Pairs of Topes

Michael J. Falk

Northern Arizona University

CG18 - Matroids, Oriented Matroids, and Applications CIRM
Marseille-Luminy
September 25, 2018

Complex hyperplane arrangements

Complex hyperplane arrangements

Motivating problem:
An arrangement \mathcal{A} of linear complex hyperplanes is a realization of a matroid M; the union of the hyperplanes is an (embedded, singular) affine variety V.

Complex hyperplane arrangements

Motivating problem:
An arrangement \mathcal{A} of linear complex hyperplanes is a realization of a matroid M ; the union of the hyperplanes is an (embedded, singular) affine variety V.

To what extent is the geometry/topology of the pair $\left(\mathbb{C}^{r}, V\right)$, or the complement $X:=\mathbb{C}^{r}-V$, determined by the matroid M ?

Complex hyperplane arrangements

Motivating problem:
An arrangement \mathcal{A} of linear complex hyperplanes is a realization of a matroid M; the union of the hyperplanes is an (embedded, singular) affine variety V.

To what extent is the geometry/topology of the pair $\left(\mathbb{C}^{r}, V\right)$, or the complement $X:=\mathbb{C}^{r}-V$, determined by the matroid M ?
(Note: $X=W \cap\left(\mathbb{C}^{\times}\right)^{n}$ if $W \in \operatorname{Gr}\left(r, \mathbb{C}^{n}\right)$ represents M .)

Complex hyperplane arrangements

Motivating problem:
An arrangement \mathcal{A} of linear complex hyperplanes is a realization of a matroid M ; the union of the hyperplanes is an (embedded, singular) affine variety V.

To what extent is the geometry/topology of the pair $\left(\mathbb{C}^{r}, V\right)$, or the complement $X:=\mathbb{C}^{r}-V$, determined by the matroid M ?
(Note: $X=W \cap\left(\mathbb{C}^{\times}\right)^{n}$ if $W \in \operatorname{Gr}\left(r, \mathbb{C}^{n}\right)$ represents M .)

Special case: If \mathcal{A} is a real realization, one has an associated orientation of M.

Complex hyperplane arrangements

Motivating problem:
An arrangement \mathcal{A} of linear complex hyperplanes is a realization of a matroid M; the union of the hyperplanes is an (embedded, singular) affine variety V.

To what extent is the geometry/topology of the pair $\left(\mathbb{C}^{r}, V\right)$, or the complement $X:=\mathbb{C}^{r}-V$, determined by the matroid M ?
(Note: $X=W \cap\left(\mathbb{C}^{\times}\right)^{n}$ if $W \in \operatorname{Gr}\left(r, \mathbb{C}^{n}\right)$ represents M .)

Special case: If \mathcal{A} is a real realization, one has an associated orientation of M.
(joint work with Emanuele Delucchi.)

Tope graph

Tope graph

Let \mathcal{F} be an oriented matroid.

Tope graph

Let \mathcal{F} be an oriented matroid.

The tope graph of \mathcal{F} :

Tope graph

Let \mathcal{F} be an oriented matroid.

The tope graph of \mathcal{F} :
vertices $=$ topes of $\mathcal{F}(=$ nowhere-zero covectors $)$

[^0]
Tope graph

Let \mathcal{F} be an oriented matroid.

The tope graph of \mathcal{F} :
vertices $=$ topes of \mathcal{F} ($=$ nowhere-zero covectors) \quad (set of topes denoted \mathcal{T})

[^1]
Tope graph

Let \mathcal{F} be an oriented matroid.
The tope graph of \mathcal{F} :
vertices $=$ topes of \mathcal{F} (= nowhere-zero covectors) (set of topes denoted $\mathcal{T})$ edges: $\{R, S\} ; R$ and S differ in exactly one entry.

