Generalizations of Crapo's Beta Invariant

Gary Gordon & Liz McMahon

Department of Mathematics Lafayette College

Outline

A few of your favorite things

Gordon & McMahon (Lafayette College)

< 6 b

Outline

Beta and graphs

2 Matroids

3 Antimatroids

Gordon & McMahon (Lafayette College)

Henry Crapo

Gordon & McMahon (Lafayette College)

Henry Crapo's House

Centre de Recherche du Larzac Méridional, or Les Moutons Matheux La Vacquerie et Saint Martin de Castries, France

Matroid catalog

Matroid catalog

The Henry Crapo group presents the incredible catalog of 8 point geometries. See single element extensions grow before your eyes.

Gordon & McMahon (Lafayette College)

Beta invariant

β for Graphs

Definition

G = (V, E) a graph, $A \subseteq E$. Define r(A), the rank of A, by

 $r(A) = \max_{F \subseteq A} \{|F| \mid F \text{ is acyclic}\}.$

< ロ > < 同 > < 回 > < 回 >

β for Graphs

Definition

G = (V, E) a graph, $A \subseteq E$. Define r(A), the rank of A, by

 $r(A) = \max_{F \subseteq A} \{|F| \mid F \text{ is acyclic}\}.$

Gordon & McMahon (Lafayette College)

$$r(A) = \max_{F \subseteq A} \{|F| \mid F \text{ is acyclic}\}$$

Definition

Let G be a graph. Then the beta invariant $\beta(G)$ is defined by

$$\beta(G) = (-1)^{r(E)} \sum_{A \subseteq E} (-1)^{|A|} r(A).$$

Gordon & McMahon (Lafayette College)

$$\beta(G) = (-1)^{r(E)} \sum_{A \subseteq E} (-1)^{|A|} r(A).$$

 $\beta(G) = (-1)^{r(E)} \sum_{A \subseteq E} (-1)^{|A|} r(A).$

Subset	Ø	{X }	$\{\boldsymbol{x}, \boldsymbol{y}\}$	{ <i>a</i> , <i>b</i> , <i>c</i> } or	Other	any 4	Ε
				{ <i>a</i> , <i>d</i> , <i>e</i> }	triples		
Bank	0	1	2	2	2	2	2
rianin			2	<u> </u>	5	5	3

$\beta(G) = (-1)^{r(E)}$	$\sum_{A\subseteq E} (-1)^{ A } r(A).$
	AEL

Subset	Ø	{ X }	$\{x, y\}$	{ <i>a</i> , <i>b</i> , <i>c</i> } or	Other	any 4	E
				{ <i>a</i> , <i>d</i> , <i>e</i> }	triples		
Deel	0	4	•	<u> </u>	•	•	<u> </u>
Rank	0		2	2	3	3	3

 $\beta(G) = (-1)^3 \left(0 - 5 \cdot 1 + 10 \cdot 2 - 2 \cdot 2 - 8 \cdot 3 + 5 \cdot 3 - 1 \cdot 3\right) = 1.$

イロト イポト イヨト イヨト

Crapo's motivation

JOURNAL OF COMBINATORIAL THEORY 2, 406-417 (1967)

A Higher Invariant for Matroids

HENRY H. CRAPO

University of Waterloo, Waterloo, Ontario, Canada Communicated by Gian-Carlo Rota

ABSTRACT

The Möbius invariant μ , essential to the classification of surfaces, is less useful in the study of exchange geometries (matroids) because it undergoes sizeable fluctuations as a result of minor structural changes, such as the lengthening of an arc. The number β , investigated here, is not only a geometric invariant, like μ , but is also a duality invariant, and provides a complete determination of separability.

Tutte polynomial connection

Theorem

 $\beta(G)$ equals the coefficient of x in the Tutte polynomial T(G; x, y).

• If *G* has more than one edge, then the coefficient of *x* equals the coefficient of *y* in the Tutte polynomial.

Deletion-contraction

• Deletion-contraction: $\beta(G) = \beta(G - e) + \beta(G/e)$.

Delete and contract edge c.

