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Henry Crapo
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Henry Crapo’s House

B

Centre de Recherche du Larzac Méridional, or Les Moutons Matheux
La Vacquerie et Saint Martin de Castries, France
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Matroid catalog
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Matroid catalog

The Henry Crapo group presents the incredible catalog of = point
geometries. See single element extensions grow before your eyes.
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g for Graphs
Definition
G = (V,E) agraph, A C E. Define r(A), the rank of A, by

= Fl|Fi lic}.
r(A) rpgz\({] | | Fis acyclic}
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g for Graphs

Definition

G = (V,E) agraph, A C E. Define r(A), the rank of A, by

A) = F|| Fi lict.
r(A) rpgz\({] | | Fis acyclic}

b
9
d ¢ ¢
L
e
Subset || @ | singleton | pair | triple | any 4 | E
Rank || O 1 2 |2o0r3 3 3
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Graph example

r(A) = maxrca{|F| | F is acyclic}
Definition
Let G be a graph. Then the beta invariant 5(G) is defined by
B(G) = (1) > (—=1)“r(A).

ACE

e
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Graph example

ACE

B(G) = (=1)E Y (=1)Ar(A).
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Graph example

b
®
B(G) = (—1)7E) 37 (—1) 4l d N
ACE
L
e
Subset {x} | {x,y} | {a,b,c} or | Other | any4 | E
{a,d,e} | triples
Rank 1 2 2 3 3 3
(— 1A (A) 1] 2 —2 —3 3 |-3
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Graph example

b
®
B(G) = (—1)7E) 37 (—1) 4l d N
ACE
|
e
Subset 01 4{x} | {x,y} | {a,b,c}or | Other | any4 | E
{a,d,e} | triples
Rank 0| 1 2 2 3 3 3
(—DAr(AY 0] =1 2 —2 -3 3 | -3

B(G)=(-1)*0-5-1+10-2-2.2-8-3+5-3—-1-3)=1.
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Crapo’s motivation

JOURNAL OF COMBINATORIAL THEORY 2, 406-417 (1967)

A Higher Invariant for Matroids

Henry H. Craro

University of Waterloo,

Waterloo, Ontario, Canada

Communicated by Gian-Carlo Rota

ABSTRACT

The Mobius invariant y, essential to the classification of surfaces, is less useful in
the study of exchange geometries (matroids) because it undergoes sizeable fluctuations
as a result of minor structural changes, such as the lengthening of an arc. The number
B, investigated here, is not only a geometric invariant, like u, but is also a duality
invariant, and provides a complete determination of separability.
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Tutte polynomial connection

b
®

a

T(Gxy)=x+2x3 +2xy +1x+y2 +1y ¢ ¢
L
e

Theorem
B(G) equals the coefficient of x in the Tutte polynomial T(G; X, y). J

@ If G has more than one edge, then the coefficient of x equals the
coefficient of y in the Tutte polynomial.
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Deletion-contraction

@ Deletion-contraction: 5(G) = (G — e) + 5(G/e).

Delete and contract edge c.
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Deletion-contraction

@ Deletion-contraction: 5(G) = (G — e) + 5(G/e).

Delete and contract edge c.
@ 5(G/c)=0and 5(G—c)=1.
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Deletion-contraction

@ Deletion-contraction: 5(G) = (G — e) + 5(G/e).

Delete and contract edge c.

@ 5(G/c)=0and 5(G—c)=1.
@ Consequence: For all graphs G, 5(G) > 0.
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Rooted Graphs

G is a graph with a distinguished vertex.
e r(A) = rpgz\({]ﬂ | Fis a rooted tree}

° 5(G) = (-1)® > _(-1)"r(A).

ACE
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Rooted Graphs

G is a graph with a distinguished vertex.
e r(A) = rpgz\({|F| | Fis arooted tree}

° 5(G) = (-1)® > _(-1)"r(A).

ACE
Subset 0] {x} {x,y} | {x,y,z} |any4 | E
Rank 0| Oor1 |0,10r2| 20r3 3 3
(-DO)ArA) 0] 0or—-1]0,10r2| —20r-3| 3 |-3
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Rooted Graphs

G is a graph with a distinguished vertex.
e r(A) = rpgz\({|F| | Fis arooted tree}

° 5(G) = (-1)® > _(-1)"r(A).

