Characteristic polynomials and chambers for cones in hyperplane arrangements

Galen Dorpalen-Barry ${ }^{1}$ (PhD work with V. Reiner ${ }^{1}$)
${ }^{1}$ University of Minnesota

Combinatorial Geometries, 2018

Overview

(1) Zaslavsky's Theorem
(2) Type A Reflection Arrangement \& Posets
(3) Family 1: Width 2 Posets
(4) Family 2: Disjoint Unions of Chains

Characteristic Polynomial of a Hyperplane Arrangement

Let \mathcal{A} be a hyperplane arrangement in \mathbb{R}^{n} and let $\mathcal{L}(\mathcal{A})$ denote the set of intersections of \mathcal{A}, ordered by reverse inclusion.

Definition

Then the characteristic polynomial $\chi_{\mathcal{A}}(t)$ of \mathcal{A} is

$$
\begin{aligned}
\chi_{\mathcal{A}}(t) & =\sum_{x \in \mathcal{L}(\mathcal{A})} \mu(\hat{0}, x) t^{\operatorname{dim} x} \\
& =\sum_{k=0}^{n}(-1)^{k} w_{k} t^{n-k}
\end{aligned}
$$

where w_{k} denotes the signless Whitney number of the 1 st kind of $\mathcal{L}(\mathcal{A})$.

Zaslavsky's Theorem

Theorem (Zaslavsky)

Let \mathcal{A} be a hyperplane arrangement in \mathbb{R}^{n}. Let $\chi_{\mathcal{A}}(t)$ be the characteristic polynomial of \mathcal{A}. Then

$$
\chi_{\mathcal{A}}(-1)=(-1)^{n} \#\binom{\text { chambers of the }}{\text { arrangement }}
$$

In other words

$$
\begin{aligned}
\#\binom{\text { chambers of the }}{\text { arrangement }} & = \pm \sum_{x \in \mathcal{L}(\mathcal{A})} \mu(\hat{0}, x)(-1)^{\operatorname{dim} x} \\
& =\sum_{x: r k x=1}|\mu(\hat{0}, x)| \\
& =w_{0}+w_{1}+\cdots+w_{n}
\end{aligned}
$$

Example

Consider the Type A reflection arrangement in \mathbb{R}^{4}. I've drawn a snapshot of a linearly-equivalent arrangement in \mathbb{R}^{3} (see note).

Note: All the hyperplanes pass through span $(\overrightarrow{1})$, so we project into the orthogonal complement of $\operatorname{span}(\overrightarrow{1})$.

Example

Some of the intersections of this arrangement:

Example

The intersection poset is

Example

The intersection poset is

Example

The intersection poset is

Characteristic Polynomial: $\chi_{\mathcal{A}}(t)=t^{4}-6 t^{3}+11 t^{2}-6 t$ Evaluated: $\chi_{\mathcal{A}}(-1)=1+6+11+6=24$

Example

Consider the affine arrangement where H_{34} is the line at infinity.

Example

Consider the affine arrangement where H_{34} is the line at infinity.

Example

We already computed the intersection poset of this affine arrangement when we did the previous example...

Example

We already computed the intersection poset of this affine arrangement when we did the previous example...

Example

We already computed the intersection poset of this affine arrangement when we did the previous example...

Example

We can obtain the characteristic polynomial from the Möbius function...

Example

We can obtain the characteristic polynomial from the Möbius function...

Characteristic Polynomial: $\chi_{\mathcal{A}}(t)=t^{4}-5 t^{3}+6 t^{2}$
Evaluated: $\chi_{\mathcal{A}}(-1)=1+5+6=12$

Cone of an Arrangement

Let \mathcal{A} be an arrangement with chambers $\mathcal{C}(\mathcal{A})$.

Definition

Let \mathcal{A} be an arrangement of hyperplanes. Let \mathcal{A}^{\prime} be a central subarrangement of \mathcal{A} and let $\mathcal{C}\left(A^{\prime}\right)$ the set of chambers of \mathcal{A}^{\prime}. Then a cone \mathcal{K} is an element of $\mathcal{C}\left(A^{\prime}\right)$.

Interior Intersections

Let $\mathcal{L}^{\text {int }}(\mathcal{A}, \mathcal{K})$ denote the set of insersections touching the interior of the cone and w_{k} denote the k th signless Whitney number of the first kind.

