’18

14/26



Matroid-based packings A dead end

Examples
@ Free : all subsets of a set,
© Graphic : edge-sets of forests of a graph,

© Transversal: end-nodes in S of matchings of bipartite graph
(S, T;E)
© Fano: subsets of sets of size 3 not being a line in the Fano plane.

SN N A
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Matroid-based packings A dead end

Conjecture (Bérczi, Frank, T. Kiraly, Kobayashi)

In a matroid-rooted digraph (D = (V + s, A), M) there exists an
M-based packing of spanning s-arborescences iff

o(X) > r(M) — r(9s(X)) (0 # X C V).

Theorem (Fortier, K., Szigeti, Tanigawa)
The conjecture is true when the matroid M
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o(X) > r(M) — r(9s(X)) (0 # X C V).

Theorem (Fortier, K., Szigeti, Tanigawa)
The conjecture is true when the matroid M
@ has rank at most 2
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o(X) > r(M) — r(9s(X)) (0 # X C V).

Theorem (Fortier, K., Szigeti, Tanigawa)
The conjecture is true when the matroid M
@ has rank at most 2 or
@ /s graphic or
@ js transversal.
The conjecture is false!
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Matroid-based packings A dead end

Conjecture (Bérczi, Frank, T. Kiraly, Kobayashi)

In a matroid-rooted digraph (D = (V + s, A), M) there exists an
M-based packing of spanning s-arborescences iff

o(X) > r(M) — r(9s(X)) (0 # X C V).

Theorem (Fortier, K., Szigeti, Tanigawa)
The conjecture is true when the matroid M
@ has rank at most 2 or
@ /s graphic or
@ js transversal.

The conjecture is false!
The corresponding decision problem is NP-hard.
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Matroid-based packings A dead end

Counterexample

Digraph : acyclic, in-degree 3 for all v € V, 46 nodes and 135 arcs,
Matroid : parallel extension of Fano with 64 elements,
Remark : matroid-based packing of (s, t)-paths exists for all t.
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Reachability-based packings Preliminaries

P(X) ={v € V: 3 aone-way path from v to X}. (X C P(X))
M-reachability-based packing of (s, t)-paths: if the root arcs form a
base of M|a,(p(t)-

M-reachability-based packing of s-arborescences: if the packing of
(s, t)-paths provided by the arborescences is M-reachability-based

Vte V.
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P(X) ={v € V: 3 aone-way path from v to X}. (X C P(X))
M-reachability-based packing of (s, t)-paths: if the root arcs form a

base of M|a,(p(t)-
M-reachability-based packing of s-arborescences: if the packing of
(s, t)-paths provided by the arborescences is M-reachability-based

Vte V.
Theorem (K.)

In a matroid-rooted digraph (D = (V + s, A), M) there exists an
M -reachability-based packing of s-arborescences iff

o(X) > r(9s(P(X))) — r(9s(X)) (vX C V).
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Reachability-based packings Matroids from bi-set functions

Definitions

Biset X = (X0, X|): X, C Xp C V
P> = all bisets on V
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Reachability-based packings Matroids from bi-set functions

Definitions

Biset X = (X0, X|): X, C Xp C V
P> = all bisets on V
XﬂY:(XoﬂYo,X|ﬂY|)
XUY=(XOUYO,X|UY|)
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XuUY = (XoUYo,X| UY|)

Xand Y are intersecting = X;NY, # ()

b: P> — Z, U{oo} is intersecting submodular =

b(X) +b(Y) > b(XUY)+b(XNY) for every intersecting X, Y € Px.
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Definitions

Biset X = (X0, X|): X, C Xp C V

P> = all bisets on V

XNnY= (XoﬂYo,X| ﬂY|)

XuUY = (XoUYo,X| UY|)

Xand Y are intersecting = X;NY, # ()

b: P> — Z, U{oo} is intersecting submodular =

b(X) +b(Y) > b(XUY)+b(XNY) for every intersecting X, Y € Px.
D=(V,A),BCA X¢eP,.

B(X) = arcs in B with tail in Xo and head in X;.

i5(X) = |B(X)|
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Matroids from bi-set functions
Matroids from submodular bi-set functions

Theorem (Edmonds, Rota)

Let h: 2F — 7o U {+00} a monotone non-decreasing intersecting
submodular set function. Then

Ih={Y C S:|X| < h(X) forevery X C Y}

forms the independent set family of a matroid M.
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Matroids from bi-set functions
Matroids from submodular bi-set functions
Theorem (Edmonds, Rota)

Leth:2F - Z>o U {400} a monotone non-decreasing intersecting
submodular set function. Then

Ih={Y C S:|X| < h(X) forevery X C Y}

forms the independent set family of a matroid M.

