Pairs of Topes

Michael J. Falk

Northern Arizona University

CG18 - Matroids, Oriented Matroids, and Applications CIRM Marseille-Luminy September 25, 2018

Complex hyperplane arrangements

Complex hyperplane arrangements

Motivating problem:

An arrangement A of linear complex hyperplanes is a realization of a matroid M; the union of the hyperplanes is an (embedded, singular) affine variety V.

Complex hyperplane arrangements

Motivating problem:

An arrangement A of linear complex hyperplanes is a realization of a matroid M; the union of the hyperplanes is an (embedded, singular) affine variety V.

To what extent is the geometry/topology of the pair (\mathbb{C}^r, V) , or the complement $X := \mathbb{C}^r - V$, determined by the matroid M?

Complex hyperplane arrangements

Motivating problem:

An arrangement A of linear complex hyperplanes is a realization of a matroid M; the union of the hyperplanes is an (embedded, singular) affine variety V.

To what extent is the geometry/topology of the pair (\mathbb{C}^r, V) , or the complement $X := \mathbb{C}^r - V$, determined by the matroid M?

(Note: $X = W \cap (\mathbb{C}^{\times})^n$ if $W \in Gr(r, \mathbb{C}^n)$ represents M.)

Complex hyperplane arrangements

Motivating problem:

An arrangement A of linear complex hyperplanes is a realization of a matroid M; the union of the hyperplanes is an (embedded, singular) affine variety V.

To what extent is the geometry/topology of the pair (\mathbb{C}^r, V) , or the complement $X := \mathbb{C}^r - V$, determined by the matroid M?

(Note: $X = W \cap (\mathbb{C}^{\times})^n$ if $W \in Gr(r, \mathbb{C}^n)$ represents M.)

Special case: If A is a *real* realization, one has an associated orientation of M.

Complex hyperplane arrangements

Motivating problem:

An arrangement A of linear complex hyperplanes is a realization of a matroid M; the union of the hyperplanes is an (embedded, singular) affine variety V.

To what extent is the geometry/topology of the pair (\mathbb{C}^r, V) , or the complement $X := \mathbb{C}^r - V$, determined by the matroid M?

(Note: $X = W \cap (\mathbb{C}^{\times})^n$ if $W \in Gr(r, \mathbb{C}^n)$ represents M.)

Special case: If A is a *real* realization, one has an associated orientation of M.

(joint work with Emanuele Delucchi.)

Tope graph

¹or pseudo-sphere arrangement

Tope graph

Let ${\mathcal F}$ be an oriented matroid.

¹or pseudo-sphere arrangement

Tope graph

Let ${\mathcal F}$ be an oriented matroid.

The *tope graph* of \mathcal{F} :

¹or pseudo-sphere arrangement

Let ${\mathcal F}$ be an oriented matroid.

The *tope graph* of \mathcal{F} :

vertices = topes of \mathcal{F} (= nowhere-zero covectors)

¹or pseudo-sphere arrangement

Let ${\mathcal F}$ be an oriented matroid.

The *tope graph* of \mathcal{F} :

vertices = topes of \mathcal{F} (= nowhere-zero covectors) (set of topes denoted \mathcal{T})

¹or pseudo-sphere arrangement

Let $\ensuremath{\mathcal{F}}$ be an oriented matroid.

The *tope graph* of \mathcal{F} :

vertices = topes of \mathcal{F} (= nowhere-zero covectors) (set of topes denoted \mathcal{T}) edges: {R, S}; R and S differ in exactly one entry.

¹or pseudo-sphere arrangement

Let ${\mathcal F}$ be an oriented matroid.

The *tope graph* of \mathcal{F} :

vertices = topes of \mathcal{F} (= nowhere-zero covectors) (set of topes denoted \mathcal{T}) edges: {R, S}; R and S differ in exactly one entry.

geometry: in any real realization of \mathcal{F} (as a hyperplane arrangement¹), topes correspond to regions (chambers), and two topes are adjacent in the tope graph iff the corresponding regions are adjacent (have a common "wall").

¹or pseudo-sphere arrangement

Let ${\mathcal F}$ be an oriented matroid.

