How many cubes are orientable?

Ilda da Silva

FCUL - Univ. of Lisbon

CIRM-Marseille, September 2018

What is a cube:

A Cube over $C^{n}=\{ \pm 1\}^{n}$ is a matroid, $M=M\left(C^{n}\right)$, satisfying two conditions:
(i) Every (euclidean) rectangle of C^{n} is a circuit of M.
(ii) Every (euclidean) facet and skew-facet of C^{n} is a hyperplane and a cocircuit of M.
A cube is a matroid whose underlying matroid is isomorphic to a cube over C^{n}.

Examples. For every field $F, \operatorname{Aff}_{F}\left(\{0,1\}^{n}\right)$ is a cube.

Generating new cubes from old ones

Theorem The class of cubes is invariant under the operation of pulling points to hyperplanes.

(H, e) in general position
e pulled to H
This operation does not, in general, preserve orientability or representabilty. There are non-representable cubes.
So far, only ONE orientable cube is known: $\mathcal{A} f f\left(C^{n}\right)$, the real affine cube.

How many cubes are orientable?

1) General results about orientable cubes.
2) Studying obstructions to orientability - new minor-minimal oriented matroids.
3) Recursivity and relation between rectangles and hyperplanes work in progress with E. Gioan - Counting orientable cubes and solving Las Vergnas cube conjecture in small dimensions.
${ }^{(*)}$ explicit descriptions of $\mathcal{A} f f\left(C^{n}\right)$ computed only for small dimensions.
For $n \leq 8$ the total number of hyperplanes being aprox. 86×10^{9}
(Aicholzer+Aurenammer 96)

1. General results on orientable cubes

Theorem

Every orientable cube $M=M\left(C^{n}\right)$ has the following properties:
(i) M is a matroid of rank $n+1$.
(ii) (Canonical orientation) Every class of orientations of M contains a unique orientation whose rectangles and cocircuits of the facets and skew-facets are signed as in, $\mathcal{A} f f\left(C^{n}\right)$.
(iii) If \mathcal{M} is a canonically oriented cube the reorientations of \mathcal{M} whose lattice of faces is isomorphic to the face lattice of the real cube are those obtained from \mathcal{M} reversing signs on a facet of \mathcal{M}.

Consequences:

1)

(ii) + (iii) : the representation of OM's as highly symmetric euclidean objects inside the cube (topes/crinkled zonotope/Bergman complex...) is independent of the orientable cube we may consider.

1. General results on orientable cubes (cont.)

2) (ii) $\mathcal{M}\left(C^{n}\right)$ cube canonically oriented
$\mathcal{R}:=$ signed rectangles of $\mathcal{A f f}\left(\mathcal{C}^{n}\right)$
$\mathcal{F}:=$ signed cocircuits complementary of the facets and skew-facets

implies that:

(a) how many cubes are orientable?
how much of the real cube $\mathcal{A} f f\left(C^{n}\right)$ (hyperplanes + signed cocircuits) can be reconstructed from: $\mathcal{R}+\mathcal{F}+$ orientability?

$$
+
$$

(b)whatever part of $\mathcal{A} f f\left(C^{n}\right)$ we might end up with it must have as symmetries the (affine and projective) symmetries of the real cube.

$$
+
$$

(c)affine cubes over finite fields, $\operatorname{Aff}_{F}\left(C^{n}\right)$ are not orientable ($n \geq \operatorname{ch}(F)+2$).
2. Construction of obstructions to orientability inside a cube $C_{0}^{n}=\{0,1\}^{n}$

Take $H:=\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{n}}\right\}$
n points spanning a hyperplane, not containing the vertices $\mathbf{0}, \mathbf{1} \in C_{0}^{n}$. $H^{\prime}:=\left\{\mathbf{v}_{\mathbf{1}}^{\prime}, \ldots, \mathbf{v}_{\mathbf{n}}^{\prime}\right\}=\left\{\mathbf{1}-\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{1}-\mathbf{v}_{\mathbf{n}}\right\}$,
separates $\mathbf{0}$ from H.
$\mathbf{S}_{\mathbf{n}}=A f f_{\mathbb{R}}\left(H \cup H^{\prime}\right)$ is a cross-polytope.
$\mathbf{N}:=A f f_{\mathbb{R}}\left(H \cup H^{\prime} \cup \mathbf{0}\right)$
If $(H, \mathbf{0})$ is in general position in N, pull $\mathbf{0}$ to H in \mathbf{N} obtain:

$$
\mathbf{N}^{\prime}=\mathbf{N}^{\prime}\left(H \cup H^{\prime} \cup \mathbf{0}\right)
$$

\mathbf{N}^{\prime} is a good candidate to non-orientable and $\mathbf{N}^{\prime} / \mathbf{0}$ to minor-minimal non-orient.

New families of minor minimal non-orientable matroids $\mathcal{M}_{2 n, n}$ generalizing Bland -Las Vergnas original family.
We can not argue in general.

3. Recursivity and relations between rectangles and

 hyperplanes in the real cube.How much of $\mathcal{A f f}\left(C^{n}\right)$ can be reconstructed from:
$\mathcal{R}+\mathcal{F}+$ orientability ?
i.e. close the gap where to search for oriented cubes:
idea.
Find recursive families of hyperplanes of $\mathcal{A f f}\left(R^{n}\right)$:

1. reconstruct themhyperplanes + signed cocircuits.