[^2]
Tope graph

Let \mathcal{F} be an oriented matroid.
The tope graph of \mathcal{F} :
vertices $=$ topes of \mathcal{F} (= nowhere-zero covectors) (set of topes denoted \mathcal{T})
edges: $\{R, S\} ; R$ and S differ in exactly one entry.
geometry: in any real realization of \mathcal{F} (as a hyperplane arrangement ${ }^{1}$), topes correspond to regions (chambers), and two topes are adjacent in the tope graph iff the corresponding regions are adjacent (have a common "wall").

[^3]
Tope graph

Let \mathcal{F} be an oriented matroid.
The tope graph of \mathcal{F} :
vertices $=$ topes of \mathcal{F} (= nowhere-zero covectors) \quad (set of topes denoted \mathcal{T})
edges: $\{R, S\} ; R$ and S differ in exactly one entry.
geometry: in any real realization of \mathcal{F} (as a hyperplane arrangement ${ }^{1}$), topes correspond to regions (chambers), and two topes are adjacent in the tope graph iff the corresponding regions are adjacent (have a common "wall").

Remark: If one fixes a tope U, there is a unique acyclic orientation of the tope graph with U as a source, giving a partial order \leq_{U} on \mathcal{T}.

[^4]
Tope-pair poset

Tope-pair poset

Define a partial order on the set $\mathcal{Q}=\mathcal{T} \times \mathcal{T}$ by

Tope-pair poset

Define a partial order on the set $\mathcal{Q}=\mathcal{T} \times \mathcal{T}$ by
$(R, S) \leq(U, V)$ if and only if $R \leq_{U} S \leq_{U} V$,

Tope-pair poset

Define a partial order on the set $\mathcal{Q}=\mathcal{T} \times \mathcal{T}$ by

$$
(R, S) \leq(U, V) \text { if and only if } R \leq_{U} S \leq_{U} V
$$

i.e., $(R, S) \leq(U, V)$ iff, in the tope graph, there is a geodesic from U to V containing a geodesic from R to S.

Tope-pair poset

Define a partial order on the set $\mathcal{Q}=\mathcal{T} \times \mathcal{T}$ by

$$
(R, S) \leq(U, V) \text { if and only if } R \leq_{U} S \leq_{U} V
$$

i.e., $(R, S) \leq(U, V)$ iff, in the tope graph, there is a geodesic from U to V containing a geodesic from R to S.

Theorem (Delucchi-F, PAMS 2017)
If \mathcal{F} is an orientation of M coming from a real realization \mathcal{A}, then the nerve of the poset (\mathcal{Q}, \leq) is homotopy-equivalent to the arrangement complement X.

Tope-pair poset

Define a partial order on the set $\mathcal{Q}=\mathcal{T} \times \mathcal{T}$ by

$$
(R, S) \leq(U, V) \text { if and only if } R \leq_{U} S \leq_{U} V
$$

i.e., $(R, S) \leq(U, V)$ iff, in the tope graph, there is a geodesic from U to V containing a geodesic from R to S.

Theorem (Delucchi-F, PAMS 2017)

If \mathcal{F} is an orientation of M coming from a real realization \mathcal{A}, then the nerve of the poset (\mathcal{Q}, \leq) is homotopy-equivalent to the arrangement complement X.
(nerve $=$ order complex; simplices are chains in \mathcal{Q}.)

Example

Remarks

Remarks

- The poset \mathcal{Q} is an alternative (with an easier description) to the Salvetti poset \mathcal{S} associated with \mathcal{F}. There is an order-preserving map $\mathcal{Q} \longrightarrow \mathcal{S}$ to which the Quillen fiber lemma applies, yielding the theorem as a consequence of Salvetti's work.

[^5]
Remarks

- The poset \mathcal{Q} is an alternative (with an easier description) to the Salvetti poset \mathcal{S} associated with \mathcal{F}. There is an order-preserving map $\mathcal{Q} \longrightarrow \mathcal{S}$ to which the Quillen fiber lemma applies, yielding the theorem as a consequence of Salvetti's work.
- \mathcal{Q} has an additional feature, namely, there is a natural defined action of the circle $S^{1}(=$ the nerve of $\{ \pm 1, \pm i\})$ that accurately models the diagonal action of \mathbb{C}^{\times}on X. (No such action is apparent for \mathcal{S}.)