Definition

Let \mathcal{A} be a hyperplane arrangement and \mathcal{K} a cone of \mathcal{A}. Then the characteristic polynomial of \mathcal{K} is

$$
\begin{aligned}
\chi_{\mathcal{A}}(\mathcal{K}, t) & =\sum_{x \in \mathcal{L}^{\mathrm{int}}(\mathcal{A}, \mathcal{K})} \mu(\hat{0}, x) t^{\operatorname{dim} x} \\
& =\sum_{k=0}^{n}(-1)^{k+1} w_{k} t^{n-k}
\end{aligned}
$$

Example

Let's consider a cone \mathcal{K} defined by H_{12} and H_{34} in

Example

Let's consider a cone \mathcal{K} defined by H_{12} and H_{34} in

Example

Let's consider a cone \mathcal{K} defined by H_{12} and H_{34} in

Example

The intersection lattice of this cone is

Example

The intersection lattice of this cone is

Example

The intersection lattice of this cone is

Example

The intersection lattice of this cone is

Characteristic Polynomial: $\chi_{\mathcal{A}}(\mathcal{K}, t)=t^{4}-4 t^{3}+t^{2}$

Zaslavsky's Theorem, revisited

Theorem (Zaslavsky, 1977)

Let \mathcal{A} be a hyperplane arrangement in \mathbb{R}^{n} and \mathcal{K} be a cone of \mathcal{A}. Let $\chi_{\mathcal{A}}(\mathcal{K}, t)$ be the characteristic polynomial of the cone. Then

$$
\chi_{\mathcal{A}}^{\text {int }}(\mathcal{K},-1)=(-1)^{n} \#\binom{\text { chambers interior }}{\text { to the cone } \mathcal{K}} .
$$

In other words

$$
\begin{aligned}
\#\binom{\text { chambers of the }}{\text { arrangement }} & = \pm \sum_{x \in \mathcal{L}(\mathcal{A}, \mathcal{K})} \mu(\hat{0}, x)(-1)^{\operatorname{dim} x} \\
& =\sum_{x: r k x=1}|\mu(\hat{0}, x)| \\
& =w_{0}+w_{1}+\cdots+w_{n}
\end{aligned}
$$

Zaslavsky's Theorem, revisited

Theorem (Zaslavsky, 1977)

Let \mathcal{A} be a hyperplane arrangement in \mathbb{R}^{n} and \mathcal{K} be a cone of \mathcal{A}. Let $\chi_{\mathcal{A}}(\mathcal{K}, t)$ be the characteristic polynomial of the cone. Then

$$
\chi_{\mathcal{A}}^{\text {int }}(\mathcal{K},-1)=(-1)^{n} \#\binom{\text { chambers interior }}{\text { to the cone } \mathcal{K}} .
$$

Note:

- This is implicit in Brown's work on BHR random walks in hyperplane arrangements and cones (2000).
- $\mathcal{L}^{\text {int }}(\mathcal{A}, \mathcal{K})$ appears independently in work of Gente (2013) and Aguiar-Mahajan (2017) on Varchenko's determinant for cones.

Example

The intersection lattice of this cone is

Characteristic Polynomial: $\chi_{\mathcal{A}}(\mathcal{K}, t)=t^{4}-4 t^{3}+t^{2}$
Evaluated: $\chi_{\mathcal{A}}(\mathcal{K},-1)=1+4+1=6$

The Type A Reflection Arrangement

Definition

The Type A Reflection Arrangement A_{n-1} is the arrangement with hyperplanes $H_{i j}=\left\{\vec{x} \in \mathbb{R}^{n} \mid x_{i}-x_{j}=0\right\}$ for all $1 \leq i<j \leq n$.

Linear Extensions and Chambers

Chambers of A_{n-1}

The chambers A_{n-1} can be labelled by permutations on $[n]$ in which if i appears before j in the permutation, then $x_{i}<x_{j}$.

Example (A_{3-1}, projected into \mathbb{R}^{2})

Example (A_{4-1},projected into \mathbb{R}^{4})

Example (A_{4-1},projected into \mathbb{R}^{4})

Cones of the Type A Reflection Arrangement

Cones of A_{n-1}
Cones of A_{n-1} can be encoded as posets P on [n] by the rule if $x_{i}<x_{j}$ in the cone, then $i<j$ in P.

- If we have a cone of A_{n-1} defined by P, we'll call it \mathcal{K}_{P}.
- The chambers of \mathcal{K}_{P} can be labelled by linear extensions of P.

Example $\left(A_{4-1}\right)$

The chambers are labelled by linear extensions of P :

$$
1234, \quad 1324, \quad 1342, \quad 3124, \quad 3142, \quad 3412
$$

Example $\left(A_{4-1}\right)$

We can label the chambers of \mathcal{K}_{P} by linear extensions of P.

