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Characteristic Polynomial of a Hyperplane Arrangement

Let A be a hyperplane arrangement in Rn and let L(A) denote the set of
intersections of A, ordered by reverse inclusion.

Definition

Then the characteristic polynomial χA(t) of A is

χA(t) =
∑

x∈L(A)

µ(0̂, x)tdim x

=
n∑

k=0

(−1)kwkt
n−k

where wk denotes the signless Whitney number of the 1st kind of L(A).
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Zaslavsky’s Theorem

Theorem (Zaslavsky)

Let A be a hyperplane arrangement in Rn. Let χA(t) be the characteristic
polynomial of A. Then

χA(−1) = (−1)n #

(
chambers of the

arrangement

)
In other words

#

(
chambers of the

arrangement

)
=±

∑
x∈L(A)

µ(0̂, x)(−1)dim x

=
∑

x :rkx=1

|µ(0̂, x)|

=w0 + w1 + · · ·+ wn
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Example

Consider the Type A reflection arrangement in R4. I’ve drawn a snapshot
of a linearly-equivalent arrangement in R3 (see note).

H14H13

H23

H12

H24

H34

Note: All the hyperplanes pass through span
(
~1
)

, so we project into the

orthogonal complement of span
(
~1
)

.
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Example

Some of the intersections of this arrangement:

X13|24

X124

X14|23

X123

X234

X12|34

X134
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Example

The intersection poset is

0̂ = R4

H12 H23 H13 H24 H14 H34

X123 X124 X12|34 X13|24 X14|23 X134 X234

1̂ = span(~1)
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Example

The intersection poset is

1|2|3|4

12|3|4 1|23|4 13|2|4 1|24|3 14|2|3 1|2|34

123|4 124|3 12|34 13|24 14|23 134 234

1234
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Example

The intersection poset is

1|2|3|4

12|3|4 1|23|4 13|2|4 1|24|3 14|2|3 1|2|34

123|4 124|3 12|34 13|24 14|23 134 234

1234

+1

−1 −1 −1 −1 −1 −1

+2 +2 +1 +1 +1 +2 +1

−6

Characteristic Polynomial: χA(t) = t4 − 6t3 + 11t2 − 6t
Evaluated: χA(−1) = 1 + 6 + 11 + 6 = 24
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Example

Consider the affine arrangement where H34 is the line at infinity.

H14

H13

H23

H12

H24
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Example

Consider the affine arrangement where H34 is the line at infinity.

X13|24

X124

X14|23

X123
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Example

We already computed the intersection poset of this affine arrangement
when we did the previous example...

1|2|3|4

12|3|4 1|23|4 13|2|4 1|24|3 14|2|3 1|2|34

123|4 124|3 12|34 13|24 14|23 134 234

1234
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Example

We already computed the intersection poset of this affine arrangement
when we did the previous example...

1|2|3|4

12|3|4 1|23|4 13|2|4 1|24|3 14|2|3 1|2|34

123|4 124|3 12|34 13|24 14|23 134 234

1234
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Example

We already computed the intersection poset of this affine arrangement
when we did the previous example...

1|2|3|4

12|3|4 1|23|4 13|2|4 1|24|3 14|2|3

123|4 124|3 13|24 14|23
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Example

We can obtain the characteristic polynomial from the Möbius function...

1|2|3|4

12|3|4 1|23|4 13|2|4 1|24|3 14|2|3

123|4 124|3 13|24 14|23

+1

−1 −1 −1 −1 −1

+2 +2 +1 +1
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Example

We can obtain the characteristic polynomial from the Möbius function...

1|2|3|4

12|3|4 1|23|4 13|2|4 1|24|3 14|2|3

123|4 124|3 13|24 14|23

+1

−1 −1 −1 −1 −1

+2 +2 +1 +1

Characteristic Polynomial: χA(t) = t4 − 5t3 + 6t2

Evaluated: χA(−1) = 1 + 5 + 6 = 12
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Cone of an Arrangement

Let A be an arrangement with chambers C(A).

Definition

Let A be an arrangement of hyperplanes. Let A′ be a central
subarrangement of A and let C(A′) the set of chambers of A′. Then a
cone K is an element of C(A′).
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Interior Intersections

Let Lint(A,K) denote the set of insersections touching the interior of the
cone and wk denote the kth signless Whitney number of the first kind.