ACE
Subset 0] {x} {x,y} | {x,y,z} |any4 | E
Rank 0| Oor1 |0,10r2| 20r3 3 3
(-DO)ArA) 0] 0or—-1]0,10r2| —20r-3| 3 |-3
5(G) =3,
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Rooted vs. unrooted

Gordon & McMahon (Lafayette College)

Beta invariant



Rooted vs. unrooted

@ Deletion-contraction: Assume e is incident to the root. Then

B(G) = 5(G - e) + (G/e).

@ So (G) > 0 for rooted graphs, too.
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Rooted vs. unrooted

Trees | C, | Fans W, Khn
Unrooted 0 1 1 n—1 (n—2)!
Rooted |Oor1 | n—1|n—1|nn—-1)| (n—1)!

Wheel Ws
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© Matroids
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Beta for matroids

Definition

Let M be a matroid. Then g(M EVN " (—1)Ar(A
ACE

@ Deletion-contraction: 5(M) = (M — e) + 5(M/e).
@ Non-negativity: 5(M) > 0.

@ Direct sum: 5(M; & M,) = 0.

@ Dual: If |[E| > 1, then (M) = p(M*).
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Beta f '
eta for matroids BM) = (—1)E 37 (=1)Ar(A).

ACE

Theorem (Crapo ’67)

A matroid M with more than 1 point is disconnected if and only if
B(M) = 0.

b‘a
o 0 @

d e fe
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Beta for matroids B(M) = (1B 3™ (1) Ar(A

ACE

Theorem (Crapo ’67)
A matroid M with more than 1 point is disconnected if and only if

B(M) = 0.

‘a

b c
o0 @
d e fg

Theorem (Brylawski ’71)

A matroid M with more than 1 point is a series-parallel network if and
only if (M) = 1.
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Three matroids
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Three matroids
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Three matroids

B=1 B=2 5=3

Series-parallel M(K4): Not series-parallel Fano
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Three matroids

B=1 g=2 B=3
Series-parallel M(K4): Not series-parallel Fano

@ Oxley (1982) characterized the matroids M with g(M) < 4.
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© Antimatroids
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Closure, matroids and antimatroids

Definition
A closure operator on a set E is a function 2F — 2F satisfying, for all
ACE,

@ ACA

@ fAC Bthen AC B,

0 A=A,
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Closure, matroids and antimatroids

Definition
A closure operator on a set E is a function 2F — 2F satisfying, for all

@ Matroid: If x,y ¢ Aandy € AUx,thenx c AU y.
MacLane-Steinitz exchange
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Closure, matroids and antimatroids

Definition
A closure operator on a set E is a function 2F — 2F satisfying, for all

@ Matroid: If x,y ¢ Aandy € AUx,thenx c AU y.
MacLane-Steinitz exchange

@ Antimatroid: If x,y ¢ Aand y € AU x, thenx ¢ AU y.
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Closure, matroids and antimatroids

Definition
A closure operator on a set E is a function 2F — 2F satisfying, for all

@ Matroid: If x,y ¢ Aandy € AUx,thenx c AU y.
MacLane-Steinitz exchange

@ Antimatroid: If x,y ¢ Aand y € AU x, thenx ¢ AU y.

| Matroids : Affine closure :: Antimatroids : Convex closure |
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 MATROID.
APPLICATIONS

Edited by MEIL WHITE

Ifx,y¢ Aandy ¢ AUx,thenx ¢ AU y.
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Matroid texts edited by Neil White

" "I'IHE;J'H? = e MATRmD
MATROIDS asorq;rmss APPLICATIONS

Editec] by i
NEIL WHITE Edited by NEIL WHITE
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Neil White (1945 — 2014)

~ VA

Robert MacPherson, Neil White, Richard Stanley, 2004.
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Antimatroids — (Wave to Michael Falk)

“Antimatroid” coined by Robert Jamison (1980). ‘

@ Discovered [invented?] by Dilworth (1940)
@ Avann (1960’s) Lower-semidistributive [LSD] lattices.

