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Henry Crapo
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Henry Crapo’s House

Centre de Recherche du Larzac Méridional, or Les Moutons Matheux
La Vacquerie et Saint Martin de Castries, France
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Matroid catalog

The Henry Crapo group presents the incredible catalog of 8 point
geometries. See single element extensions grow before your eyes.

Gordon & McMahon (Lafayette College) Beta invariant Marseille 6 / 54



Matroid catalog

The Henry Crapo group presents the incredible catalog of 8 point
geometries. See single element extensions grow before your eyes.

Gordon & McMahon (Lafayette College) Beta invariant Marseille 6 / 54



β for Graphs
Definition
G = (V ,E) a graph, A ⊆ E . Define r(A), the rank of A, by

r(A) = max
F⊆A
{|F | | F is acyclic}.

a

e

d c

b

Subset ∅ singleton pair triple any 4 E
Rank 0 1 2 2 or 3 3 3
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Graph example
r(A) = maxF⊆A{|F | | F is acyclic}

Definition
Let G be a graph. Then the beta invariant β(G) is defined by

β(G) = (−1)r(E)
∑
A⊆E

(−1)|A|r(A).

a

e

d c

b
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Graph example

a

e

d c

b

β(G) = (−1)r(E)
∑
A⊆E

(−1)|A|r(A).

Subset ∅ {x} {x , y} {a,b, c} or Other any 4 E
{a,d ,e} triples

Rank 0 1 2 2 3 3 3
(−1)|A|r(A) 0 −1 2 −2 −3 3 −3

β(G) = (−1)3 (0− 5 · 1 + 10 · 2− 2 · 2− 8 · 3 + 5 · 3− 1 · 3) = 1.
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Crapo’s motivation

JOURNAL OF COMBINATORIAL THEORY 2, 406-417 (1967) 

A Higher Invariant for Matroids 

HENRY H. CRAPO 

University of Waterloo, 

Waterloo, Ontario, Canada 

Communicated by Gian-Carlo Rota 

ABSTRACT 

The M6bius invariant #, essential to the classification of surfaces, is less useful in 
the study of exchange geometries (matroids) because it undergoes sizeable fluctuations 
as a result of minor structural changes, such as the lengthening of an arc. The number 
fl, investigated here, is not only a geometric invariant, like/~, but is also a duality 
invariant, and provides a complete determination of separability. 

l .  INTRODUCTION 

The numerical value fl, defined for each finite matroid G with Whitney 
rank function r by 

fl~- (-- I y  (a) ~ (-- 1)tXlr(X), (1) 
X~G 

is a non-negative integer, and is equal to 0 if and only if G is separable. 
fl may be calculated from the lattice L(G) of closed subsets of G. fl is 
invariant under duality. Thus fl may also be calculated from L(G*), 
and serves as an indication as to which geometric lattices may possibly 
be duals of one another relative to some matroid. 

We sketch the analogy between fl-calculation and higher-order deri- 
vation (Section 2). We then establish the above-mentioned algebraic 
properties of fl (Section 3) and give some examples of its calculation 
(Section 4). 

406 
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Tutte polynomial connection

a

e

d c

b

T (G; x , y) = x3 + 2x2 + 2xy + 1x + y2 + 1y

Theorem
β(G) equals the coefficient of x in the Tutte polynomial T (G; x , y).

If G has more than one edge, then the coefficient of x equals the
coefficient of y in the Tutte polynomial.
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Deletion-contraction

Deletion-contraction: β(G) = β(G − e) + β(G/e).

a b

c

d e

a b

d e

a

d

b

e

Delete and contract edge c.

β(G/c) = 0 and β(G − c) = 1.
Consequence: For all graphs G, β(G) ≥ 0.
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Rooted Graphs

G is a graph with a distinguished vertex.
r(A) = max

F⊆A
{|F | | F is a rooted tree}

β(G) = (−1)r(E)
∑
A⊆E

(−1)|A|r(A).

*
a

c

b

d

e

Subset ∅ {x} {x , y} {x , y , z} any 4 E
Rank 0 0 or 1 0, 1 or 2 2 or 3 3 3

(−1)|A|r(A) 0 0 or −1 0, 1 or 2 −2 or −3 3 −3

β(G) = 3.
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Rooted vs. unrooted

a

c

b

d

e

*
a

c

b

d

e

*
a

c

b

d

e

β = 1 β = 3 β = 4

Deletion-contraction: Assume e is incident to the root. Then

β(G) = β(G − e) + β(G/e).

So β(G) ≥ 0 for rooted graphs, too.
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Rooted vs. unrooted

Trees Cn Fans Wn Kn
Unrooted 0 1 1 n − 1 (n − 2)!
Rooted 0 or 1 n − 1 n − 1 n(n − 1) (n − 1)!