[^6]
Remarks

- The poset \mathcal{Q} is an alternative (with an easier description) to the Salvetti poset \mathcal{S} associated with \mathcal{F}. There is an order-preserving map $\mathcal{Q} \longrightarrow \mathcal{S}$ to which the Quillen fiber lemma applies, yielding the theorem as a consequence of Salvetti's work.
- \mathcal{Q} has an additional feature, namely, there is a natural defined action of the circle $S^{1}(=$ the nerve of $\{ \pm 1, \pm i\})$ that accurately models the diagonal action of \mathbb{C}^{\times}on X. (No such action is apparent for \mathcal{S}.)
(The orbit of (R, S) is $\{(R, S),(S,-R),(-R,-S),(-S, R)\}$.)

[^7]
Remarks

- The poset \mathcal{Q} is an alternative (with an easier description) to the Salvetti poset \mathcal{S} associated with \mathcal{F}. There is an order-preserving map $\mathcal{Q} \longrightarrow \mathcal{S}$ to which the Quillen fiber lemma applies, yielding the theorem as a consequence of Salvetti's work.
- \mathcal{Q} has an additional feature, namely, there is a natural defined action of the circle $S^{1}(=$ the nerve of $\{ \pm 1, \pm i\})$ that accurately models the diagonal action of \mathbb{C}^{\times}on X. (No such action is apparent for \mathcal{S}.)
(The orbit of (R, S) is $\{(R, S),(S,-R),(-R,-S),(-S, R)\}$.)
- There is a notion of complexification of a pseudo-hyperplane arrangement ${ }^{2}$; the result holds in that generality.

[^8]
"Oriented convexity," "charts"

"Oriented convexity," "charts"

- The collection of geodesics from R to S forms a kind of "convex set" with an sense of direction.

"Oriented convexity," "charts"

- The collection of geodesics from R to S forms a kind of "convex set" with an sense of direction.
\mathcal{Q} is like a system of convex sets:

"Oriented convexity," "charts"

- The collection of geodesics from R to S forms a kind of "convex set" with an sense of direction.
\mathcal{Q} is like a system of convex sets:
"oriented anti-matroids?"

"Oriented convexity," "charts"

- The collection of geodesics from R to S forms a kind of "convex set" with an sense of direction.
\mathcal{Q} is like a system of convex sets:
"oriented anti-matroids?" (wave hands here)

"Oriented convexity," "charts"

- The collection of geodesics from R to S forms a kind of "convex set" with an sense of direction.
\mathcal{Q} is like a system of convex sets:
"oriented anti-matroids?" (wave hands here)
- The poset \mathcal{Q} is covered by an atlas of "charts"

$$
\{(\mathcal{T}, \leq u) \longrightarrow \mathcal{Q} \mid U \in \mathcal{T}\}
$$

(The posets $\left(\mathcal{T}, \leq_{U}\right)$ vary with U in general.)

"Oriented convexity," "charts"

- The collection of geodesics from R to S forms a kind of "convex set" with an sense of direction.
\mathcal{Q} is like a system of convex sets:
"oriented anti-matroids?" (wave hands here)
- The poset \mathcal{Q} is covered by an atlas of "charts"

$$
\{(\mathcal{T}, \leq u) \longrightarrow \mathcal{Q} \mid U \in \mathcal{T}\}
$$

(The posets $\left(\mathcal{T}, \leq_{U}\right)$ vary with U in general.) Transition functions?

A quick aside on Coxeter arrangements

A quick aside on Coxeter arrangements

(joint work in progress with Dana Ernst and Sonja Riedel)
Suppose \mathcal{A} is the set of mirrors in a finite real linear group W generated by reflections (a Coxeter group).

A quick aside on Coxeter arrangements

(joint work in progress with Dana Ernst and Sonja Riedel)
Suppose \mathcal{A} is the set of mirrors in a finite real linear group W generated by reflections (a Coxeter group).