Deletion-contraction

• Deletion-contraction: $\beta(G) = \beta(G - e) + \beta(G/e)$.

Delete and contract edge c.

• $\beta(G/c) = 0$ and $\beta(G-c) = 1$.

Deletion-contraction

• Deletion-contraction: $\beta(G) = \beta(G - e) + \beta(G/e)$.

Delete and contract edge c.

- $\beta(G/c) = 0$ and $\beta(G-c) = 1$.
- Consequence: For all graphs G, $\beta(G) \ge 0$.

Rooted Graphs

G is a graph with a distinguished vertex. • $r(A) = \max_{F \subseteq A} \{|F| \mid F \text{ is a rooted tree}\}$ • $\beta(G) = (-1)^{r(E)} \sum_{A \subseteq E} (-1)^{|A|} r(A).$

Rooted Graphs

G is a graph with a distinguished vertex. • $r(A) = \max_{F \subseteq A} \{|F| \mid F \text{ is a rooted tree}\}$ • $\beta(G) = (-1)^{r(E)} \sum_{A \subseteq E} (-1)^{|A|} r(A).$

Subset	Ø	{ X }	$\{x, y\}$	$\{x, y, z\}$	any 4	E
Rank	0	0 or 1	0, 1 or 2	2 or 3	3	3
$(-1)^{ A }r(A)$	0	0 or -1	0, 1 or 2	-2 or -3	3	-3

Rooted Graphs

G is a graph with a distinguished vertex. • $r(A) = \max_{F \subseteq A} \{|F| \mid F \text{ is a rooted tree}\}$ • $\beta(G) = (-1)^{r(E)} \sum_{A \subseteq E} (-1)^{|A|} r(A).$

Subset	Ø	{ X }	$\{x, y\}$	$\{x, y, z\}$	any 4	E
Rank	0	0 or 1	0, 1 or 2	2 or 3	3	3
$(-1)^{ \mathcal{A} }r(\mathcal{A})$	0	0 or -1	0, 1 or 2	-2 or -3	3	-3

 $\beta(G) = 3.$

Rooted vs. unrooted

イロト イヨト イヨト イヨト

Rooted vs. unrooted

• Deletion-contraction: Assume e is incident to the root. Then

$$\beta(\mathbf{G}) = \beta(\mathbf{G} - \mathbf{e}) + \beta(\mathbf{G}/\mathbf{e}).$$

• So $\beta(G) \ge 0$ for rooted graphs, too.

Rooted vs. unrooted

Outline

3 Antimatroids

Gordon & McMahon (Lafayette College)

< 3

Beta for matroids

Definition

Let *M* be a matroid. Then $\beta(M) = (-1)^{r(E)} \sum_{A \subseteq E} (-1)^{|A|} r(A)$.

- Deletion-contraction: $\beta(M) = \beta(M e) + \beta(M/e)$.
- Non-negativity: $\beta(M) \ge 0$.
- Direct sum: $\beta(M_1 \oplus M_2) = 0$.
- Dual: If |E| > 1, then $\beta(M) = \beta(M^*)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Beta for matroids

$$\beta(M) = (-1)^{r(E)} \sum_{A \subseteq E} (-1)^{|A|} r(A).$$

Theorem (Crapo '67)

A matroid M with more than 1 point is disconnected if and only if $\beta(M) = 0.$

4 Th

Beta for matroids

$$\beta(M) = (-1)^{r(E)} \sum_{A \subseteq E} (-1)^{|A|} r(A).$$

イロト イポト イヨト イヨト

Theorem (Crapo '67)

A matroid M with more than 1 point is disconnected if and only if $\beta(M) = 0$.

Theorem (Brylawski '71)

A matroid M with more than 1 point is a series-parallel network if and only if $\beta(M) = 1$.

Gordon & McMahon (Lafayette College)
--------------------	-------------------	---

イロト イロト イヨト イヨト

イロト イロト イヨト イヨト

$\beta = 1$	$\beta = 2$	$\beta = 3$
-------------	-------------	-------------

Series-parallel $M(K_4)$: Not series-parallel Fano

< 6 b

Series-parallel $M(K_4)$: Not series-parallel Fano

• Oxley (1982) characterized the matroids *M* with $\beta(M) \leq 4$.

