How many cubes are orientable?

Ilda da Silva

FCUL - Univ. of Lisbon

CIRM-Marseille, September 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What is a cube:

A **Cube** over $C^n = \{\pm 1\}^n$ is a matroid, $M = M(C^n)$, satisfying two conditions:

(i) Every (euclidean) rectangle of Cⁿ is a circuit of M.
(ii) Every (euclidean) facet and skew-facet of Cⁿ is a
hyperplane and a cocircuit of M.
A cube is a matroid whose underlying matroid is isomorphic to a cube over Cⁿ.

Examples. For every field F, $Aff_F(\{0,1\}^n)$ is a cube.

Generating new cubes from old ones

Theorem The class of cubes is invariant under the operation of pulling points to hyperplanes.

(H,e) in general position e pulled to H

This operation does not, in general, preserve orientability or representability. There are non-representable cubes. So far, only ONE orientable cube is known: $Aff(C^n)$, the real affine cube.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

How many cubes are orientable?

1) General results about orientable cubes.

2) Studying obstructions to orientability - new minor-minimal oriented matroids.

3) Recursivity and relation between rectangles and hyperplanes work in progress with E. Gioan - Counting orientable cubes and solving Las Vergnas cube conjecture in small dimensions.

(*) explicit descriptions of $\mathcal{A}ff(C^n)$ computed only for small dimensions. For $n \leq 8$ the total number of hyperplanes being aprox. 86×10^9 (Aicholzer+Aurenammer 96)

1. General results on orientable cubes

Theorem

Every orientable cube $M = M(C^n)$ has the following properties:

(i) M is a matroid of rank n + 1.

(ii) (Canonical orientation) Every class of orientations of M contains a unique orientation whose rectangles and cocircuits of the facets and skew-facets are signed as in, $Aff(C^n)$.

(iii) If \mathcal{M} is a canonically oriented cube the reorientations of \mathcal{M} whose lattice of faces is isomorphic to the face lattice of the real cube are those obtained from \mathcal{M} reversing signs on a facet of \mathcal{M} .

Consequences:

1) (ii) + (iii) : the representation of OM's as highly symmetric euclidean objects inside the cube (topes/crinkled zonotope/Bergman complex...) is independent of the orientable cube we may consider.

1. General results on orientable cubes (cont.)

2) (ii) $\mathcal{M}(C^n)$ cube canonically oriented $\mathcal{R} :=$ signed rectangles of $\mathcal{A}ff(\mathcal{C}^n)$ $\mathcal{F} :=$ signed cocircuits complementary of the facets and skew-facets

implies that:

(a) how many cubes are orientable?

how much of the real cube $Aff(C^n)$ (hyperplanes + signed cocircuits) can be reconstructed from: $\mathcal{R} + \mathcal{F}$ + orientability?

+

(b) whatever part of $Aff(C^n)$ we might end up with it must have as symmetries the (affine and projective) symmetries of the real cube.

+

(c)affine cubes over finite fields, $Aff_F(C^n)$ are not orientable $(n \ge ch(F) + 2)$.

2. Construction of obstructions to orientability inside a cube $C_0^n = \{0, 1\}^n$ General idea :

General idea : Take $H := \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ *n* points spanning a hyperplane, not containing the vertices $\mathbf{0}, \mathbf{1} \in C_0^n$. $H' := \{\mathbf{v}'_1, \dots, \mathbf{v}'_n\} = \{\mathbf{1} - \mathbf{v}_1, \dots, \mathbf{1} - \mathbf{v}_n\},$ separates $\mathbf{0}$ from H. $\mathbf{S}_n = Aff_{\mathbb{R}}(H \cup H')$ is a cross-polytope. $\mathbf{N} := Aff_{\mathbb{R}}(H \cup H' \cup \mathbf{0})$

If $(H, \mathbf{0})$ is in general position in N, **pull 0 to** H **in N** obtain:

 $\mathbf{N}'=\mathbf{N}'(H\cup H'\cup\mathbf{0})$

 \mathbf{N}' is a good candidate to non-orientable and $\mathbf{N}'/\mathbf{0}$ to minor-minimal non-orient.

New families of minor minimal non-orientable matroids $\mathcal{M}_{2n,n}$ generalizing Bland -Las Vergnas original family. We can not argue in general. 3. Recursivity and relations between rectangles and hyperplanes in the real cube.

How much of $\mathcal{A}ff(C^n)$ can be reconstructed from: $\mathcal{R} + \mathcal{F} + \text{orientability}$?

i.e. close the gap where to search for oriented cubes:

idea.

Find recursive families of hyperplanes of $Aff(R^n)$:

1. reconstruct themhyperplanes + signed cocircuits.

For the variant

2. reconstruct only the signed cocircuits.