Then W acts on X, preserving $V=\bigcup_{H \in \mathcal{A}} H$, and W acts on freely and transitively on \mathcal{T}, preserving adjacency. Hence W acts freely by order-preserving maps on \mathcal{Q}.

A quick aside on Coxeter arrangements

(joint work in progress with Dana Ernst and Sonja Riedel)
Suppose \mathcal{A} is the set of mirrors in a finite real linear group W generated by reflections (a Coxeter group).

Then W acts on X, preserving $V=\bigcup_{H \in \mathcal{A}} H$, and W acts on freely and transitively on \mathcal{T}, preserving adjacency. Hence W acts freely by order-preserving maps on \mathcal{Q}.

Theorem (Ernst-F-Riedel, 2016)

The space of orbits of the action of W on the nerve of \mathcal{Q} :

- is the nerve of a category \mathcal{W} with set of objects W, generated by the union of the left and right weak (Bruhat) orders, and
- has the homotopy type of X / W.

A quick aside on Coxeter arrangements

(joint work in progress with Dana Ernst and Sonja Riedel)
Suppose \mathcal{A} is the set of mirrors in a finite real linear group W generated by reflections (a Coxeter group).

Then W acts on X, preserving $V=\bigcup_{H \in \mathcal{A}} H$, and W acts on freely and transitively on \mathcal{T}, preserving adjacency. Hence W acts freely by order-preserving maps on \mathcal{Q}.

Theorem (Ernst-F-Riedel, 2016)

The space of orbits of the action of W on the nerve of \mathcal{Q} :

- is the nerve of a category \mathcal{W} with set of objects W, generated by the union of the left and right weak (Bruhat) orders, and
- has the homotopy type of X / W.

Morphisms $v \xrightarrow{g} w$ in \mathcal{W} are labeled by group elements $g \in W$ that satisfy $g v \preceq_{R} w$.

Context and example

Context and example

Context: X / W is isomorphic to the complement of an affine variety in \mathbb{C}^{r}, the W-discriminant.

Context and example

Context: X / W is isomorphic to the complement of an affine variety in \mathbb{C}^{r}, the W-discriminant. $\pi_{1}(X / W)$ is a generalized braid group.

Context and example

Context: X / W is isomorphic to the complement of an affine variety in \mathbb{C}^{r}, the W-discriminant. $\pi_{1}(X / W)$ is a generalized braid group.

Example

Figure: A model for the braid group on three strands.

An example

An example

The non-Pappus matroid P is an orientable matroid on 9 points not realizable over any field.

An example

The non-Pappus matroid P is an orientable matroid on 9 points not realizable over any field.

Theorem (Delucchi-F, PAMS 2017)

Let \mathcal{F} be an orientation of P , and \mathcal{Q} the associated tope-pair poset. The nerve of \mathcal{Q} is not homotopy equivalent to the complement of any complex hyperplane arrangement.

Strategy of proof

Strategy of proof

- If such \mathcal{A} exists, with underlying matroid M , then the cohomology ring $H^{\cdot}(X, \mathbb{C})$ is isomorphic to $\mathrm{OS}^{(}(\mathrm{M})$, the Orlik-Solomon algebra of M .

Strategy of proof

- If such \mathcal{A} exists, with underlying matroid M , then the cohomology ring $H^{\cdot}(X, \mathbb{C})$ is isomorphic to $\mathrm{OS}^{-}(\mathrm{M})$, the Orlik-Solomon algebra of M . (It follows, e.g., that M must have 9 points.)

Strategy of proof

- If such \mathcal{A} exists, with underlying matroid M , then the cohomology ring $H^{\cdot}(X, \mathbb{C})$ is isomorphic to $\mathrm{OS}^{-}(\mathrm{M})$, the Orlik-Solomon algebra of M . (It follows, e.g., that M must have 9 points.)
- the multiplication $\mathrm{OS}^{1}(\mathrm{M}) \times \mathrm{OS}^{1}(\mathrm{M}) \longrightarrow \mathrm{OS}^{2}(\mathrm{M})$ determines a subspace arrangement $\mathcal{R}^{1}(\mathrm{M})$ in $\mathrm{OS}^{1}(\mathrm{M}) \cong \mathbb{C}^{n}$, ($n=9$ for us) determined up to ambient linear isomorphism by the ring.