The *tope graph* of \mathcal{F} :

vertices = topes of \mathcal{F} (= nowhere-zero covectors) (set of topes denoted \mathcal{T}) edges: {R, S}; R and S differ in exactly one entry.

geometry: in any real realization of \mathcal{F} (as a hyperplane arrangement¹), topes correspond to regions (chambers), and two topes are adjacent in the tope graph iff the corresponding regions are adjacent (have a common "wall").

Remark: If one fixes a tope U, there is a unique acyclic orientation of the tope graph with U as a source, giving a partial order \leq_U on \mathcal{T} .

¹or pseudo-sphere arrangement

Tope-pair poset

Tope-pair poset

Define a partial order on the set $\mathcal{Q} = \mathcal{T} \times \mathcal{T}$ by

Tope-pair poset

Define a partial order on the set $\mathcal{Q}=\mathcal{T}\times\mathcal{T}$ by

 $(R,S) \leq (U,V)$ if and only if $R \leq_U S \leq_U V$,

Tope-pair poset

Define a partial order on the set $\mathcal{Q}=\mathcal{T}\times\mathcal{T}$ by

 $(R, S) \leq (U, V)$ if and only if $R \leq_U S \leq_U V$,

i.e., $(R, S) \leq (U, V)$ iff, in the tope graph, there is a geodesic from U to V containing a geodesic from R to S.

Tope-pair poset

Define a partial order on the set $\mathcal{Q}=\mathcal{T}\times\mathcal{T}$ by

 $(R,S) \leq (U,V)$ if and only if $R \leq_U S \leq_U V$,

i.e., $(R, S) \leq (U, V)$ iff, in the tope graph, there is a geodesic from U to V containing a geodesic from R to S.

Theorem (Delucchi-F, PAMS 2017)

If \mathcal{F} is an orientation of M coming from a real realization \mathcal{A} , then the nerve of the poset (\mathcal{Q}, \leq) is homotopy-equivalent to the arrangement complement X.

Tope-pair poset

Define a partial order on the set $\mathcal{Q}=\mathcal{T}\times\mathcal{T}$ by

 $(R,S) \leq (U,V)$ if and only if $R \leq_U S \leq_U V$,

i.e., $(R, S) \leq (U, V)$ iff, in the tope graph, there is a geodesic from U to V containing a geodesic from R to S.

Theorem (Delucchi-F, PAMS 2017)

If \mathcal{F} is an orientation of M coming from a real realization \mathcal{A} , then the nerve of the poset (\mathcal{Q}, \leq) is homotopy-equivalent to the arrangement complement X.

(nerve = order complex; simplices are chains in Q.)

Example

Remarks

²due to Priyavrat Deshpande

Remarks

- The poset Q is an alternative (with an easier description) to the *Salvetti* poset S associated with \mathcal{F} . There is an order-preserving map $Q \longrightarrow S$ to which the Quillen fiber lemma applies, yielding the theorem as a consequence of Salvetti's work.

²due to Priyavrat Deshpande

Remarks

- The poset Q is an alternative (with an easier description) to the *Salvetti* poset S associated with \mathcal{F} . There is an order-preserving map $Q \longrightarrow S$ to which the Quillen fiber lemma applies, yielding the theorem as a consequence of Salvetti's work.

- \mathcal{Q} has an additional feature, namely, there is a natural defined action of the circle S^1 (= the nerve of $\{\pm 1, \pm i\}$) that accurately models the diagonal action of \mathbb{C}^{\times} on X. (No such action is apparent for S.)

²due to Priyavrat Deshpande

Remarks

- The poset Q is an alternative (with an easier description) to the *Salvetti* poset S associated with \mathcal{F} . There is an order-preserving map $Q \longrightarrow S$ to which the Quillen fiber lemma applies, yielding the theorem as a consequence of Salvetti's work.

- Q has an additional feature, namely, there is a natural defined action of the circle S^1 (= the nerve of $\{\pm 1, \pm i\}$) that accurately models the diagonal action of \mathbb{C}^{\times} on X. (No such action is apparent for S.)

(The orbit of (R, S) is $\{(R, S), (S, -R), (-R, -S), (-S, R)\}$.)

²due to Priyavrat Deshpande

Remarks

- The poset Q is an alternative (with an easier description) to the *Salvetti* poset S associated with \mathcal{F} . There is an order-preserving map $Q \longrightarrow S$ to which the Quillen fiber lemma applies, yielding the theorem as a consequence of Salvetti's work.