Example $\left(A_{4-1}\right)$

We can label the chambers of \mathcal{K}_{P} by linear extensions of P.

Posets \& Characteristic Polynomials

Let P be any poset on $[n]$ and let $\operatorname{LinExt}(P)$ denote the set of linear extensions of P. Then

$$
\begin{aligned}
w_{0}+w_{1}+\cdots+w_{n} & =\left.(-1)^{n} \chi_{\mathcal{A}}^{\mathrm{int}}\left(\mathcal{K}_{P}, t\right)\right|_{t=-1} \\
& =\# \operatorname{LinExt}(P)
\end{aligned}
$$

where w_{k} is the k th Whitney number of $\mathcal{L}(\mathcal{A}, \mathcal{K})$.

Question

What do the unsigned Whitney numbers $w_{0}, w_{1}, \ldots, w_{n}$ count?

Rephrasing: Fibres of Maps

Let P be any poset on $[n]$ and let $\operatorname{LinExt}(P)$ denote the set of linear extensions of P.

Question

Can we find a map $\varphi: \operatorname{LinExt}(P) \rightarrow \mathcal{L}^{\text {int }}\left(\mathcal{A}, \mathcal{K}_{P}\right)$ such that for $x \in \mathcal{L}^{\text {int }}\left(\mathcal{A}, \mathcal{K}_{P}\right)$, the cardinality of the preimage is precisely $|\mu(\hat{0}, x)|$?
That is

$$
\# \varphi^{-1}(x)=|\mu(\hat{0}, x)|
$$

Then the Whitney numbers are precisely

$$
w_{k}=\#\{\sigma \in \operatorname{LinExt}(P) \mid \operatorname{rk} \varphi(\sigma)=k\}
$$

Family 1: Width 2 Posets

Recall Dilworth's theorem (the width of a poset):
Theorem (Dilworth, 1950)
Let P be a poset and $A \subseteq P$ be an antichain of largest cadinality. Then A has the same number of elements as a minimum chain decomposition of P, called the width of a poset.

Family 1: Width 2 Posets

Proposition (GDB, 2018)

If P is a width 2 poset then $\# \operatorname{LinExt}(P)=\# \mathcal{L}^{\text {int }}\left(\mathcal{A}, \mathcal{K}_{P}\right)$.

Proof.

Since no antichain has more than two elements, the Möbius function values of $X \in \mathcal{L}^{\text {int }}\left(\mathcal{A}, \mathcal{K}_{P}\right)$ are ± 1.

Theorem (GDB, 2018)

For a choice of decomposition $P=P_{1} \sqcup P_{2}$ into 2 chains, there is a (simple) bijection $\varphi: \operatorname{LinExt}(P) \rightarrow \mathcal{L}^{\text {int }}\left(\mathcal{A}, \mathcal{K}_{P}\right)$.

Case Study: Ferrers' Posets

Let $F_{2, n}$ denote the poset associated to a $2 \times n$ rectangular Ferrers' diagram. Recall that

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}=\operatorname{LinExt}\left(F_{2, n}\right)
$$

Theorem (GDB, 2018)

We have $C_{n}=\operatorname{LinExt}\left(F_{2, n}\right)=w_{0}+w_{1}+\cdots+w_{n-1}$ where the w_{k} are Narayana numbers

$$
w_{k}=N(n, k+1)=\frac{1}{n}\binom{n}{k}\binom{n}{k-1} .
$$

In this bijection, intersections of 2 hyperplanes in $\mathcal{L}^{\text {int }}\left(\mathcal{A}, \mathcal{K}_{P}\right)$ correspond to valleys $D U$-adjacent pairs of the Dyck path.

Example

Disjoint Union of Chains

Suppose $P=\mathbf{a}_{1} \sqcup \mathbf{a}_{2} \sqcup \cdots \sqcup \mathbf{a}_{\ell}$ is a disjoint union of ℓ chains with cardinalities a_{i}. Then the Dilworth decomposition is unique (up to labelling chains).

Example

Let $P=\mathbf{a}_{1} \sqcup \mathbf{a}_{2}$ where $a_{1}=a_{2}=2$.

$$
P=\begin{array}{ll}
1 & 2 \\
1 & 2 \\
1 & 2
\end{array}
$$

Linear extensions of P : 1122, 1212, 2112,1221,2121,2211
The linear extensions are permutations of a multiset $\left\{1^{a_{1}}, 2^{a_{2}}, \ldots, \ell^{a_{\ell}}\right\}$.