Theorem

Let D = (V,A) be a digraph and b : P> — Z, U {cc} an intersecting
submodular bi-set function. Then

T :={BC A:ig(X) <Db(X) VX € P>}

forms the family of independent sets of a matroid My, on A.

v
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Reachability-based packings Matroid structure behind

Matroid structure behind reachability-based packings

For simplicity we assume the following:

Assumption
(A1) 0s(v) is independent in M for every v € V. J
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For simplicity we assume the following:
Assumption
(A1) 9s(v) is independent in M for every v € V. J

This can be assumed by adding an extra vertex in the middle of each.
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Reachability-based packings Matroid structure behind

Matroid structure behind reachability-based packings

For simplicity we assume the following:

Assumption
(A1) 0s(v) is independent in M for every v € V. J

This can be assumed by adding an extra vertex in the middle of each.

We define matroid M, (similarly to My): for each v € V we take a
matroid M/, on the arcs entering v to be the direct sum of the free
matroid on 0s(v) and the uniform matroid of rank m(v) — |0s(v)| on
dy(v) where m(v) = r(ds(P(v))). Mgy = @B,cy M.

Csaba Kirdly (ELTE-EGRES) Packing arbs with matroids Marseille’18 21/26



Reachability-based packings Matroid structure behind

Matroid structure behind reachability-based packings

u~v = P(u) = P(v)
Atoms = equivalence classes of ~
m(X):= > yex m(v)
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Reachability-based packings Matroid structure behind

Matroid structure behind reachability-based packings

u~v = P(u) = P(v)
Atoms = equivalence classes of ~
m(X):= > yex m(v)

F={XePy:FatomA: 0 #X CA (Xo\X|)NA=10},

b= {e € (V) : X C Uiei ¢ 98(X), (Xo \ X)) NU; = 0} (¥X € F),
= {e € (V) : X S Ui\ Ix (VX € F),
b(X) := m(X)) — [95(X)| = r(lx U Jx) + r(Jx) (VX € F),
= +00 (VX Z -7:)-
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Reachability-based packings Matroid structure behind

Matroid structure behind reachability-based packings

u~v = P(u) = P(v)
Atoms = equivalence classes of ~
m(X):= > yex m(v)

F={XePy:FatomA: 0 #X CA (Xo\X|)NA=10},

b= {e € (V) : X C Uiei ¢ 98(X), (Xo \ X)) NU; = 0} (¥X € F),
= {e € (V) : X S Ui\ Ix (VX € F),
b(X) := m(X)) — [95(X)| = r(lx U Jx) + r(Jx) (VX € F),
— 100 (VX & F).

Remark
I U Jx = 0s(P(X1)). J
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Reachability-based packings Matroid structure behind

b(X) == m(X) — [08(X))] — (r(lx Udx) — r(Jx)) (VX € F)
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Reachability-based packings Matroid structure behind

b(X) == m(X) — [08(X))] — (r(lx Udx) — r(Jx)) (VX € F)

Lemma (implicitly in Bérczi, T. Kiraly, Kobayashi)

Let B C A fora given D = (V + s, A). The following two conditions are

equivalent:
8V(X)
[9%(X)

r(98(Pp(X))) - r(96(X)) (vxXcV)
I’(/xUJx)*f(Jx) (VXE.F)

| >
| >
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Reachability-based packings Matroid structure behind

b(X) == m(X) — [08(X))] — (r(lx Udx) — r(Jx)) (VX € F)

Lemma (implicitly in Bérczi, T. Kiraly, Kobayashi)
Let B C A fora given D = (V + s, A). The following two conditions are
equivalent:
OV(X)| = r(95(Pp(X))) — r(95(X)) (VX CV)
105(X)| > r(lx U Jdx) — r(Jx) (VX € F)

Theorem (K.)

In a matroid-rooted digraph (D = (V + s, A), M) there exists an
M-reachability-based packing of s-arborescences iff

o(X) = [84(X)| > r(9£(P(X))) — r(95(X)) (¥X C V).
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Reachability-based packings Matroid structure behind

Lemma
b is an intersecting submodular bi-set function. J
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Reachability-based packings Matroid structure behind

Lemma
b is an intersecting submodular bi-set function. J

T :={BC A:ig(X) <b(X) VX € P}
forms the family of independent sets of a matroid M* on A.

Theorem

Let (D = (V + s, A), M) be a matroid-rooted digraph. Suppose that
(A1) is satisfied. Then B C A is the arc set of an M -reachability-based
packing of s-arborescences if and only if B is a common independent
set of My and M* of size m(V).
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Reachability-based packings Corollary

Theorem

Let (D = (V + s, A), M) be a matroid-rooted digraph. There exists a
polynomial algorithm to find an M-reachability-based packing of
s-arborescences in D of minimum weight if D has at least one such
packing.
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Reachability-based packings Corollary

Theorem

Let (D = (V + s, A), M) be a matroid-rooted digraph. There exists a
polynomial algorithm to find an M-reachability-based packing of
s-arborescences in D of minimum weight if D has at least one such
packing.

Theorem

Let (D = (V + s, A), My) be a matroid-rooted digraph with another
matroid M»> = ®y,cy M, on A. There exists an M -reachability-based
M-restricted packing of s-arborescences in D if and only if

r(F) + r2(0(X) — F) > r1(0s(P(X))) forall X C V and F C 0s(X).

v
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Concluding remarks

Thank you for your attention!

Packing arbs with matroids

[m]

na
Marseille’18
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