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Basic definitions

Let G = (V ,E ) be an undirected graph and p : V → Rn a
function. We say (G , p) is a bar and joint framework.

(G , p) is flexible, if there exists a continuous deformation of (G , p).

Otherwise (G , p) is said to be rigid.
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Infinitesimal rigidity

m : V → Rd is an infinitesimal motion of (G , p) if for every edge
uv

(m(u)−m(v))(p(u)− p(v)) = 0

holds.

An infinitesimal motion is trivial if it extends to an isometry of Rd .

(G , p) is said to be infinitesimally rigid if it has no non-trivial
infinitesimal motion.

(G , p) is generic if the coordinates of p(v), v ∈ V are algebraically
independent over Q.

Theorem (Asimov, Roth, 1978)

If p is generic then (G , p) is rigid ⇐⇒ it is infinitesimally rigid.

If p is generic then he rigidity of (G , p) depends only on G . Graph
G is said to be (generically) rigid if (G , p) is rigid every generic p.
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Rigidity matroids

The d-dimensional rigidity matrix Rd(G , p) of the framework
(G , p) is the following |E | × d |V | matrix:
every edge has a row and every vertex has d columns. The row of
edge uv is:

u︷ ︸︸ ︷
p(u)− p(v)

v︷ ︸︸ ︷
p(u)− p(v)

(0 . . . 0 p(u)− p(v) 0 . . . 0 p(v)− p(u) 0 . . . 0)

For a generic map p Rd(G , p) defines the d-dimensional rigidity
matroid Rd(G ) by linear independence.
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An example for d = 1

p(a)=5p(b)=-1

p(c)=4

p(d)=2

R(G , p) =


1 0 −1 0
3 0 0 −3
0 −5 5 0
0 −3 0 3
0 0 2 −2


R1(G ) is isomorphic to the cycle matroid of G .
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Necessary conditions for independence in Rd(G )

There are
(n+1

2

)
independent isometries in Rd . They all generate a

trivial infinitesimal motion in the kernel of Rd(G , p).
Thus if G is independent in Rd(G ) then for any subgraph
G ′ = (V ′,E ′) of G with at least d + 2 vertices

|E ′| ≤ d |V ′| −
(
n + 1

2

)
must hold.
For d = 1, 2 this characterises independence in Rd(G ). For larger
values of d this edge count does not define a matroid.

Characterising R3(G ) is one of the main open questions in rigidity
theory.



Necessary conditions for independence in Rd(G )

There are
(n+1

2

)
independent isometries in Rd . They all generate a

trivial infinitesimal motion in the kernel of Rd(G , p).
Thus if G is independent in Rd(G ) then for any subgraph
G ′ = (V ′,E ′) of G with at least d + 2 vertices

|E ′| ≤ d |V ′| −
(
n + 1

2

)
must hold.
For d = 1, 2 this characterises independence in Rd(G ). For larger
values of d this edge count does not define a matroid.

Characterising R3(G ) is one of the main open questions in rigidity
theory.



Necessary conditions for independence in Rd(G )

There are
(n+1

2

)
independent isometries in Rd . They all generate a

trivial infinitesimal motion in the kernel of Rd(G , p).
Thus if G is independent in Rd(G ) then for any subgraph
G ′ = (V ′,E ′) of G with at least d + 2 vertices

|E ′| ≤ d |V ′| −
(
n + 1

2

)
must hold.
For d = 1, 2 this characterises independence in Rd(G ). For larger
values of d this edge count does not define a matroid.

Characterising R3(G ) is one of the main open questions in rigidity
theory.



Matroid connectivity

Let M be a matroid on ground set E with rank function r and let
k be a positive integer.
We say that a partition (X ,Y ) of E is a vertical k-separation if

min{r(X ), r(Y )} ≥ k, and

r(X ) + r(Y ) ≤ r(E ) + k − 1.

The vertical connectivity of M is defined to be the smallest integer
j for which M has a j-separation. If M has no vertical separations
at all, we let κ(M) = r(E ).
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It is known that graph G without an isolated vertex is
k-vertex-connected if and only if its cycle matroid M(G ) is
k-connected.
It follows from Whitney’s 2-isomorphism Theorem that if G and H
are two graphs without isolated vertices, M(G ) is 3-connected and
M(G ) and M(H) are isomorphic then G and H are isomorphic.

Open problem (B. and H. Servatius)

Is there a (smallest) constant kd such that G is uniquely
determined by Rd(G ) provided that Rd(G ) is kd -connected?

k1 = 3 follows from Whitney’s Theorem.
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Highly connected graphs

Theorem (Jordán, K.)

Let G and H be two graphs without isolated vertices and suppose
that R(G ) is isomorphic to R(H). If G is 7-connected then G is
isomorphic to H.

Sketch of the proof: One needs to extract information on the
vertices. They correspond to subgraphs with co-rank 2 whose
rigidity matroid is 2-connected.
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Spot the difference

Two non-isomorphic rigid 5-connected graphs with isomorphic
rigidity matroids.



Highly connected matroids

Lemma (Jordán, K.)

Let G be a graph without isolated vertices and suppose that R2(G )
is (2k − 3)-connected for some k ≥ 3. Then G is k-connected.

Theorem (Jordán, K.)

Let G and H be two graphs without isolated vertices and suppose
that R2(G ) is isomorphic to R2(H). If R2(G ) is 11-connected
then G is isomorphic to H.
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Highly connected matroids

Lemma (Jordán, K.)

Let G be a graph without isolated vertices and suppose that R2(G )
is (2k − 3)-connected for some k ≥ 3. Then G is k-connected.

Theorem (Jordán, K.)

Let G and H be two graphs without isolated vertices and suppose
that R2(G ) is isomorphic to R2(H). If R2(G ) is 11-connected
then G is isomorphic to H.

Then 3 ≤ k2 ≤ 11.



Higher dimensions?

There is no characterisation known for independence in Rd(G ) for
d ≥ 3.
Some results used in the proofs have a higher dimensional
conjecture version.

Theorem (Lovász, Yemini)

Every 6-vertex-connected graph is rigid in the plane.

They conjecture that there is a constant for every d . In R3 the
smallest possible such constant could be 12.

Theorem (Jackson, Jordán)

Suppose that G is 3-connected and redundantly rigid. Then
R2(G ) is 2-connected.

They conjecture that in R3 5-connectivity is sufficient.
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Thank you for your attention!