- \mathcal{Q} has an additional feature, namely, there is a natural defined action of the circle S^1 (= the nerve of $\{\pm 1, \pm i\}$) that accurately models the diagonal action of \mathbb{C}^{\times} on X. (No such action is apparent for S.)

(The orbit of (R, S) is $\{(R, S), (S, -R), (-R, -S), (-S, R)\}$.)

- There is a notion of complexification of a pseudo-hyperplane arrangement²; the result holds in that generality.

²due to Priyavrat Deshpande

"Oriented convexity," "charts"

"Oriented convexity," "charts"

- The collection of geodesics from R to S forms a kind of "convex set" with an sense of direction.

"Oriented convexity," "charts"

- The collection of geodesics from R to S forms a kind of "convex set" with an sense of direction.

 \mathcal{Q} is like a system of convex sets:

"Oriented convexity," "charts"

- The collection of geodesics from R to S forms a kind of "convex set" with an sense of direction.

 $\mathcal Q$ is like a system of convex sets:

"oriented anti-matroids?"

"Oriented convexity," "charts"

- The collection of geodesics from R to S forms a kind of "convex set" with an sense of direction.

 $\mathcal Q$ is like a system of convex sets:

"oriented anti-matroids?" (wave hands here)

"Oriented convexity," "charts"

- The collection of geodesics from R to S forms a kind of "convex set" with an sense of direction.

Q is like a system of convex sets:

"oriented anti-matroids?" (wave hands here)

- The poset ${\mathcal Q}$ is covered by an atlas of "charts"

 $\{(\mathcal{T},\leq_U)\longrightarrow \mathcal{Q}\mid U\in\mathcal{T}\}.$

(The posets (\mathcal{T}, \leq_U) vary with U in general.)

"Oriented convexity," "charts"

- The collection of geodesics from R to S forms a kind of "convex set" with an sense of direction.

Q is like a system of convex sets:

"oriented anti-matroids?" (wave hands here)

- The poset ${\mathcal Q}$ is covered by an atlas of "charts"

 $\{(\mathcal{T},\leq_U)\longrightarrow \mathcal{Q}\mid U\in \mathcal{T}\}.$

(The posets (\mathcal{T}, \leq_U) vary with U in general.) Transition functions?

A quick aside on Coxeter arrangements

A quick aside on Coxeter arrangements

(joint work in progress with Dana Ernst and Sonja Riedel)

Suppose A is the set of mirrors in a finite real linear group W generated by reflections (a *Coxeter group*).

A quick aside on Coxeter arrangements

(joint work in progress with Dana Ernst and Sonja Riedel)

Suppose A is the set of mirrors in a finite real linear group W generated by reflections (a *Coxeter group*).

Then W acts on X, preserving $V = \bigcup_{H \in \mathcal{A}} H$, and W acts on freely and transitively on \mathcal{T} , preserving adjacency. Hence W acts freely by order-preserving maps on \mathcal{Q} .

A quick aside on Coxeter arrangements

(joint work in progress with Dana Ernst and Sonja Riedel)

Suppose A is the set of mirrors in a finite real linear group W generated by reflections (a *Coxeter group*).

Then W acts on X, preserving $V = \bigcup_{H \in \mathcal{A}} H$, and W acts on freely and transitively on \mathcal{T} , preserving adjacency. Hence W acts freely by order-preserving maps on \mathcal{Q} .

Theorem (Ernst-F-Riedel, 2016)

The space of orbits of the action of W on the nerve of Q:

- is the nerve of a category W with set of objects W, generated by the union of the left and right weak (Bruhat) orders, and
- has the homotopy type of X/W.

A quick aside on Coxeter arrangements

(joint work in progress with Dana Ernst and Sonja Riedel)

Suppose A is the set of mirrors in a finite real linear group W generated by reflections (a *Coxeter group*).

Then W acts on X, preserving $V = \bigcup_{H \in \mathcal{A}} H$, and W acts on freely and transitively on \mathcal{T} , preserving adjacency. Hence W acts freely by order-preserving maps on \mathcal{Q} .