Strategy of proof

- If such \mathcal{A} exists, with underlying matroid M , then the cohomology ring $H^{\cdot}(X, \mathbb{C})$ is isomorphic to $\mathrm{OS}^{(}(\mathrm{M})$, the Orlik-Solomon algebra of M . (It follows, e.g., that M must have 9 points.)
- the multiplication $\mathrm{OS}^{1}(\mathrm{M}) \times \mathrm{OS}^{1}(\mathrm{M}) \longrightarrow \mathrm{OS}^{2}(\mathrm{M})$ determines a subspace arrangement $\mathcal{R}^{1}(\mathrm{M})$ in $\mathrm{OS}^{1}(\mathrm{M}) \cong \mathbb{C}^{n},(n=9$ for us) determined up to ambient linear isomorphism by the ring. So the polymatroid determined by $\mathcal{R}^{1}(M)$ is a homotopy invariant of X.

Strategy of proof

- If such \mathcal{A} exists, with underlying matroid M , then the cohomology ring $H^{-}(X, \mathbb{C})$ is isomorphic to $\mathrm{OS}^{\circ}(\mathrm{M})$, the Orlik-Solomon algebra of M . (It follows, e.g., that M must have 9 points.)
- the multiplication $\mathrm{OS}^{1}(\mathrm{M}) \times \mathrm{OS}^{1}(\mathrm{M}) \longrightarrow \mathrm{OS}^{2}(\mathrm{M})$ determines a subspace arrangement $\mathcal{R}^{1}(\mathrm{M})$ in $\mathrm{OS}^{1}(\mathrm{M}) \cong \mathbb{C}^{n},(n=9$ for us) determined up to ambient linear isomorphism by the ring. So the polymatroid determined by $\mathcal{R}^{1}(M)$ is a homotopy invariant of X.
(In fact it depends only on $\pi_{1}(X)$.)

Strategy of proof

- If such \mathcal{A} exists, with underlying matroid M , then the cohomology ring $H^{\cdot}(X, \mathbb{C})$ is isomorphic to $\mathrm{OS}^{-}(\mathrm{M})$, the Orlik-Solomon algebra of M . (It follows, e.g., that M must have 9 points.)
- the multiplication $\mathrm{OS}^{1}(\mathrm{M}) \times \mathrm{OS}^{1}(\mathrm{M}) \longrightarrow \mathrm{OS}^{2}(\mathrm{M})$ determines a subspace arrangement $\mathcal{R}^{1}(\mathrm{M})$ in $\mathrm{OS}^{1}(\mathrm{M}) \cong \mathbb{C}^{n}$, ($n=9$ for us) determined up to ambient linear isomorphism by the ring. So the polymatroid determined by $\mathcal{R}^{1}(M)$ is a homotopy invariant of X.
(In fact it depends only on $\pi_{1}(X)$.)
Problem: Reconstruct P from the polymatroid of $\mathcal{R}^{1}(P)$.

Elements of \mathcal{R}^{1}

Elements of \mathcal{R}^{1}

- elements of \mathcal{R}^{1} are subspaces of $\Delta \cap \mathbb{C}^{\prime}$, where

$$
\Delta=\left\{x \in \mathbb{C}^{n} \mid \sum_{i=1}^{n} x_{i}=0\right\}
$$

and $I \subseteq[n]$, and are defined by $\{0, \pm 1\}$ matrices 3;

[^9]
Elements of \mathcal{R}^{1}

- elements of \mathcal{R}^{1} are subspaces of $\Delta \cap \mathbb{C}^{\prime}$, where

$$
\Delta=\left\{x \in \mathbb{C}^{n} \mid \sum_{i=1}^{n} x_{i}=0\right\}
$$

and $I \subseteq[n]$, and are defined by $\{0, \pm 1\}$ matrices 3;