1

2

3 4

5

6

Wheel W5
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Beta for matroids

Definition

Let M be a matroid. Then β(M) = (−1)r(E)
∑
A⊆E

(−1)|A|r(A).

Deletion-contraction: β(M) = β(M − e) + β(M/e).
Non-negativity: β(M) ≥ 0.
Direct sum: β(M1 ⊕M2) = 0.
Dual: If |E | > 1, then β(M) = β(M∗).
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Beta for matroids
β(M) = (−1)r(E)

∑
A⊆E

(−1)|A|r(A).

Theorem (Crapo ’67)
A matroid M with more than 1 point is disconnected if and only if
β(M) = 0.

d    e      f g

a 

b  c

Theorem (Brylawski ’71)
A matroid M with more than 1 point is a series-parallel network if and
only if β(M) = 1.
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Three matroids

c

b

a

d

e cb

a

d
e f

cb

a

d
e f

g

β = 1 β = 2 β = 3

Series-parallel M(K4): Not series-parallel Fano

Oxley (1982) characterized the matroids M with β(M) ≤ 4.
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Closure, matroids and antimatroids

Definition
A closure operator on a set E is a function 2E → 2E satisfying, for all
A ⊆ E ,

A ⊆ A
If A ⊆ B then A ⊆ B,

A = A,

Matroid: If x , y /∈ A and y ∈ A ∪ x , then x ∈ A ∪ y .
MacLane-Steinitz exchange
Antimatroid: If x , y /∈ A and y ∈ A ∪ x , then x /∈ A ∪ y .x  y

Matroids : Affine closure :: Antimatroids : Convex closure
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If x , y /∈ A and y ∈ A ∪ x , then x /∈ A ∪ y .
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Matroid texts edited by Neil White
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Neil White (1945 – 2014)

Robert MacPherson, Neil White, Richard Stanley, 2004.
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Antimatroids – (Wave to Michael Falk)

“Antimatroid” coined by Robert Jamison (1980).

Discovered [invented?] by Dilworth (1940)
Avann (1960’s) Lower-semidistributive [LSD] lattices.
More independent discoveries:

I 1960’s: Boulaye, Bennett, Pfaltz
I 1970’s: Greene & Markowsky, Jamison, Edelman

i

ha

b
c     d   e     f  

g

Trees are antimatroids
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Convex sets, feasible sets and rank

Definition
Let G be an antimatroid with ground set E with a (convex) closure
operator.

Convex sets: C is convex if C = C.
Feasible sets: F ⊆ E is feasible if E − F is convex.
Rank function: Let A ⊆ E . Then r(A) = maxF⊆A{|F | | F feasible}.
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Beta for antimatroids

Definition

β(G) = (−1)r(E)
∑
A⊆E

(−1)|A|r(A).

Definition
C is free convex (or simply free) if every subset of C is convex.

Theorem
For an antimatroid G,

β(G) =
∑

C free
(−1)|C|−1|C|.
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Various expansions
Subset expansion by rank

β(G) = (−1)r(E)
∑
A⊆E

(−1)|A|r(A).

Free convex set expansion

β(G) =
∑

C free
(−1)|C|−1|C|.

Subset expansion by closure

β(G) =
∑
S⊆E

(−1)|S|−1|S|

Others exist (Möbius function, Boolean, and a few more).
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Recursions

Deletion-contraction

β(G) = β(G/x)−β(G − x).

β(G) may be negative!

Direct sum
β(G1 ⊕G2) = 0.
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Strategy

β(G) =
∑

C free
(−1)|C|−1|C|.

1 Given a class of antimatroids, interpret the free convex sets
combinatorially.

2 Compute β(G) somehow.
3 Interpret β(G) combinatorially.
4 Remove β(G).
5 Show everybody your new theorem.
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Trees

Antimatroid ground set↔ edges of T .
C is convex if C forms a subtree.
C is free if C forms a star.
β(G) =

∑
C free (−1)|C|−1|C|.

2    5   9       7      3

1       8    4

6    

Typical free set

i

ha

b
c     d   e     f  

g

size of free set 1 2 3
# free sets

9 11 3

β(G) = 1 · 9− 2 · 11 + 3 · 3 = −4.
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Trees
β(G) < 0 for trees.

Goal: Interpret 4 combinatorially.

i

ha

b
c     d   e     f  

g

It’s the number of interior edges.

Theorem
Let T be a tree. ∑

S a star
(−1)|S||S| = # interior edges.
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Theorem
Let T be a tree. ∑

S a star
(−1)|S||S| = # interior edges.

i

ha

b
c     d   e     f  

g

You can rewrite the count in terms of the degree sequence of the tree:
Let T be a tree with degree sequence d1,d2, . . . ,dn. Then

# leaves =
n∑

i=1

di∑
k=1

(−1)k−1k
(

di

k

)
.
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Trees

Theorem
Let T be a tree. Then β(T ) = −# interior edges.