@ More independent discoveries:

» 1960’s: Boulaye, Bennett, Pfaltz
» 1970’s: Greene & Markowsky, Jamison, Edelman

Trees are antimatroids
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Convex sets, feasible sets and rank

Definition
Let G be an antimatroid with ground set E with a (convex) closure
operator.

@ Convex sets: Cis convex if C = C.

@ Feasible sets: F C E is feasible if E — F is convex.

@ Rank function: Let A C E. Then r(A) = maxrca{|F| | F feasible}. )
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Definition

B(G) = (=1)"E) Y (=1)Ar(A).

Beta for antimatroids

ACE
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Beta for antimatroids

Definition
B(G) = (—1)E) Y " (=1)Ar(A).

ACE )
Definition

@ Cis free convex (or simply free) if every subset of C is convex.

v

Theorem
For an antimatroid G,

BG) = Y (-1 Tcl.

c free
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Various expansions

@ Subset expansion by rank

p(G) =

Gordon & McMahon (Lafayette College)

Beta invariant

E)E
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Various expansions

@ Subset expansion by rank
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Various expansions

@ Subset expansion by rank

@ Free convex set expansion

BG)= Y (=nTcl.

c free

@ Subset expansion by closure

BG) = (~1)°[s]

SCE

@ Others exist (Mébius function, Boolean, and a few more).
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Recursions

@ Deletion-contraction

B(G) = B(G/x)—B(G — x).
B(G) may be negative!
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Recursions

@ Deletion-contraction

B(G) = B(G/x)=5(G — x).

B(G) may be negative!

@ Direct sum
B(Gy @ Go) = 0.
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Strategy
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B(G) = Y (-1 TcCl.

Beta invariant



Strategy

BG) = > (=nTcl.

c free

@ Given a class of antimatroids, interpret the free convex sets
combinatorially.
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Strategy
BG) = > (-1Tc.
c free

@ Given a class of antimatroids, interpret the free convex sets
combinatorially.

@ Compute 5(G) somehow.
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Strategy

BG) = > (=nTcl.

c free

@ Given a class of antimatroids, interpret the free convex sets
combinatorially.

@ Compute 5(G) somehow.
© Interpret 5(G) combinatorially.
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Strategy

BG) = > (=nTcl.

c free

@ Given a class of antimatroids, interpret the free convex sets
combinatorially.

@ Compute 5(G) somehow.
© Interpret 5(G) combinatorially.
©Q Remove 8(G).
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Strategy

BG) = > (=nTcl.

c free

@ Given a class of antimatroids, interpret the free convex sets
combinatorially.

@ Compute 5(G) somehow.

© Interpret 5(G) combinatorially.

© Remove 3(G).

@ Show everybody your new theorem.
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Trees
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Trees

@ Antimatroid ground set «<» edges of T.
@ Cis convex if C forms a subtree.

O
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Trees

@ Antimatroid ground set «» edges of T.
@ Cis convex if C forms a subtree.
@ Cisfree if Cforms a star.

Typical free set
Tg
O )
c d
b

Gordon & McMahon (Lafayette College)

Beta invariant



Trees

@ Antimatroid ground set «» edges of T.
@ Cis convex if C forms a subtree.
@ Cis free if C forms a star.

@ ﬂ(G) = ZC free (_1)|C|_1 |C|

Typical free set
P
O )
¢ d
b
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Trees

@ Antimatroid ground set «» edges of T.
@ Cis convex if C forms a subtree.
@ Cis free if C forms a star.

° 3(G) = ZC free (_1)|C|_1 1Cl.

Typical free set

sizeoffreeset [ 1 2 3
#free sets |
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Trees

@ Antimatroid ground set «» edges of T.
@ Cis convex if C forms a subtree.
@ Cis free if C forms a star.

° 3(G) = ZC free (_1)|C|_1 1Cl.

Typical free set

size of free set | 2 3

1
#freesets | 9
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Trees

@ Antimatroid ground set «» edges of T.
@ Cis convex if C forms a subtree.
@ Cis free if C forms a star.

° 3(G) = ZC free (_1)|C|_1 1Cl.