For the variant
2. reconstruct only the signed cocircuits.

Las Vergnas cube conjecture There is a unique way of signing all the cocircuits of $\mathcal{A f f}\left(C^{n}\right)$ from $\mathcal{R}+\mathcal{F}+$ orientability.

Primitive vectors

A recursive family of nonnegative integer vectors $\mathbf{h}=\left(h_{1} \leq h_{2} \leq \ldots \leq h_{n}\right), 0 \leq h_{1}<h_{n}=|\mathbf{h}|=\sum_{i} h_{i}$ such that $\forall i \quad h_{i-1} \leq h_{i} \leq \frac{\sum_{j<i} h_{j}}{2}+1$

Primitive vectors, rectangles and hyperplanes

"parallel" strata $S_{a}(\mathbf{h}):=\left\{\mathbf{v} \in C^{n}: \mathbf{v} . \mathbf{h}=|\mathbf{h}|-2 a\right\}$.

$r=(a<b \leqslant c<d)$ $a+d=b+c$

S_a embedded in S_b

If \mathbf{h} is a primitive vector and S_{b} a hyperplane, such that
$\forall a S_{a}$ embedds in S_{b}, then a recursive family of hyperplanes of every oriented cube starts there. By orthogonality with the signed rectangles of \mathcal{R}, must be signed as in $\mathcal{A f f}\left(C^{n}\right)$.

$\mathcal{A f f}\left(C^{n}\right)$ as a family of nonnegative integer vectors IS05

$$
\begin{aligned}
\mathcal{H}_{1}=\{ & (1,1)\} ; \\
\mathcal{H}_{2}=\{ & (0,1,1)\} ; \\
\mathcal{H}_{3}= & \{(0,0,1,1),(1,1,1,1)\} ; \\
\mathcal{H}_{4}= & \{(0,0,0,1,1),(0,1,1,1,1),(1,1,1,1,2)\} ; \\
\mathcal{H}_{5}= & \{(0,0,0,0,1,1),(0,0,1,1,1,1),(0,1,1,1,1,2),(1,1,1,1,1,1), \\
& (1,1,1,1,1,3),(1,1,1,1,2,2),(1,1,1,2,2,3)\} ; \\
\mathcal{H}_{6}= & \{(0,0,0,0,0,1,1),(0,0,0,1,1,1,1),(0,1,1,1,1,2),(0,1,1,1,1,1,1), \\
& (0,1,1,1,1,1,3),(0,1,1,1,1,2,2),(0,1,1,1,2,2,3),(1,1,1,1,1,1,2), \\
& (1,1,1,1,1,1,4),(1,1,1,1,1,2,3),(1,1,1,1,2,2,2),(1,1,1,1,2,2,4), \\
& (1,1,1,1,2,3,3),(1,1,1,1,3,3,4),(1,1,1,2,2,2,3),(1,1,1,2,2,2,5), \\
& (1,1,1,2,2,3,4),(1,1,1,2,3,3,5),(1,1,2,2,2,3,3),(1,1,2,2,3,3,4) \\
& (1,1,2,2,3,4,5)\} ; \quad \text { all primitive! }
\end{aligned}
$$

$$
\left|\mathcal{H}_{7}\right|=143 \longrightarrow\left|\tilde{\mathcal{H}}_{7}\right|=71.343 .208
$$

For small dimensions a unique canonically oriented cube

with a short proof:

Theorem (Bokovski etal 1996, Gioan-S 2017)

1) For $n \leq 7, \mathcal{A f f}\left(C^{n}\right)$ is the unique orientable cube.
2) (Las Vergnas cube conjecture) For $n \leq 7, \mathcal{A} f f\left(C^{n}\right)$, the oriented matroid $\mathcal{A f f}\left(C^{n}\right)$ has a unique class of orientations.
work in progress: Understanding how vaster classes of hyperplanes of the real cube behave with respect to net of rectangles.

How many cubes are orientable?

Many!

Find a pair (H, e) of a point in general position " near each other" in $\mathcal{A} f f\left(C^{n}\right)$. Then K. Fukuda, A. Tamura, 88 guarantees that the cube obtained by pulling e to H is oriented and not isomorphic to $\mathcal{A} f f\left(C^{n}\right)$.
on the other hand,

May be not so manny...

Probabilistic conjecture: (Odlyzco 88, Khan etal 95, Tao-Van Vu 07) the asymptotic behavior of the probability of a random $n \times n$ Bernoulli matrix M_{n} being singular is dominated by the probability that 3 out of 4 vertices forms the vertices of a rectangle.

Main references:

I.P.F. da Silva, Recursivity and geometry of the hypercube, Lin. Alg. and its Appl., 397(2005), 223-233.
I.P.F. da Silva, Orientability of cubes, Discrete Maths,308(2008), 3574-3585.
I.P.F. da Silva, On minimal non-orientable matroids with $2 n$ elements and rank n,Europ. J. of Combin., 30(2009), 1825-1832.
E.Gioan, I.P. da Silva, Rectangles and hyperplanes of the hypercube, working paper 2018.