Compare this theorem to the original beta invariant.

Theorem
Let T be a tree. Then βCrapo(T ) = 0.
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Prototypical antimatroid – Finite subsets of Rn

Let E be a finite subset of Rn.

C ⊆ E is convex if Hull(C) ∩ E = C.
C is free if C is an empty polygon.

a

e

f

c

b

d
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β(G) for finite point sets
β(G) =

∑
K free

(−1)|K |−1|K |

a

e

f

c

b

d

Let fi be the number of free sets of size i .

i 1 2 3 4 5
fi 6 15 15 6 1

β(G) = f1 − 2f2 + 3f3 − 4f4 + 5f5
= 6− 2 · 15 + 3 · 15− 4 · 6 + 5 · 1
= 2.

Gordon & McMahon (Lafayette College) Beta invariant Marseille 40 / 54



β(G) for finite point sets
β(G) =

∑
K free

(−1)|K |−1|K |

a

e

f

c

b

d

Let fi be the number of free sets of size i .

i 1 2 3 4 5
fi 6 15 15 6 1

β(G) = f1 − 2f2 + 3f3 − 4f4 + 5f5

= 6− 2 · 15 + 3 · 15− 4 · 6 + 5 · 1
= 2.

Gordon & McMahon (Lafayette College) Beta invariant Marseille 40 / 54



β(G) for finite point sets
β(G) =

∑
K free

(−1)|K |−1|K |

a

e

f

c

b

d

Let fi be the number of free sets of size i .

i 1 2 3 4 5
fi 6 15 15 6 1

β(G) = f1 − 2f2 + 3f3 − 4f4 + 5f5
= 6− 2 · 15 + 3 · 15− 4 · 6 + 5 · 1

= 2.

Gordon & McMahon (Lafayette College) Beta invariant Marseille 40 / 54



β(G) for finite point sets
β(G) =

∑
K free

(−1)|K |−1|K |

a

e

f

c

b

d

Let fi be the number of free sets of size i .

i 1 2 3 4 5
fi 6 15 15 6 1

β(G) = f1 − 2f2 + 3f3 − 4f4 + 5f5
= 6− 2 · 15 + 3 · 15− 4 · 6 + 5 · 1
= 2.

Gordon & McMahon (Lafayette College) Beta invariant Marseille 40 / 54



β(G) for finite point sets

β(G) =
∑

K free
(−1)|K |−1|K |

β = 1 β = 3

What is β(G) counting?
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β(G) =
∑

K free
(−1)|K |−1|K |

Theorem (Ahrens, G. and M. (1999))

Let E be a finite subset of R2. Then β(G) is the number of interior
points.

a

e

f

c

b

d

a

e

f

c

b

d

a

e

f

c

b

d

a

e

f

c

b

d

β(G) = 3.

The points do not need to be in general position.
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Generalization to Rn

Theorem (Lots of other people)
Let E be a finite subset of Rn. Then∑

K empty
(−1)|K |−1|K | = (−1)n|int(E)|.

1 Edelman & Reiner (2000): Combinatorial topology.
2 Klain (2000): Valuations on lattices.
3 Bárány and Valtr (2004): Elementary geometric arguments.
4 Pinchasi, Radoičić, and Sharir (2006): Similar to above.

Motivation: Finding empty hexagons.
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Chordal graphs

G is chordal if it has no chord-free cycles.
v is a simplicial vertex if its neighbors form a clique.

If G is chordal, we can shell the simplicial vertices, one-by-one,
eventually removing them all.
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Chordal graphs

Antimatroid structure:
E = vertices of G.
C is convex if E − C is a simplicial sequence.
C is free if C forms a clique.
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Chordal graphs

Theorem
Let G be a chordal graph. Then

β(G) =
∑

C a clique
(−1)|C|−1|C| = −# cut vertices.

β(G) = −3.
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Posets

Antimatroid structure:

b

a

c

d

e f

g h

E = elements of P.
F is feasible if F can be formed by
repeatedly removing maximal and minimal
elements [Double-shelling antimatroid].
C is free if C contains no chains of length
≥ 3.

β(G) = −1.
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Posets
Theorem (Edelman & Reiner)
Let P be a poset. Then

β(G) =
∑

C free
(−1)|C|−1|C| = −# bottlenecks.

b

a

c

d

e f

g h
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Other antimatroids, greedoids and things

Moral: If G = (E , r) is any combinatorial object with a
reasonable rank function, then we can define a beta invariant.

Trees [vertex ground set]
Rooted trees
Gaussian elimination greedoids
Rooted graphs [Vertex search]
. . .
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