Concatenation

Jim Lawrence

George Mason University
lawrence@gmu.edu

What is it?

It is a binary operation on collections of subsets of a linearly ordered set.
(X, \mathcal{C}), where $X=\left\{x_{1}, \ldots, x_{n}\right\}, \mathcal{C}$ is a collection of subsets of X
Given $W_{1}=\left(X, \mathcal{C}_{1}\right), W_{2}=\left(X, \mathcal{C}_{2}\right)$, their concatenation is $W_{1} \curlyvee W_{2}=$ (X, \mathcal{D}), where
$\mathcal{D}=\left\{C_{1} \cup C_{2}: C_{1} \in \mathcal{C}_{1}, C_{2} \in \mathcal{C}_{2}\right.$, and the last element of C_{1} is the first element of $\left.C_{2}\right\}$.

It is a construction method for various combinatorial objects.

an example

A	B	C	D	E	F	
1	-1	1	-1	$*$	$*$	$\{A, B\}$
$*$	1	1	-1	-1	$*$	$\{B, D\}$
$*$	$*$	-1	1	-1	1	$\{D, E\}$

two circuits: $\{A, B, D, E\},\left\{A, B, C^{*}, D^{*}\right\}$

Where did it come from?

Las Vergnas extensions of oriented matroids
a Theorem of Las Vergnas: Unions of orientable matroids are orientable.

Lawrence and Weinberg: a union operation on oriented matroids that reduces to concatenation in the case of uniform oriented matroids

some of its relatives

ladder path matroids (Bonin and coauthors)

Richter-Gebert's connected sum operation

results relating to it

contractibility of realization space
(Mnev spectacularly showed this is not the case in general.)
few mutations: Richter-Gebert's construction
the Klee-Walkup counterexample to the Hirsch conjecture for unbounded polyhedra
(Santos has dispensed with the harder problem, the bounded case.)

Montejano and Ramirez Alfonsin and a conjecture of Roudneff

an example

$$
\begin{array}{ccccccc}
A & B & C & D & E & F & \\
1 & -1 & 1 & -1 & * & * & \{A, B\} \\
* & 1 & 1 & -1 & -1 & * & \{B, D\} \\
* & * & -1 & 1 & -1 & -1 & \{D, E\}
\end{array}
$$

two circuits: $\{A, B, D, E\},\left\{A, B, C^{*}, D^{*}\right\}$

> more examples (yielding well-known polytopes and oriented matroids)
$W=(X, \mathcal{C})$, where: $X=\left\{x_{1}, \ldots, x_{n}\right\} ; \mathcal{C}=$ the set of 2-element subsets $\left\{x_{i}, x_{j}\right\}$ of X, for which exactly one of i, j is odd.

Then, combinatorially, $W \curlyvee W \curlyvee \ldots \curlyvee W$ ($n-r$ terms) is the set of facet complements of the cyclic d-polytope with n vertices.

Similarly: alternating oriented matroids

combinatorial pseudomanifolds, (X, \mathcal{C})

(where \mathcal{C} is the set of complements of facets)

If $C \in \mathcal{C}$ and $p \in X \backslash C$ then there is a unique $D \in \mathcal{C}$ such that $p \in D \subseteq C \cup\{p\}$.

Easy: If W_{1} and W_{2} are pseudomanifolds then so is $W_{1} \curlyvee W_{2}$.

uniform oriented matroids of rank r

$\left(E, \mathcal{C},{ }^{*}\right)$, where
$E=\left\{x_{1}, x_{1}^{*}, \ldots, x_{n}, x_{n}^{*}\right\} \quad$ and for $S \subseteq E, S^{*}=\left\{x^{*}: x \in S\right\}$.
\mathcal{C} is a collection of subsets C of E, each having $r+1$ elements, such that for each set $\bar{C} \subseteq E$ with $\bar{C}^{*}=C$ and $|\bar{C}|=2(r+1)$, there is a unique pair of circuits C and C^{*} contained in \bar{C}.

For each set $E_{0} \subseteq E$ such that $E_{0} \cap E_{0}^{*}=\emptyset$ and $E_{0} \cup E_{0}^{*}=E$, with $\mathcal{C}_{0}=\left\{C \in \mathcal{C}: C \subseteq E_{0}\right\},\left(E_{0}, \mathcal{C}_{0}\right)$ is a pseudomanifold.

preservation

If W_{1} and W_{2} are combinatorial pseudomanifolds, so is $W_{1} \curlyvee W_{2}$.

If W_{1} and W_{2} are combinatorial types of simplicial polytopes, so is $W_{1} \curlyvee W_{2}$.

If W_{1} and W_{2} are uniform oriented matroids (as above), so is $W_{1} \curlyvee W_{2}$.

If W_{1} and W_{2} are realizable uniform oriented matroids, so is $W_{1} \curlyvee W_{2}$.

concatenation of rank 1 uniform oriented matroids

$$
\Gamma \text { and } \Phi
$$

u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	u_{6}	u_{7}	u_{8}	u_{9}
1	-1	1	-1	1	-1	1	-1	1
1	-1	1	-1	1	-1	1	-1	1

v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}	v_{8}	v_{9}
u_{6}	u_{2}	u_{5}	u_{3}	u_{4}	u_{7}	u_{1}	u_{8}	u_{9}
u_{9}	u_{8}	u_{7}	u_{1}	u_{4}	u_{3}	u_{5}	u_{2}	u_{6}

some questions

Does the Hirsch conjecture hold for oriented matroid polytopes from Φ ?

Characterize the classes Γ and Φ by excluded minors.

What are the mutation count matrices (or f-vectors) for elements of Γ and Φ ?

What about Roudneff's conjecture, for Φ ?