Definition

Let A be a hyperplane arrangement and K a cone of A. Then the
characteristic polynomial of K is

χA(K, t) =
∑

x∈Lint(A,K)

µ(0̂, x)tdim x

=
n∑

k=0

(−1)k+1wkt
n−k
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Example

Let’s consider a cone K defined by H12 and H34 in

H14

H13

H23

H12

H24

H34
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Example

Let’s consider a cone K defined by H12 and H34 in

H14

H13

H23

H24

H12H34
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Example

Let’s consider a cone K defined by H12 and H34 in

H14

H13

H23

H24

H12H34

X13|24

Galen Dorpalen-Barry UMN

Characteristic polynomials and chambers for cones in hyperplane arrangements



Zaslavsky’s Theorem Type A Reflection Arrangement & Posets Family 1: Width 2 Posets Family 2: Disjoint Unions of Chains

Example

The intersection lattice of this cone is

0̂ = R4

H12 H23 H13 H24 H14 H34

X123 X124 X12|34 X13|24 X14|23 X134 X234

1̂ = span(~1)
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Example

The intersection lattice of this cone is

0̂ = R4

H12 H23 H13 H24 H14 H34

X123 X124 X12|34 X13|24 X14|23 X134 X234

1̂ = span(~1)
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Example

The intersection lattice of this cone is

0̂ = R4

H23 H13 H24 H14

X13|24
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Example

The intersection lattice of this cone is

0̂ = R4

H23 H13 H24 H14

X13|24

+1

−1 −1 −1 −1

+1

Characteristic Polynomial: χA(K, t) = t4 − 4t3 + t2
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Zaslavsky’s Theorem, revisited

Theorem (Zaslavsky, 1977)

Let A be a hyperplane arrangement in Rn and K be a cone of A. Let
χA(K, t) be the characteristic polynomial of the cone. Then

χint
A (K,−1) = (−1)n #

(
chambers interior

to the cone K

)
.

In other words

#

(
chambers of the

arrangement

)
=±

∑
x∈L(A,K)

µ(0̂, x)(−1)dim x

=
∑

x :rkx=1

|µ(0̂, x)|

=w0 + w1 + · · ·+ wn
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Zaslavsky’s Theorem, revisited

Theorem (Zaslavsky, 1977)

Let A be a hyperplane arrangement in Rn and K be a cone of A. Let
χA(K, t) be the characteristic polynomial of the cone. Then

χint
A (K,−1) = (−1)n #

(
chambers interior

to the cone K

)
.

Note:

This is implicit in Brown’s work on BHR random walks in hyperplane
arrangements and cones (2000).

Lint(A,K) appears independently in work of Gente (2013) and
Aguiar-Mahajan (2017) on Varchenko’s determinant for cones.
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Example

The intersection lattice of this cone is

0̂ = R4

H23 H13 H24 H14

X13|24

+1

−1 −1 −1 −1

+1

Characteristic Polynomial: χA(K, t) = t4 − 4t3 + t2

Evaluated: χA(K,−1) = 1 + 4 + 1 = 6
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The Type A Reflection Arrangement

Definition

The Type A Reflection Arrangement An−1 is the arrangement with
hyperplanes Hij = {~x ∈ Rn | xi − xj = 0} for all 1 ≤ i < j ≤ n.
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Characteristic polynomials and chambers for cones in hyperplane arrangements



Zaslavsky’s Theorem Type A Reflection Arrangement & Posets Family 1: Width 2 Posets Family 2: Disjoint Unions of Chains

Linear Extensions and Chambers

Chambers of An−1

The chambers An−1 can be labelled by permutations on [n] in which if i
appears before j in the permutation, then xi < xj .

Example (A3−1, projected into R2)

123132

213

231

312

321

H12

H23

H13
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Example (A4−1,projected into R4)

H14

H34

H13
H23

H12

H24
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Example (A4−1,projected into R4)

H14

H34

H13
H23

H12

H24

2413 2431

2143 2341

2134 2314

1243
1234 3214

2314

1324 3124

1423

1432
1342 3142

3412

3421
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Cones of the Type A Reflection Arrangement

Cones of An−1

Cones of An−1 can be encoded as posets P on [n] by the rule if xi < xj in
the cone, then i < j in P.

If we have a cone of An−1 defined by P, we’ll call it KP .

The chambers of KP can be labelled by linear extensions of P.

Galen Dorpalen-Barry UMN
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Example (A4−1)

H14

H13

H23

H12

H24

H34

↔ P =
1

2

3

4

The chambers are labelled by linear extensions of P:

1234, 1324, 1342, 3124, 3142, 3412
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Example (A4−1)

We can label the chambers of KP by linear extensions of P.

H14

H13

H23

H12

H24

H34
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Example (A4−1)

We can label the chambers of KP by linear extensions of P.

1234 1324

1342

3124 3142

3412

H14

H13

H23

H12

H24

H34
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Posets & Characteristic Polynomials

Let P be any poset on [n] and let LinExt(P) denote the set of linear
extensions of P. Then

w0 + w1 + · · ·+ wn = (−1)n χint
A (KP , t) |t=−1

= # LinExt(P).

where wk is the kth Whitney number of L(A,K).