Typical free set

sizeoffreeset [ 1 2 3
#freesets | 9 11
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Trees

@ Antimatroid ground set «» edges of T.
@ Cis convex if C forms a subtree.
@ Cis free if C forms a star.

° 3(G) = ZC free (_1)|C|_1 1Cl.

Typical free set

sizeoffreeset [ 1 2 3
#freesets | 9 11 3
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Trees

@ Antimatroid ground set «» edges of T.
@ Cis convex if C forms a subtree.
@ Cis free if C forms a star.

° 3(G) = ZC free (_1)|C|_1 1Cl.

Typical free set

sizeoffreeset [ 1 2 3
#freesets | 9 11 3
9 —

pG) =1-

Gordon & McMahon (Lafayette College)
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Trees

@ ((G) < 0 for trees.

[}
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Trees
@ ((G) < 0 for trees.

@ Goal: Interpret 4 combinatorially.

[}
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Trees
@ ((G) < 0 for trees.

@ Goal: Interpret 4 combinatorially.

It’'s the number of interior edges.
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Trees

@ ((G) < 0 for trees.
@ Goal: Interpret 4 combinatorially.

It’'s the number of interior edges.
Theorem
Let T be a tree.

Z (—=1)I9118| = # interior edges.
S a star
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Theorem

Let T be a tree.

Z (—=1)I9118| = # interior edges.
s a star
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Theorem
Let T be a tree.

Z (_1)\Sl‘sy = # interior edges.
s a star

You can rewrite the count in terms of the degree sequence of the tree:

Let T be a tree with degree sequence d, s, ..., d,. Then
# leaves _ZZ )K= ‘k( >
i=1 k=1
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Trees

Theorem

Let T be a tree. Then 3(T) = —# interior edges.

Compare this theorem to the original beta invariant.
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Trees

Theorem
Let T be a tree. Then 3(T) = —# interior edges. J

Compare this theorem to the original beta invariant.

Theorem
Let T be a tree. Then BCrapo(T) =0. J
Gordon & McMahon (Lafayette College) Beta invariant

Marseille 35/54



Prototypical antimatroid — Finite subsets of R”

ae
Let E be a finite subset of R". b
e CC Eis convex if Hull(C)n E = C. ¢
@ Cisfreeif Cis an empty polygon. .f
e
)
de
ce
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Prototypical antimatroid — Finite subsets of R”

a
Let E be a finite subset of R". [z
@ CC Eisconvexif Hull(C)n E = C.
@ Cisfreeif Cis an empty polygon. ¢
.e
d

A={a,c,d}

Convex? Free?
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Prototypical antimatroid — Finite subsets of R”

a
Let E be a finite subset of R". [z
@ CC Eisconvexif Hull(C)n E = C.
@ Cisfreeif Cis an empty polygon. ¢
.e
d

A={a,c,d}

Convex? Free?
No No
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Prototypical antimatroid — Finite subsets of R”

a
Let E be a finite subset of R". [z
@ CC Eisconvexif Hull(C)n E = C.
@ Cisfreeif Cis an empty polygon. ¢
.e
d

A={a,c,d, e, f}

Convex? Free?
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Prototypical antimatroid — Finite subsets of R”

a
Let E be a finite subset of R". [z
@ CC Eisconvexif Hull(C)n E = C.
@ Cisfreeif Cis an empty polygon. ¢
.e
d

A={a,c,d, e, f}

Convex? Free?
Yes No
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Prototypical antimatroid — Finite subsets of R”

a
Let E be a finite subset of R". b
@ CC Eisconvexif Hull(C)n E = C.
@ Cisfreeif Cis an empty polygon.
d
A={a,b,c,e,f} o

Convex? Free?
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Prototypical antimatroid — Finite subsets of R”

Let E be a finite subset of R".
@ CC Eisconvexif Hull(C)n E = C.
@ Cisfreeif Cis an empty polygon.