Outline

Beta and graphs

2 Matroids

Gordon & McMahon (Lafayette College)

Closure, matroids and antimatroids

Definition

A closure operator on a set *E* is a function $2^E \rightarrow 2^E$ satisfying, for all $A \subseteq E$,

- $A \subseteq \overline{A}$
- If $A \subseteq B$ then $\overline{A} \subseteq \overline{B}$,
- $\overline{\overline{A}} = \overline{A}$,

Closure, matroids and antimatroids

Definition

A closure operator on a set *E* is a function $2^E \rightarrow 2^E$ satisfying, for all $A \subseteq E$,

- $A \subseteq \overline{A}$
- If $A \subseteq B$ then $\overline{A} \subseteq \overline{B}$,
- $\overline{\overline{A}} = \overline{A}$,

• Matroid: If $x, y \notin \overline{A}$ and $y \in \overline{A \cup x}$, then $x \in \overline{A \cup y}$. MacLane-Steinitz exchange

Closure, matroids and antimatroids

Definition

A closure operator on a set *E* is a function $2^E \rightarrow 2^E$ satisfying, for all $A \subseteq E$,

- $A \subseteq \overline{A}$
- If $A \subseteq B$ then $\overline{A} \subseteq \overline{B}$,
- $\overline{\overline{A}} = \overline{A}$,
- Matroid: If $x, y \notin \overline{A}$ and $y \in \overline{A \cup x}$, then $x \in \overline{A \cup y}$. MacLane-Steinitz exchange
- Antimatroid: If $x, y \notin \overline{A}$ and $y \in \overline{A \cup x}$, then $x \notin \overline{A \cup y}$.
Closure, matroids and antimatroids

Definition

A closure operator on a set *E* is a function $2^E \rightarrow 2^E$ satisfying, for all $A \subseteq E$,

- $A \subseteq \overline{A}$
- If $A \subseteq B$ then $\overline{A} \subseteq \overline{B}$,
- $\overline{\overline{A}} = \overline{A}$,
- Matroid: If $x, y \notin \overline{A}$ and $y \in \overline{A \cup x}$, then $x \in \overline{A \cup y}$. MacLane-Steinitz exchange
- Antimatroid: If $x, y \notin \overline{A}$ and $y \in \overline{A \cup x}$, then $x \notin \overline{A \cup y}$.

Matroids : Affine closure :: Antimatroids : Convex closure

If $x, y \notin \overline{A}$ and $y \in \overline{A \cup x}$, then $x \notin \overline{A \cup y}$.

Matroid texts edited by Neil White

Neil White (1945 – 2014)

Robert MacPherson, Neil White, Richard Stanley, 2004.

Antimatroids – (Wave to Michael Falk)

"Antimatroid" coined by Robert Jamison (1980).

- Discovered [invented?] by Dilworth (1940)
- Avann (1960's) Lower-semidistributive [LSD] lattices.
- More independent discoveries:
 - 1960's: Boulaye, Bennett, Pfaltz
 - 1970's: Greene & Markowsky, Jamison, Edelman

Trees are antimatroids

Convex sets, feasible sets and rank

Definition

Let G be an antimatroid with ground set E with a (convex) closure operator.

- Convex sets: *C* is convex if $\overline{C} = C$.
- Feasible sets: $F \subseteq E$ is feasible if E F is convex.
- Rank function: Let $A \subseteq E$. Then $r(A) = \max_{F \subseteq A} \{|F| \mid F \text{ feasible} \}$.

Beta for antimatroids

Definition $\beta(G) = (-1)^{r(E)} \sum_{A \subseteq E} (-1)^{|A|} r(A).$

イロト イポト イヨト イヨト

Beta for antimatroids

Definition

$$\beta(G) = (-1)^{r(E)} \sum_{A \subseteq E} (-1)^{|A|} r(A).$$

Definition

• C is free convex (or simply free) if every subset of C is convex.