Example

The permutations of $M=\left\{1^{2}, 2^{2}\right\}$ are

$$
\begin{aligned}
& \left(\begin{array}{llll}
1 & 1 & 2 & 2 \\
1 & 1 & 2 & 2
\end{array}\right),\left(\begin{array}{llll}
1 & 1 & 2 & 2 \\
1 & 2 & 1 & 2
\end{array}\right),\left(\begin{array}{llll}
1 & 1 & 2 & 2 \\
2 & 1 & 1 & 2
\end{array}\right) \\
& \left(\begin{array}{llll}
1 & 1 & 2 & 2 \\
1 & 2 & 2 & 1
\end{array}\right),\left(\begin{array}{llll}
1 & 1 & 2 & 2 \\
2 & 1 & 2 & 1
\end{array}\right),\left(\begin{array}{llll}
1 & 1 & 2 & 2 \\
2 & 2 & 1 & 1
\end{array}\right)
\end{aligned}
$$

The bottom row of each of these permutations corresponds to a linear extension of P : 1122, 1212, 2112,1221,2121,2211.

Question

Is there some statistic on multisets that will help us describe w_{0}, w_{1}, \ldots for a cone defined by a disjoint union of chains?

Foata's Intercalation Product

Example

Let $\sigma=\left(\begin{array}{llll}1 & 1 & 2 & 3 \\ 1 & 2 & 3 & 1\end{array}\right)$ and let $\rho=\left(\begin{array}{lllll}1 & 2 & 2 & 3 & 4 \\ 2 & 2 & 4 & 3 & 1\end{array}\right)$. To compute σ T ρ, we first juxtapose σ and ρ. This gives

$$
\left(\begin{array}{llll|lllll}
1 & 1 & 2 & 3 & 1 & 2 & 2 & 3 & 4 \\
1 & 2 & 3 & 1 & 2 & 2 & 4 & 3 & 1
\end{array}\right)
$$

Then we stably sort columns in nondecreasing order

$$
\left(\begin{array}{lllllllll}
1 & 1 & 1 & 2 & 2 & 2 & 3 & 3 & 4 \\
1 & 2 & 2 & 3 & 2 & 4 & 1 & 3 & 1
\end{array}\right) .
$$

Decomposition into Primes: Existence and Uniqueness

Theorem (Foata, 1969)

Every multiset permutation has a decomposition into a product of prime cycles. That is, for a multiset permutation σ there exist $t \geq 0$ prime cycles $\sigma_{1}, \ldots, \sigma_{t}$ such that

$$
\sigma=\sigma_{1} \mathrm{~T} \sigma_{2} \cdots \mathrm{~T} \sigma_{t}
$$

Theorem (Foata, 1969)

The cycle decomposition of a multiset permutation is unique up to interchanging pairs of adjacent, disjoint prime cycles.

Intercalation Statistic

The intercalation product gives a map $f: \operatorname{LinExt}(P) \rightarrow \mathcal{L}^{\text {int }}\left(\mathcal{A}, \mathcal{K}_{P}\right)$ in which $\sigma \in \operatorname{LinExt}(P)$ is sent to $x \in \mathcal{L}^{\text {int }}\left(\mathcal{A}, \mathcal{K}_{P}\right)$ which has blocks corresponding to cycles of σ.

Example ($M=\left\{1^{2}, 2^{2}\right\}$)

$$
\begin{aligned}
\left(\begin{array}{llll}
1 & 1 & 2 & 2 \\
2 & 1 & 1 & 2
\end{array}\right) & =\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) \top\binom{1}{1} \top\binom{2}{2} \\
& =\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) \top\binom{2}{2} \top\binom{1}{1}
\end{aligned}
$$

Then $f\left(\begin{array}{llll}1 & 1 & 2 & 2 \\ 2 & 1 & 1 & 2\end{array}\right)$ is $13|2| 4$.

Intercalation and Characteristic Polynomials

For a multiset permutation σ, let fcyc (σ) denote number of cycles in the decomposition of σ into prime cycles.

Theorem (GDB, 2018)
Let $\mathbf{a} \vDash n, P=\mathbf{a}_{1} \sqcup \cdots \sqcup \mathbf{a}_{\ell}$ and $M=\left\{1^{a_{1}}, 2^{a_{2}}, \ldots, \ell^{a_{\ell}}\right\}$. Then

$$
\chi_{A_{n-1}}^{\text {int }}\left(K_{P, t}=\sum_{\substack{\text { multiset } \\ \text { permutations } \\ \omega \text { of } M}}(-t)^{f c y c(\omega)}\right.
$$

Example (A_{4-1})

Consider the cone defined by

Let's compute the characteristic polynomial in two ways.