Las Vergnas cube conjecture There is a unique way of signing all the cocircuits of $Aff(C^n)$ from $\mathcal{R} + \mathcal{F} + orientability$.

Primitive vectors

A recursive family of nonnegative integer vectors $\mathbf{h} = (h_1 \le h_2 \le \ldots \le h_n), \ 0 \le h_1 < h_n = |\mathbf{h}| = \sum_i h_i$ such that $\forall i \ h_{i-1} \le h_i \le \frac{\sum_{j \le i} h_j}{2} + 1$

Primitive vectors, rectangles and hyperplanes

"parallel" strata $S_a(\mathbf{h}) := \{ \mathbf{v} \in C^n : \mathbf{v} \cdot \mathbf{h} = |\mathbf{h}| - 2a \}.$

If **h** is a primitive vector and S_b a hyperplane, such that $\forall a \ S_a \ embedds \ in \ S_b$, then a recursive family of hyperplanes of every oriented cube starts there. By orthogonality with the signed rectangles of \mathcal{R} , must be signed as in $\mathcal{A}ff(C^n)$. $\mathcal{A}ff(C^n)$ as a family of nonnegative integer vectors IS05

$$\begin{split} \mathcal{H}_1 &= \{ \ (1,1) \ \}; \\ \mathcal{H}_2 &= \{ \ (0,1,1) \}; \\ \mathcal{H}_3 &= \{ \ (0,0,1,1), \ (1,1,1,1) \ \}; \\ \mathcal{H}_4 &= \{ \ (0,0,0,1,1), \ (0,1,1,1,1), (1,1,1,2) \ \}; \\ \mathcal{H}_5 &= \{ (0,0,0,0,1,1), \ (0,0,1,1,1,1), (0,1,1,1,2), \ (1,1,1,1,1,1), \\ \ (1,1,1,1,3), (1,1,1,2,2), \ (1,1,1,2,2,3) \}; \\ \mathcal{H}_6 &= \{ (0,0,0,0,0,1,1), \ (0,0,0,1,1,1,1), \ (0,1,1,1,1,2), \ (0,1,1,1,1,1,1), \\ \ (0,1,1,1,1,1,3), \ (0,1,1,1,1,2,2), \ (0,1,1,1,2,2,3), \ (1,1,1,1,1,2), \\ \ (1,1,1,1,1,4), \ (1,1,1,1,2,3), \ (1,1,1,2,2,3), \ (1,1,1,2,2,4), \\ \ (1,1,1,2,2,3,4), \ (1,1,1,2,3,3,5), \ (1,1,2,2,2,3,3), \ (1,1,2,2,3,3,4) \\ \ (1,1,2,2,3,4,5) \}; \qquad \text{all primitive!} \\ |\mathcal{H}_7| &= \mathbf{143} \ \longrightarrow \ |\tilde{\mathcal{H}}_7| = \mathbf{71.343.208} \qquad \text{very few non-primitive} \end{split}$$

For small dimensions a unique canonically oriented cube

with a short proof:

Theorem (Bokovski etal 1996, Gioan-S 2017) 1) For $n \le 7$, $\mathcal{A}ff(\mathbb{C}^n)$ is the unique orientable cube. 2) (Las Vergnas cube conjecture) For $n \le 7$, $\mathcal{A}ff(\mathbb{C}^n)$, the oriented matroid $\mathcal{A}ff(\mathbb{C}^n)$ has a unique class of orientations.

work in progress: Understanding how vaster classes of hyperplanes of the real cube behave with respect to net of rectangles.

How many cubes are orientable?

Many!

Find a pair (H, e) of a point in general position "near each other" in $\mathcal{A}ff(\mathbb{C}^n)$. Then K. Fukuda, A. Tamura , 88 guarantees that the cube obtained by pulling e to H is oriented and not isomorphic to $\mathcal{A}ff(\mathbb{C}^n)$.

on the other hand,

May be not so manny...

Probabilistic conjecture: (Odlyzco 88, Khan etal 95, Tao-Van Vu 07) the asymptotic behavior of the probability of a random $n \times n$ Bernoulli matrix M_n being singular is dominated by the probability that 3 out of 4 vertices forms the vertices of a rectangle.

I.P.F. da Silva, Recursivity and geometry of the hypercube, *Lin. Alg. and its Appl.*, **397**(2005), 223-233.

I.P.F. da Silva, Orientability of cubes, *Discrete Maths*, **308**(2008), 3574-3585.

I.P.F. da Silva, On minimal non-orientable matroids with 2n elements and rank *n*, *Europ*. *J. of Combin.*, **30**(2009), 1825-1832.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

E.Gioan, I.P. da Silva, Rectangles and hyperplanes of the hypercube, working paper 2018.