Theorem

For an antimatroid G,

$$\beta(G) = \sum_{C \text{ free}} (-1)^{|C|-1} |C|.$$

Various expansions

Subset expansion by rank

$$\beta(G) = (-1)^{r(E)} \sum_{A \subseteq E} (-1)^{|A|} r(A).$$

Gordon & McMahon (Lafayette College)

(a)

Various expansions

Subset expansion by rank

$$\beta(G) = (-1)^{r(E)} \sum_{A \subseteq E} (-1)^{|A|} r(A).$$

Free convex set expansion

$$\beta(G) = \sum_{C \text{ free}} (-1)^{|C|-1} |C|.$$

Various expansions

Subset expansion by rank

$$\beta(G) = (-1)^{r(E)} \sum_{A \subseteq E} (-1)^{|A|} r(A).$$

Free convex set expansion

$$\beta(G) = \sum_{C \text{ free}} (-1)^{|C|-1} |C|.$$

Subset expansion by closure

$$\beta(G) = \sum_{S \subseteq E} (-1)^{|S|-1} |\overline{S}|$$

• Others exist (Möbius function, Boolean, and a few more).

Recursions

Deletion-contraction

$$\beta(\mathbf{G}) = \beta(\mathbf{G}/\mathbf{x}) - \beta(\mathbf{G}-\mathbf{x}).$$

$\beta(G)$ may be negative!

Recursions

Deletion-contraction

$$\beta(\mathbf{G}) = \beta(\mathbf{G}/\mathbf{x}) - \beta(\mathbf{G}-\mathbf{x}).$$

 $\beta(G)$ may be negative!

Direct sum

 $\beta(G_1\oplus G_2)=0.$

Image: A math a math

Outline

- Beta and graphs
- 2 Matroids
- 3 Antimatroids

< 6 b

$$\beta(G) = \sum_{C \text{ free}} (-1)^{|C|-1} |C|.$$

Gordon & McMahon (Lafayette College)

▲ 王 シ へ ()
Marseille 31 / 54

イロト イヨト イヨト イヨト

$$\beta(G) = \sum_{C \text{ free}} (-1)^{|C|-1} |C|.$$

Given a class of antimatroids, interpret the free convex sets combinatorially.

$$\beta(G) = \sum_{C \text{ free}} (-1)^{|C|-1} |C|.$$

- Given a class of antimatroids, interpret the free convex sets combinatorially.
- **2** Compute $\beta(G)$ somehow.

$$\beta(G) = \sum_{C \text{ free}} (-1)^{|C|-1} |C|.$$

- Given a class of antimatroids, interpret the free convex sets combinatorially.
- **2** Compute $\beta(G)$ somehow.
- 3 Interpret $\beta(G)$ combinatorially.

- B

$$\beta(G) = \sum_{C \text{ free}} (-1)^{|C|-1} |C|.$$

- Given a class of antimatroids, interpret the free convex sets combinatorially.
- **2** Compute $\beta(G)$ somehow.
- 3 Interpret $\beta(G)$ combinatorially.
- Remove $\beta(G)$.

- H - N

$$\beta(G) = \sum_{C \text{ free}} (-1)^{|C|-1} |C|.$$

- Given a class of antimatroids, interpret the free convex sets combinatorially.
- **2** Compute $\beta(G)$ somehow.
- 3 Interpret $\beta(G)$ combinatorially.
- Remove $\beta(G)$.
- Show everybody your new theorem.

▲ ■ ► ■ つへの Marseille 32/54

<ロ> <四> <ヨ> <ヨ>

- Antimatroid ground set \leftrightarrow edges of T.
- *C* is convex if *C* forms a subtree.

A b

- Antimatroid ground set \leftrightarrow edges of *T*.
- C is convex if C forms a subtree.
- C is free if C forms a star.

