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Motivation
Tope-pair poset

Coxeter arrangements
Realization of homotopy types

Complex hyperplane arrangements

Motivating problem:
An arrangement A of linear complex hyperplanes is a realization of a matroid
M; the union of the hyperplanes is an (embedded, singular) affine variety V .

To what extent is the geometry/topology of the pair (Cr ,V ), or the
complement X := Cr − V , determined by the matroid M?

(Note: X = W ∩ (C×)n if W ∈ Gr(r ,Cn) represents M.)

Special case: If A is a real realization, one has an associated orientation of M.

(joint work with Emanuele Delucchi.)
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Tope-pair poset

Coxeter arrangements
Realization of homotopy types

Tope graph

Let F be an oriented matroid.

The tope graph of F :

vertices = topes of F (= nowhere-zero covectors) (set of topes denoted T )

edges: {R,S}; R and S differ in exactly one entry.

geometry: in any real realization of F (as a hyperplane arrangement1), topes
correspond to regions (chambers), and two topes are adjacent in the tope
graph iff the corresponding regions are adjacent (have a common “wall”).

Remark: If one fixes a tope U, there is a unique acyclic orientation of the tope
graph with U as a source, giving a partial order ≤U on T .

1or pseudo-sphere arrangement
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Tope-pair poset

Define a partial order on the set Q = T × T by

(R, S) ≤ (U,V ) if and only if R ≤U S ≤U V ,

i.e., (R,S) ≤ (U,V ) iff, in the tope graph, there is a geodesic from U to V
containing a geodesic from R to S .

Theorem (Delucchi-F, PAMS 2017)

If F is an orientation of M coming from a real realization A, then the nerve of
the poset (Q,≤) is homotopy-equivalent to the arrangement complement X .

(nerve = order complex; simplices are chains in Q.)
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Example

AF = ρ(x) BE CD DC EB FA = ρ3(x)

AD DABC CB AE EA BF FB CF FC DE ED

AB BA AC CA BD DB CE EC DF FD EF FE

AA = x BB CC DD EE FF = ρ2(x)

M.J. Falk Pairs of Topes 5 / 14
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Remarks

- The poset Q is an alternative (with an easier description) to the Salvetti
poset S associated with F . There is an order-preserving map Q −→ S to
which the Quillen fiber lemma applies, yielding the theorem as a
consequence of Salvetti’s work.

- Q has an additional feature, namely, there is a natural defined action of
the circle S1 (= the nerve of {±1,±i}) that accurately models the
diagonal action of C× on X . (No such action is apparent for S.)

(The orbit of (R,S) is {(R, S), (S ,−R), (−R,−S), (−S ,R)}.)

- There is a notion of complexification of a pseudo-hyperplane
arrangement2; the result holds in that generality.

2due to Priyavrat Deshpande
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“Oriented convexity,” “charts”

- The collection of geodesics from R to S forms a kind of “convex set”
with an sense of direction.
Q is like a system of convex sets:
“oriented anti-matroids?” (wave hands here)

- The poset Q is covered by an atlas of “charts”

{(T ,≤U) −→ Q | U ∈ T }.

(The posets (T ,≤U) vary with U in general.) Transition functions?
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A quick aside on Coxeter arrangements

(joint work in progress with Dana Ernst and Sonja Riedel)

Suppose A is the set of mirrors in a finite real linear group W generated by
reflections (a Coxeter group).

Then W acts on X , preserving V =
⋃

H∈A H, and W acts on freely and
transitively on T , preserving adjacency. Hence W acts freely by
order-preserving maps on Q.

Theorem (Ernst-F-Riedel, 2016)

The space of orbits of the action of W on the nerve of Q:
• is the nerve of a category W with set of objects W , generated by the
union of the left and right weak (Bruhat) orders, and

• has the homotopy type of X/W.

Morphisms v
g−→ w in W are labeled by group elements g ∈W that satisfy

gv �R w .
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Context and example

Context: X/W is isomorphic to the complement of an affine variety in Cr , the
W-discriminant.
π1(X/W ) is a generalized braid group.

Example

sts = tst

ts

s
66 BB

st

t
hh\\

s

t

OO 55

t

ii

s

OO

e
s

[[ kk

t

CC44

Figure: A model for the braid group on three strands.
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An example

The non-Pappus matroid P is an orientable matroid on 9 points not realizable
over any field.

Theorem (Delucchi-F, PAMS 2017)

Let F be an orientation of P, and Q the associated tope-pair poset. The nerve
of Q is not homotopy equivalent to the complement of any complex hyperplane
arrangement.
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Strategy of proof

- If such A exists, with underlying matroid M, then the cohomology ring
H ·(X ,C) is isomorphic to OS·(M), the Orlik-Solomon algebra of M.
(It follows, e.g., that M must have 9 points.)

- the multiplication OS1(M)× OS1(M) −→ OS2(M) determines a
subspace arrangement R1(M) in OS1(M) ∼= Cn, (n = 9 for us) determined
up to ambient linear isomorphism by the ring. So the polymatroid
determined by R1(M) is a homotopy invariant of X .
(In fact it depends only on π1(X ).)

Problem: Reconstruct P from the polymatroid of R1(P).
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Elements of R1

- elements of R1 are subspaces of ∆ ∩ CI , where

∆ = {x ∈ Cn |
n∑

i=1

xi = 0}

and I ⊆ [n], and are defined by {0,±1} matrices3;

- each rank-two flat X with |X | ≥ 3 gives a subspace ∆ ∩ RX in R1, of
dimension |X | − 1;

- all other elements of R1 have dimension two or three.
(so one can detect the existence of rank-two flats of size at least four).

- small submatroids (e.g., M(K(4), rank-three whirl and one of its single
element extensions) are determined by their R1’s.

3or, “tropically,” by {0, 1} matrices
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Pictures

W :

1 2 3

6 4

5

V :

1 2 3

6 5 4

7

M:

1 2 3

7
8

9

4 5 6
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Finis

We are able to reconstruct P from R1(P) using, primarily, the last observation.
Then M must be P, which is not realizable.

Problem

Give a description of R1(M) for graphic matroids.
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