Question

What do the unsigned Whitney numbers w0,w1, . . . , wn count?

Galen Dorpalen-Barry UMN
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Rephrasing: Fibres of Maps

Let P be any poset on [n] and let LinExt(P) denote the set of linear
extensions of P.

Question

Can we find a map ϕ : LinExt(P)→ Lint(A,KP) such that for
x ∈ Lint(A,KP), the cardinality of the preimage is precisely |µ(0̂, x)|?
That is

#ϕ−1(x) = |µ(0̂, x)|

Then the Whitney numbers are precisely

wk = #{σ ∈ LinExt(P) | rkϕ(σ) = k}

Galen Dorpalen-Barry UMN
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Family 1: Width 2 Posets

Recall Dilworth’s theorem (the width of a poset):

Theorem (Dilworth, 1950)

Let P be a poset and A ⊆ P be an antichain of largest cadinality. Then A
has the same number of elements as a minimum chain decomposition of P ,
called the width of a poset.

Galen Dorpalen-Barry UMN
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Family 1: Width 2 Posets

Proposition (GDB, 2018)

If P is a width 2 poset then #LinExt(P) = #Lint(A,KP).

Proof.

Since no antichain has more than two elements, the Möbius function
values of X ∈ Lint(A,KP) are ±1.

Theorem (GDB, 2018)

For a choice of decomposition P = P1 t P2 into 2 chains, there is a
(simple) bijection ϕ : LinExt(P)→ Lint(A,KP).

Galen Dorpalen-Barry UMN
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Case Study: Ferrers’ Posets

Let F2,n denote the poset associated to a 2× n rectangular Ferrers’
diagram. Recall that

Cn =
1

n + 1

(
2n

n

)
= LinExt(F2,n)

Theorem (GDB, 2018)

We have Cn = LinExt(F2,n) = w0 + w1 + · · ·+ wn−1 where the wk are
Narayana numbers

wk = N(n, k + 1) =
1

n

(
n

k

)(
n

k − 1

)
.

Galen Dorpalen-Barry UMN

Characteristic polynomials and chambers for cones in hyperplane arrangements



Zaslavsky’s Theorem Type A Reflection Arrangement & Posets Family 1: Width 2 Posets Family 2: Disjoint Unions of Chains

In this bijection, intersections of 2 hyperplanes in Lint(A,KP) correspond
to valleys DU-adjacent pairs of the Dyck path.

Example

1

2

3

4

5

6

UUDDUD↔

1

2

3

4

5

6

UDUDUD↔

Galen Dorpalen-Barry UMN
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Disjoint Union of Chains

Suppose P = a1 t a2 t · · · t a` is a disjoint union of ` chains with
cardinalities ai . Then the Dilworth decomposition is unique (up to
labelling chains).

Example

Let P = a1 t a2 where a1 = a2 = 2.

P =
1

1

2

2

Linear extensions of P: 1122, 1212, 2112,1221,2121,2211

The linear extensions are permutations of a multiset {1a1 , 2a2 , . . . , `a`}.

Galen Dorpalen-Barry UMN
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Example

The permutations of M = {12, 22} are(
1 1 2 2
1 1 2 2

)
,

(
1 1 2 2
1 2 1 2

)
,

(
1 1 2 2
2 1 1 2

)
(

1 1 2 2
1 2 2 1

)
,

(
1 1 2 2
2 1 2 1

)
,

(
1 1 2 2
2 2 1 1

)
The bottom row of each of these permutations corresponds to a linear
extension of P: 1122, 1212, 2112,1221,2121,2211.

Question

Is there some statistic on multisets that will help us describe w0,w1, . . .
for a cone defined by a disjoint union of chains?

Galen Dorpalen-Barry UMN
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Foata’s Intercalation Product

Example

Let σ =

(
1 1 2 3
1 2 3 1

)
and let ρ =

(
1 2 2 3 4
2 2 4 3 1

)
. To compute

σ ᵀ ρ, we first juxtapose σ and ρ. This gives(
1 1 2 3 1 2 2 3 4
1 2 3 1 2 2 4 3 1

)
.

Then we stably sort columns in nondecreasing order(
1 1 1 2 2 2 3 3 4
1 2 2 3 2 4 1 3 1

)
.

Galen Dorpalen-Barry UMN

Characteristic polynomials and chambers for cones in hyperplane arrangements



Zaslavsky’s Theorem Type A Reflection Arrangement & Posets Family 1: Width 2 Posets Family 2: Disjoint Unions of Chains

Decomposition into Primes: Existence and Uniqueness

Theorem (Foata, 1969)

Every multiset permutation has a decomposition into a product of prime
cycles. That is, for a multiset permutation σ there exist t ≥ 0 prime cycles
σ1, . . . , σt such that

σ = σ1 ᵀ σ2 · · · ᵀ σt .