- Antimatroid ground set \leftrightarrow edges of *T*.
- C is convex if C forms a subtree.
- C is free if C forms a star.
- $\beta(G) = \sum_{C \text{ free }} (-1)^{|C|-1} |C|.$

- Antimatroid ground set \leftrightarrow edges of *T*.
- C is convex if C forms a subtree.
- C is free if C forms a star.
- $\beta(G) = \sum_{C \text{ free }} (-1)^{|C|-1} |C|.$

- Antimatroid ground set \leftrightarrow edges of *T*.
- C is convex if C forms a subtree.
- C is free if C forms a star.
- $\beta(G) = \sum_{C \text{ free }} (-1)^{|C|-1} |C|.$

- Antimatroid ground set \leftrightarrow edges of *T*.
- C is convex if C forms a subtree.
- C is free if C forms a star.
- $\beta(G) = \sum_{C \text{ free }} (-1)^{|C|-1} |C|.$

- Antimatroid ground set \leftrightarrow edges of T.
- C is convex if C forms a subtree.
- C is free if C forms a star.
- $\beta(G) = \sum_{C \text{ free }} (-1)^{|C|-1} |C|.$

- Antimatroid ground set \leftrightarrow edges of *T*.
- C is convex if C forms a subtree.
- C is free if C forms a star.
- $\beta(G) = \sum_{C \text{ free }} (-1)^{|C|-1} |C|.$

• $\beta(G) < 0$ for trees.

イロト イヨト イヨト イヨト

- $\beta(G) < 0$ for trees.
- Goal: Interpret 4 combinatorially.

< (□) < 三 > (□)

- $\beta(G) < 0$ for trees.
- Goal: Interpret 4 combinatorially.

It's the number of interior edges.

H 5

- $\beta(G) < 0$ for trees.
- Goal: Interpret 4 combinatorially.

It's the number of interior edges.

Theorem

Let T be a tree.

$$\sum_{S \text{ a star}} (-1)^{|S|} |S| = \# \text{ interior edges.}$$

Gordon & McMahon (Lafayette College)

Theorem

Let T be a tree.

$$\sum_{S \text{ a star}} (-1)^{|S|} |S| = \# \text{ interior edges.}$$

イロト イヨト イヨト イヨト

Theorem

Let T be a tree.

$$\sum_{S \text{ a star}} (-1)^{|S|} |S| = \# \text{ interior edges.}$$

You can rewrite the count in terms of the degree sequence of the tree: Let *T* be a tree with degree sequence d_1, d_2, \ldots, d_n . Then

leaves =
$$\sum_{i=1}^{n} \sum_{k=1}^{d_i} (-1)^{k-1} k \binom{d_i}{k}$$
.

4 Th

Theorem

Let T be a tree. Then $\beta(T) = -\#$ interior edges.

Compare this theorem to the original beta invariant.
Trees

Theorem

Let T be a tree. Then $\beta(T) = -\#$ interior edges.

Compare this theorem to the original beta invariant.

Theorem

Let T be a tree. Then $\beta_{Crapo}(T) = 0$.

Gordon & McMahon (Lafayette College)

Let *E* be a finite subset of \mathbb{R}^n .

- $C \subseteq E$ is convex if $Hull(C) \cap E = C$.
- *C* is free if *C* is an empty polygon.

Let *E* be a finite subset of \mathbb{R}^n .

• $C \subseteq E$ is convex if $Hull(C) \cap E = C$.

• *C* is free if *C* is an empty polygon.

 $A = \{a, c, d\}$

Convex? Free?

Let *E* be a finite subset of \mathbb{R}^n .

• $C \subseteq E$ is convex if $Hull(C) \cap E = C$.

```
A = \{a, c, d\}
Convex? Free?
No No
```


Let *E* be a finite subset of \mathbb{R}^n .

• $C \subseteq E$ is convex if $Hull(C) \cap E = C$.

```
A = \{a, c, d, e, f\}
Convex? Free?
```


Let *E* be a finite subset of \mathbb{R}^n .

• $C \subseteq E$ is convex if $Hull(C) \cap E = C$.

```
A = \{a, c, d, e, f\}
Convex? Free?
Yes No
```


Let *E* be a finite subset of \mathbb{R}^n .

• $C \subseteq E$ is convex if $Hull(C) \cap E = C$.

```
A = \{a, b, c, e, f\}
Convex? Free?
```


Let *E* be a finite subset of \mathbb{R}^n .