Theorem (Ernst-F-Riedel, 2016)

The space of orbits of the action of W on the nerve of Q:

- is the nerve of a category W with set of objects W, generated by the union of the left and right weak (Bruhat) orders, and
- has the homotopy type of X/W.

Morphisms $v \xrightarrow{g} w$ in \mathcal{W} are labeled by group elements $g \in W$ that satisfy $gv \preceq_R w$.

Context and example

Context and example

Context: X/W is isomorphic to the complement of an affine variety in \mathbb{C}^r , the *W*-discriminant.

Context and example

Context: X/W is isomorphic to the complement of an affine variety in \mathbb{C}^r , the *W*-discriminant. $\pi_1(X/W)$ is a generalized braid group.

Context and example

Context: X/W is isomorphic to the complement of an affine variety in \mathbb{C}^r , the *W*-discriminant.

 $\pi_1(X/W)$ is a generalized braid group.

Example sts = tstts st t s 5

Figure: A model for the braid group on three strands.

An example

An example

The *non-Pappus* matroid P is an orientable matroid on 9 points not realizable over any field.

An example

The *non-Pappus* matroid P is an orientable matroid on 9 points not realizable over any field.

Theorem (Delucchi-F, PAMS 2017)

Let \mathcal{F} be an orientation of P, and \mathcal{Q} the associated tope-pair poset. The nerve of \mathcal{Q} is not homotopy equivalent to the complement of any complex hyperplane arrangement.

Strategy of proof

Strategy of proof

- If such \mathcal{A} exists, with underlying matroid M, then the cohomology ring $H^{\cdot}(X, \mathbb{C})$ is isomorphic to OS (M), the *Orlik-Solomon algebra* of M.

Strategy of proof

- If such \mathcal{A} exists, with underlying matroid M, then the cohomology ring $H^{\cdot}(X, \mathbb{C})$ is isomorphic to OS (M), the *Orlik-Solomon algebra* of M. (It follows, e.g., that M must have 9 points.)

Strategy of proof

- If such \mathcal{A} exists, with underlying matroid M, then the cohomology ring $H^{\cdot}(X, \mathbb{C})$ is isomorphic to OS (M), the *Orlik-Solomon algebra* of M. (It follows, e.g., that M must have 9 points.)

- the multiplication $OS^1(M) \times OS^1(M) \longrightarrow OS^2(M)$ determines a subspace arrangement $\mathcal{R}^1(M)$ in $OS^1(M) \cong \mathbb{C}^n$, (n = 9 for us) determined up to ambient linear isomorphism by the ring.

Strategy of proof

- If such \mathcal{A} exists, with underlying matroid M, then the cohomology ring $H^{\cdot}(X, \mathbb{C})$ is isomorphic to OS (M), the *Orlik-Solomon algebra* of M. (It follows, e.g., that M must have 9 points.)

- the multiplication $OS^1(M) \times OS^1(M) \longrightarrow OS^2(M)$ determines a subspace arrangement $\mathcal{R}^1(M)$ in $OS^1(M) \cong \mathbb{C}^n$, (n = 9 for us) determined up to ambient linear isomorphism by the ring. So the polymatroid determined by $\mathcal{R}^1(M)$ is a homotopy invariant of X.

Strategy of proof

- If such \mathcal{A} exists, with underlying matroid M, then the cohomology ring $H^{\cdot}(X, \mathbb{C})$ is isomorphic to OS (M), the *Orlik-Solomon algebra* of M. (It follows, e.g., that M must have 9 points.)

- the multiplication $OS^1(M) \times OS^1(M) \longrightarrow OS^2(M)$ determines a subspace arrangement $\mathcal{R}^1(M)$ in $OS^1(M) \cong \mathbb{C}^n$, (n = 9 for us) determined up to ambient linear isomorphism by the ring. So the polymatroid determined by $\mathcal{R}^1(M)$ is a homotopy invariant of X. (In fact it depends only on $\pi_1(X)$.)

Strategy of proof

- If such \mathcal{A} exists, with underlying matroid M, then the cohomology ring $H^{\cdot}(X, \mathbb{C})$ is isomorphic to OS (M), the *Orlik-Solomon algebra* of M. (It follows, e.g., that M must have 9 points.)