Example (Method 1)

The intersection meet semilattice of \mathcal{K}_{P} is

We have $\chi_{A_{n-1}}^{\text {int }}\left(\mathcal{K}_{P}, t\right)=t^{4}-4 t^{3}+t^{2}$.

Example (Method 2)

For $M=\left\{1^{2}, 2^{2}\right\}$, we have

$$
\begin{aligned}
& \left(\begin{array}{llll}
1 & 1 & 2 & 2 \\
1 & 1 & 2 & 2
\end{array}\right)=\binom{1}{1} T\binom{1}{1} T\binom{2}{2} T\binom{2}{2} \\
& \left(\begin{array}{llll}
1 & 1 & 2 & 2 \\
1 & 2 & 1 & 2
\end{array}\right)=\binom{1}{1} \top\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) \top\binom{2}{2} \\
& \left(\begin{array}{llll}
1 & 1 & 2 & 2 \\
2 & 1 & 1 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) \top\binom{1}{1} \top\binom{2}{2} \\
& \left(\begin{array}{llll}
1 & 1 & 2 & 2 \\
1 & 2 & 2 & 1
\end{array}\right)=\binom{1}{1} \top\binom{2}{2} T\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) \\
& \left(\begin{array}{llll}
1 & 1 & 2 & 2 \\
2 & 1 & 2 & 1
\end{array}\right)=\binom{2}{2} \top\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) T\binom{1}{1} \\
& \left(\begin{array}{llll}
1 & 1 & 2 & 2 \\
2 & 2 & 1 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) T\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)
\end{aligned}
$$

Example (Method 2)

For $M=\left\{1^{2}, 2^{2}\right\}$, we have

$$
\begin{aligned}
& \left(\begin{array}{llll}
1 & 1 & 2 & 2 \\
1 & 1 & 2 & 2
\end{array}\right)=\binom{1}{1} T\binom{1}{1} T\binom{2}{2} T\binom{2}{2} \\
& \left(\begin{array}{llll}
1 & 1 & 2 & 2 \\
1 & 2 & 1 & 2
\end{array}\right)=\binom{1}{1} T\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) T\binom{2}{2} \\
& \left(\begin{array}{llll}
1 & 1 & 2 & 2 \\
2 & 1 & 1 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) \top\binom{1}{1} \top\binom{2}{2} \\
& \left(\begin{array}{llll}
1 & 1 & 2 & 2 \\
1 & 2 & 2 & 1
\end{array}\right)=\binom{1}{1} T\binom{2}{2} T\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) \\
& \left(\begin{array}{llll}
1 & 1 & 2 & 2 \\
2 & 1 & 2 & 1
\end{array}\right)=\binom{2}{2} T\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) T\binom{1}{1} \\
& \left(\begin{array}{llll}
1 & 1 & 2 & 2 \\
2 & 2 & 1 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) T\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)
\end{aligned}
$$

Example

Adding up terms gives

$$
\chi_{A_{n-1}}^{\mathrm{int}}\left(\mathcal{K}_{P}, t\right)=t^{4}-4 t^{3}+t^{2} .
$$

Compare this to what we got from the intersection poset:

$$
\chi_{A_{n-1}}^{\mathrm{int}}\left(\mathcal{K}_{P}, t\right)=t^{4}-4 t^{3}+t^{2} .
$$

They are the same!

Future Work

Goal: Extend Foata's theory of multisets to arbitrary posets using a choice of Dilworth decomposition.

- I have a rough idea of what the map might look like.
- I'm working on refining that idea.

Thank you!

Selected References

\square Aguiar, Marcelo, and Swapneel Mahajan. Topics in Hyperplane Arrangements. American Mathematical Society, 2017.

Brown, Kenneth "Semigroups, Rings, and Markov Chains." Journal of Theoretical Probability, Vol 13, No. 3, 2000.Gente, Regina. "The Varchenko Matrix for Cones." Universität Marburg, 2013.
Knuth, Donald Ervin. The Art of Computer Programming. Addison-Wesley, 2015.
Stanley, Richard. "An Introduction to Hyperplane Arrangements." Geometric Combinatorics IAS/Park City Mathematics Series, 2007, pp. 389-496., doi:10.1090/pcms/013/08.