• $C \subseteq E$ is convex if $Hull(C) \cap E = C$.

```
A = \{a, b, c, e, f\}
Convex? Free?
Yes Yes
```


Let f_i be the number of free sets of size i.

i	1	2	3	4	5
f _i	6	15	15	6	1

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let f_i be the number of free sets of size *i*.

 $\beta(G) = f_1 - 2f_2 + 3f_3 - 4f_4 + 5f_5$

a b f d

 $\beta(G) = \sum_{K \text{ free}} (-1)^{|K|-1} |K|$

Let f_i be the number of free sets of size *i*.

$$\beta(G) = f_1 - 2f_2 + 3f_3 - 4f_4 + 5f_5$$

= 6 - 2 \cdot 15 + 3 \cdot 15 - 4 \cdot 6 + 5 \cdot 1

h

 $\beta(G) = \sum_{K \text{ free}} (-1)^{|K|-1} |K|$

е

a

d

Let f_i be the number of free sets of size *i*.

 $\beta(G) = f_1 - 2f_2 + 3f_3 - 4f_4 + 5f_5$ = 6 - 2 \cdot 15 + 3 \cdot 15 - 4 \cdot 6 + 5 \cdot 1 = 2.

h

 $\beta(G) = \sum_{K \text{ free}} (-1)^{|K|-1} |K|$

a 🙍

イロト イポト イヨト イヨト

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$$\beta(G) = \sum_{K \text{ free}} (-1)^{|K|-1} |K|$$

Theorem (Ahrens, G. and M. (1999))

Let *E* be a finite subset of \mathbb{R}^2 . Then $\beta(G)$ is the number of interior points.

The points do not need to be in general position.

Gordon & McMahon	(Lafayette College	e
------------------	--------------------	---

Generalization to \mathbb{R}^n

Theorem (Lots of other people)

K

Let *E* be a finite subset of \mathbb{R}^n . Then

$$\sum_{empty} (-1)^{|K|-1} |K| = (-1)^n |int(E)|.$$

- Edelman & Reiner (2000): Combinatorial topology.
- 2 Klain (2000): Valuations on lattices.
- Bárány and Valtr (2004): Elementary geometric arguments.
- 9 Pinchasi, Radoičić, and Sharir (2006): Similar to above.

Motivation: Finding empty hexagons.

- *G* is chordal if it has no chord-free cycles.
- *v* is a simplicial vertex if its neighbors form a clique.

- *G* is chordal if it has no chord-free cycles.
- *v* is a simplicial vertex if its neighbors form a clique.

- *G* is chordal if it has no chord-free cycles.
- *v* is a simplicial vertex if its neighbors form a clique.

- *G* is chordal if it has no chord-free cycles.
- *v* is a simplicial vertex if its neighbors form a clique.

- *G* is chordal if it has no chord-free cycles.
- *v* is a simplicial vertex if its neighbors form a clique.

Antimatroid structure:

- E =vertices of G.
- C is convex if E C is a simplicial sequence.
- *C* is free if *C* forms a clique.

Antimatroid structure:

- E =vertices of G.
- C is convex if E C is a simplicial sequence.
- *C* is free if *C* forms a clique.

Theorem

Let G be a chordal graph. Then

$$\beta(G) = \sum_{c \text{ a clique}} (-1)^{|C|-1} |C| = -\# \text{ cut vertices}.$$

$$\beta(G) = -3.$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Posets

Antimatroid structure:

- *E* = elements of *P*.
- *F* is feasible if *F* can be formed by repeatedly removing maximal and minimal elements [Double-shelling antimatroid].
- C is free if C contains no chains of length \geq 3.

$$\beta(G) = -1$$

Posets

Theorem (Edelman & Reiner)

Let P be a poset. Then

Gordon & McMahon (Lafayette College)

Other antimatroids, greedoids and things

Moral: If G = (E, r) is any combinatorial object with a reasonable rank function, then we can define a beta invariant.

- Trees [vertex ground set]
- Rooted trees
- Gaussian elimination greedoids
- Rooted graphs [Vertex search]

• . . .