- each rank-two flat X with $|X| \geq 3$ gives a subspace $\Delta \cap \mathbb{R}^{X}$ in \mathcal{R}^{1}, of dimension $|X|-1$;

[^10]
Elements of \mathcal{R}^{1}

- elements of \mathcal{R}^{1} are subspaces of $\Delta \cap \mathbb{C}^{\prime}$, where

$$
\Delta=\left\{x \in \mathbb{C}^{n} \mid \sum_{i=1}^{n} x_{i}=0\right\}
$$

and $I \subseteq[n]$, and are defined by $\{0, \pm 1\}$ matrices 3;

- each rank-two flat X with $|X| \geq 3$ gives a subspace $\Delta \cap \mathbb{R}^{X}$ in \mathcal{R}^{1}, of dimension $|X|-1$;
- all other elements of \mathcal{R}^{1} have dimension two or three.

[^11]
Elements of \mathcal{R}^{1}

- elements of \mathcal{R}^{1} are subspaces of $\Delta \cap \mathbb{C}^{\prime}$, where

$$
\Delta=\left\{x \in \mathbb{C}^{n} \mid \sum_{i=1}^{n} x_{i}=0\right\}
$$

and $I \subseteq[n]$, and are defined by $\{0, \pm 1\}$ matrices 3;

- each rank-two flat X with $|X| \geq 3$ gives a subspace $\Delta \cap \mathbb{R}^{X}$ in \mathcal{R}^{1}, of dimension $|X|-1$;
- all other elements of \mathcal{R}^{1} have dimension two or three. (so one can detect the existence of rank-two flats of size at least four).

[^12]
Elements of \mathcal{R}^{1}

- elements of \mathcal{R}^{1} are subspaces of $\Delta \cap \mathbb{C}^{\prime}$, where

$$
\Delta=\left\{x \in \mathbb{C}^{n} \mid \sum_{i=1}^{n} x_{i}=0\right\}
$$

and $I \subseteq[n]$, and are defined by $\{0, \pm 1\}$ matrices ${ }^{3}$;

- each rank-two flat X with $|X| \geq 3$ gives a subspace $\Delta \cap \mathbb{R}^{X}$ in \mathcal{R}^{1}, of dimension $|X|-1$;
- all other elements of \mathcal{R}^{1} have dimension two or three. (so one can detect the existence of rank-two flats of size at least four).
- small submatroids (e.g., $M(K(4)$, rank-three whirl and one of its single element extensions) are determined by their \mathcal{R}^{1} 's.

[^13]
Pictures

Finis

Finis

We are able to reconstruct P from $\mathcal{R}^{1}(P)$ using, primarily, the last observation. Then M must be P , which is not realizable.

Finis

We are able to reconstruct P from $\mathcal{R}^{1}(\mathrm{P})$ using, primarily, the last observation. Then M must be P , which is not realizable.

Problem

Give a description of $\mathcal{R}^{1}(\mathrm{M})$ for graphic matroids.

[^0]: ${ }^{1}$ or pseudo-sphere arrangement

[^1]: ${ }^{1}$ or pseudo-sphere arrangement

[^2]: ${ }^{1}$ or pseudo-sphere arrangement

[^3]: ${ }^{1}$ or pseudo-sphere arrangement

[^4]: ${ }^{1}$ or pseudo-sphere arrangement

[^5]: ${ }^{2}$ due to Priyavrat Deshpande

[^6]: ${ }^{2}$ due to Priyavrat Deshpande

[^7]: ${ }^{2}$ due to Priyavrat Deshpande

[^8]: ${ }^{2}$ due to Priyavrat Deshpande

[^9]: ${ }^{3}$ or, "tropically," by $\{0,1\}$ matrices

[^10]: ${ }^{3}$ or, "tropically," by $\{0,1\}$ matrices

[^11]: ${ }^{3}$ or, "tropically," by $\{0,1\}$ matrices

[^12]: ${ }^{3}$ or, "tropically," by $\{0,1\}$ matrices

[^13]: ${ }^{3}$ or, "tropically," by $\{0,1\}$ matrices