Theorem (Foata, 1969)

The cycle decomposition of a multiset permutation is unique up to
interchanging pairs of adjacent, disjoint prime cycles.

Galen Dorpalen-Barry UMN
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Intercalation Statistic

The intercalation product gives a map f : LinExt(P)→ Lint(A,KP) in
which σ ∈ LinExt(P) is sent to x ∈ Lint(A,KP) which has blocks
corresponding to cycles of σ.

Example (M = {12, 22})

(
1 1 2 2
2 1 1 2

)
=

(
1 2
2 1

)
ᵀ

(
1
1

)
ᵀ

(
2
2

)
=

(
1 2
2 1

)
ᵀ

(
2
2

)
ᵀ

(
1
1

)

Then f

(
1 1 2 2
2 1 1 2

)
is 13|2|4.

Galen Dorpalen-Barry UMN
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Intercalation and Characteristic Polynomials

For a multiset permutation σ, let fcyc(σ) denote number of cycles in the
decomposition of σ into prime cycles.

Theorem (GDB, 2018)

Let a � n, P = a1 t · · · t a` and M = {1a1 , 2a2 , . . . , `a`}. Then

χint
An−1

(KP , t) =
∑

multiset
permutations

ω of M

(−t)fcyc(ω).

Galen Dorpalen-Barry UMN
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Example (A4−1)

Consider the cone defined by

H14

H13

H23

H12

H24

H34

↔ P =
1

2

3

4

Let’s compute the characteristic polynomial in two ways.

Galen Dorpalen-Barry UMN
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Example (Method 1)

The intersection meet semilattice of KP is

1 | 2 | 3 | 4

14 | 2 | 3 13 | 2 | 4 1 | 24 | 3 1 | 23 | 4

13 | 24

We have χint
An−1

(KP , t) = t4 − 4t3 + t2.

Galen Dorpalen-Barry UMN
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Example (Method 2)

For M = {12, 22}, we have(
1 1 2 2
1 1 2 2

)
=

(
1
1

)
ᵀ

(
1
1

)
ᵀ

(
2
2

)
ᵀ

(
2
2

)
(

1 1 2 2
1 2 1 2

)
=

(
1
1

)
ᵀ

(
1 2
2 1

)
ᵀ

(
2
2

)
(

1 1 2 2
2 1 1 2

)
=

(
1 2
2 1

)
ᵀ

(
1
1

)
ᵀ

(
2
2

)
(

1 1 2 2
1 2 2 1

)
=

(
1
1

)
ᵀ

(
2
2

)
ᵀ

(
1 2
2 1

)
(

1 1 2 2
2 1 2 1

)
=

(
2
2

)
ᵀ

(
1 2
2 1

)
ᵀ

(
1
1

)
(

1 1 2 2
2 2 1 1

)
=

(
1 2
2 1

)
ᵀ

(
1 2
2 1

)
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Example (Method 2)

For M = {12, 22}, we have(
1 1 2 2
1 1 2 2

)
=

(
1
1

)
ᵀ

(
1
1

)
ᵀ

(
2
2

)
ᵀ

(
2
2

)
t4(

1 1 2 2
1 2 1 2

)
=

(
1
1

)
ᵀ

(
1 2
2 1

)
ᵀ

(
2
2

)
−t3(

1 1 2 2
2 1 1 2

)
=

(
1 2
2 1

)
ᵀ

(
1
1

)
ᵀ

(
2
2

)
−t3(

1 1 2 2
1 2 2 1

)
=

(
1
1

)
ᵀ

(
2
2

)
ᵀ

(
1 2
2 1

)
−t3(

1 1 2 2
2 1 2 1

)
=

(
2
2

)
ᵀ

(
1 2
2 1

)
ᵀ

(
1
1

)
−t3(

1 1 2 2
2 2 1 1

)
=

(
1 2
2 1

)
ᵀ

(
1 2
2 1

)
t2
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Example

Adding up terms gives

χint
An−1

(KP , t) = t4 − 4t3 + t2.

Compare this to what we got from the intersection poset:

χint
An−1

(KP , t) = t4 − 4t3 + t2.

They are the same!
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Future Work

Goal: Extend Foata’s theory of multisets to arbitrary posets using a choice
of Dilworth decomposition.

I have a rough idea of what the map might look like.

I’m working on refining that idea.

Galen Dorpalen-Barry UMN

Characteristic polynomials and chambers for cones in hyperplane arrangements



Zaslavsky’s Theorem Type A Reflection Arrangement & Posets Family 1: Width 2 Posets Family 2: Disjoint Unions of Chains

Thank you!
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