A={a,b,c,e,f}

Convex? Free?
Yes Yes
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B(@) for finite point sets

Let f; be the number of free sets of size i
i 1]
16|

BG) = Y (-hH*TK]
K free
ae
112]3]4]|5 b
f6]15]15 6] 1 °
o
e
o
de

c @
Gordon & McMahon (Lafayette College)

Beta invariant



B(@) for finite point sets
B(G)= Y (1)K

K free
Let f; be the number of free sets of size i.
a e
if1]2|3|4]5 b
f,-||6|15|15|6|1
f
)
e
)
de
c e

,B(G) = f —2f + 3 —4fy + 515
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B(@) for finite point sets

B(G)
Let f; be the number of free sets of size i.
i|1]2]|3]4]5
)‘,\\6\15\15\6 1
,B(G) fy — 2f + 3f3 — 4f4 + 515

Gordon & McMahon (Lafayette College)
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B(@) for finite point sets

B(G)
Let f; be the number of free sets of size i.
i|1]2]|3]4]5
)‘,\\6\15\15\6 1
,B(G) fy — 2f + 3f3 — 4f4 + 515

Gordon & McMahon (Lafayette College)

6-2-15+3-15-4-6+5-1

2.

Beta invariant

Marseille
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B(@) for finite point sets
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B(@) for finite point sets

Gordon & McMahon (Lafayette College)

B(G) =
K free
°
°
°
°
What is 5(G) counting?
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BG) = > (-1)HTK]|
K free
Theorem (Ahrens, G. and M. (1999))

Let E be a finite subset of R2. Then 3(G) is the number of interior
points.

B(G) = 3.

The points do not need to be in general position.
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Generalization to R”

Theorem (Lots of other people)
Let E be a finite subset of R". Then

Y (DFNK] = (=1)"int(E)).
K empty

@ Edelman & Reiner (2000): Combinatorial topology.

@ Kilain (2000): Valuations on lattices.

© Barany and Valtr (2004): Elementary geometric arguments.
© Pinchasi, Radoici¢, and Sharir (2006): Similar to above.

Motivation: Finding empty hexagons.

Gordon & McMahon (Lafayette College) Beta invariant Marseille
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Chordal graphs

@ Gis chordal if it has no chord-free cycles.
@ v is a simplicial vertex if its neighbors form a clique.

If G is chordal, we can shell the simplicial vertices, one-by-one,
eventually removing them all.
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Chordal graphs

@ Gis chordal if it has no chord-free cycles.
@ v is a simplicial vertex if its neighbors form a clique.

If G is chordal, we can shell the simplicial vertices, one-by-one,
eventually removing them all.
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Chordal graphs

@ Gis chordal if it has no chord-free cycles.
@ v is a simplicial vertex if its neighbors form a clique.

If G is chordal, we can shell the simplicial vertices, one-by-one,
eventually removing them all.
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Chordal graphs

@ Gis chordal if it has no chord-free cycles.
@ v is a simplicial vertex if its neighbors form a clique.

If G is chordal, we can shell the simplicial vertices, one-by-one,
eventually removing them all.
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Chordal graphs

@ Gis chordal if it has no chord-free cycles.
@ v is a simplicial vertex if its neighbors form a clique.

If G is chordal, we can shell the simplicial vertices, one-by-one,
eventually removing them all.
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Chordal graphs

Antimatroid structure:
@ E = vertices of G.
@ Cisconvex if E — C is a simplicial sequence.
@ Cisfree if C forms a clique.
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Chordal graphs

Antimatroid structure:
@ E = vertices of G.
@ Cisconvex if E — C is a simplicial sequence.
@ Cisfree if C forms a clique.
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Chordal graphs

Theorem
Let G be a chordal graph. Then

BG) = > (-1)CC| = —# cut vertices.
c a clique

8(G) = -3,
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Posets

Antimatroid structure:

@ E = elements of P.

@ Fis feasible if F can be formed by
repeatedly removing maximal and minimal
elements [Double-shelling antimatroid].

@ Cis free if C contains no chains of length
> 3.

5(G) = 1.
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Posets
Theorem (Edelman & Reiner)
Let P be a poset. Then

B(G) = Y (~1)°="|C| = —# bottlenecks.
c free
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Other antimatroids, greedoids and things

Moral: If G = (E, r) is any combinatorial object with a
reasonable rank function, then we can define a beta invariant.
@ Trees [vertex ground set]
@ Rooted trees
@ Gaussian elimination greedoids
@ Rooted graphs [Vertex search]
o ...
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