- the multiplication $OS^1(M) \times OS^1(M) \longrightarrow OS^2(M)$ determines a subspace arrangement $\mathcal{R}^1(M)$ in $OS^1(M) \cong \mathbb{C}^n$, (n = 9 for us) determined up to ambient linear isomorphism by the ring. So the polymatroid determined by $\mathcal{R}^1(M)$ is a homotopy invariant of X. (In fact it depends only on $\pi_1(X)$.)

Problem: Reconstruct P from the polymatroid of $\mathcal{R}^1(\mathsf{P})$.

Elements of \mathcal{R}^1

 $^{^3 \}text{or}, \ \text{``tropically,''} \ \text{by} \ \{0,1\} \ \text{matrices}$

Elements of \mathcal{R}^1

- elements of \mathcal{R}^1 are subspaces of $\Delta\cap\mathbb{C}',$ where

$$\Delta = \{x \in \mathbb{C}^n \mid \sum_{i=1}^n x_i = 0\}$$

and $I \subseteq [n]$, and are defined by $\{0, \pm 1\}$ matrices³;

³or, "tropically," by $\{0, 1\}$ matrices

- elements of \mathcal{R}^1 are subspaces of $\Delta\cap\mathbb{C}',$ where

$$\Delta = \{x \in \mathbb{C}^n \mid \sum_{i=1}^n x_i = 0\}$$

and $I \subseteq [n]$, and are defined by $\{0, \pm 1\}$ matrices³;

- each rank-two flat X with $|X| \ge 3$ gives a subspace $\Delta \cap \mathbb{R}^X$ in \mathcal{R}^1 , of dimension |X| - 1;

³or, "tropically," by $\{0, 1\}$ matrices

- elements of \mathcal{R}^1 are subspaces of $\Delta\cap\mathbb{C}',$ where

$$\Delta = \{x \in \mathbb{C}^n \mid \sum_{i=1}^n x_i = 0\}$$

and $I \subseteq [n]$, and are defined by $\{0, \pm 1\}$ matrices³;

- each rank-two flat X with $|X| \ge 3$ gives a subspace $\Delta \cap \mathbb{R}^X$ in \mathcal{R}^1 , of dimension |X| - 1;

- all other elements of \mathcal{R}^1 have dimension two or three.

³or, "tropically," by $\{0, 1\}$ matrices

- elements of \mathcal{R}^1 are subspaces of $\Delta\cap\mathbb{C}',$ where

$$\Delta = \{x \in \mathbb{C}^n \mid \sum_{i=1}^n x_i = 0\}$$

and $I \subseteq [n]$, and are defined by $\{0, \pm 1\}$ matrices³;

- each rank-two flat X with $|X| \ge 3$ gives a subspace $\Delta \cap \mathbb{R}^X$ in \mathcal{R}^1 , of dimension |X| - 1;

- all other elements of \mathcal{R}^1 have dimension two or three. (so one can detect the existence of rank-two flats of size at least four).

³or, "tropically," by $\{0, 1\}$ matrices

- elements of \mathcal{R}^1 are subspaces of $\Delta\cap\mathbb{C}',$ where

$$\Delta = \{x \in \mathbb{C}^n \mid \sum_{i=1}^n x_i = 0\}$$

and $I \subseteq [n]$, and are defined by $\{0, \pm 1\}$ matrices³;

- each rank-two flat X with $|X| \ge 3$ gives a subspace $\Delta \cap \mathbb{R}^X$ in \mathcal{R}^1 , of dimension |X| - 1;

- all other elements of \mathcal{R}^1 have dimension two or three. (so one can detect the existence of rank-two flats of size at least four).

- small submatroids (e.g., $M(K(_4), \text{ rank-three whirl and one of its single element extensions) are determined by their <math>\mathcal{R}^{1}$'s.

³or, "tropically," by $\{0, 1\}$ matrices

Pictures

Finis

Finis

We are able to reconstruct P from $\mathcal{R}^1(\mathsf{P})$ using, primarily, the last observation. Then M must be P, which is not realizable.

Finis

We are able to reconstruct P from $\mathcal{R}^1(P)$ using, primarily, the last observation. Then M must be P, which is not realizable.

Problem

Give a description of $\mathcal{R}^1(M)$ for graphic matroids.