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Overview

© Zaslavsky's Theorem
© Type A Reflection Arrangement & Posets
© Family 1: Width 2 Posets

@ Family 2: Disjoint Unions of Chains
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Characteristic Polynomial of a Hyperplane Arrangement

Let A be a hyperplane arrangement in R" and let £(A) denote the set of
intersections of A, ordered by reverse inclusion.

Definition
Then the characteristic polynomial x 4(t) of A is
X.A(t) _ Z H(G,X)tdimx
xEL(A)
n
= (—l)katn_k
k=0

where wy denotes the signless Whitney number of the 1st kind of £(A).
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Zaslavsky's Theorem

Theorem (Zaslavsky)

Let A be a hyperplane arrangement in R". Let x 4(t) be the characteristic
polynomial of A. Then

arrangement

xa(=1) = (=1)" # (chambers of the)

In other words

4 (chambers of the) _ 4 Z (0, x)(—1)m*

arrangement
x€L(A)

= Z |/L(6,X)|

x:rkx=1

=wo+wi + -+ w,
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Example

Consider the Type A reflection arrangement in R*. I've drawn a snapshot
of a linearly-equivalent arrangement in R® (see note).

Hzq Hio

Ho3

—

Note: All the hyperplanes pass through span (1) so we project into the

orthogonal complement of span
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Example

Some of the intersections of this arrangement:
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Example

The intersection poset is

1 = span(1)

I

X12(34 X13)24 X1a123 X134

X123\ X124 ; _X:
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Example

The intersection poset is

123/4 1243 12[34 13)24 14)23 1

VSs==—= 4V

1234 1[23]47 13204 124]3° 1423 " 1[2J34

T/

12|34
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Example

The intersection poset is

Characteristic Polynomial: x 4(t) = t* — 6t3 + 11t> — 6t
Evaluated: x4(—1)=1+6+11+6=24
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Consider the affine arrangement where Hsq is the line at infinity.

H23 H24
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Consider the affine arrangement where Hsy4 is the line at infinity.
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Example

We already computed the intersection poset of this affine arrangement
when we did the previous example...

1234 124/3 12(34 13|24 14|23 1

VSs==—< 4V

1234 1[23)47 13214 1243 1423 " 1[2J34

T/

1|23]4
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Example

We already computed the intersection poset of this affine arrangement
when we did the previous example...

12347 1243 1234 13}24  14[23 1

WSA

12134 12347 13]214 1243 1423 1234

T/

1|23]4
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Example

We already computed the intersection poset of this affine arrangement
when we did the previous example...

1234 124|3 13|24 14]23

TS

1234 1j23]4° 13214 1)24]3 " 14)23
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Example

We can obtain the characteristic polynomial from the Mobius function...
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Example

We can obtain the characteristic polynomial from the Mobius function...

Characteristic Polynomial: x.4(t) = t* — 5t + 6t

Evaluated: x4(—1)=1+5+6=12

Galen Dorpalen-Barry

Characteristic polynomials and chambers for cones in hyperplane arrangements



Zaslavsky's Theorem

0000000000000 0e00000000000

Cone of an Arrangement

Let A be an arrangement with chambers C(.A).

Definition
Let A be an arrangement of hyperplanes. Let A’ be a central

subarrangement of A and let C(A’) the set of chambers of A’. Then a
cone K is an element of C(A").
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Interior Intersections

Let £"(A, K) denote the set of insersections touching the interior of the
cone and wj denote the kth signless Whitney number of the first kind.

Definition
Let A be a hyperplane arrangement and K a cone of A. Then the
characteristic polynomial of IC is

xa(K,t) Z (0, x) ¢dim

xELM(AK)

n

= Z(—l)k+1wktn7k

k=0
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Let’s consider a cone K defined by His and Hsg in

Hz4 Hio

Ho3
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Let’s consider a cone K defined by Hip and Hsq in
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Let’s consider a cone K defined by Hip and Hsq in
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Example

The intersection lattice of this cone is

1 = span(1)

/

X123 X124 X234 Xizppa  Xuaps X134 o
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Example

The intersection lattice of this cone is

1 = span(1)

2

X123 X124 Xiopza _ Xizpa  Xuapes X134 Xo3a

Iy Yl
N/

0 =R*
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Example

The intersection lattice of this cone is
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Example

The intersection lattice of this cone is
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Zaslavsky's Theorem, revisited

Theorem (Zaslavsky, 1977)

Let A be a hyperplane arrangement in R" and IC be a cone of A. Let
xA(K, t) be the characteristic polynomial of the cone. Then

N, 1) = (~1)" # (

chambers interior
to the cone K

In other words

chambers of the A dim x
#* ( arrangement ) =+ w0, x)(=1)
xeL(A,K)

= > 1u(0,x)]

x:rkx=1

=wo+wi+ -+ W,
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Zaslavsky's Theorem, revisited

Theorem (Zaslavsky, 1977)

Let A be a hyperplane arrangement in R" and KC be a cone of A. Let
xA(KC, t) be the characteristic polynomial of the cone. Then

int _(_1\n chambers interior
x4 (K, -1) = (-1)" # ( to the cone K )
Note:

@ This is implicit in Brown's work on BHR random walks in hyperplane
arrangements and cones (2000).

e L"(A,K) appears independently in work of Gente (2013) and
Aguiar-Mahajan (2017) on Varchenko's determinant for cones.
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Example

The intersection lattice of this cone is

X13|24@

Characteristic Polynomial: x4 (K, t) = t* — 4¢3 + t2

Evaluated: xy4(K,-1)=1+4+1=6
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The Type A Reflection Arrangement

The Type A Reflection Arrangement A,_1 is the arrangement with
hyperplanes Hjj = {X € R" | x; —x; =0} forall 1 < i< j < n.
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Linear Extensions and Chambers

Chambers of A,_1

The chambers A,_; can be labelled by permutations on [n] in which if
appears before j in the permutation, then x; < x;.

Example (As_1, projected into R?)

Hio
132

312

321
His

123

213

231

Ho3
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Example (A;_1,projected into R*)
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Example (A;_1,projected into R*)
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Cones of the Type A Reflection Arrangement

Cones of A,_1 can be encoded as posets P on [n] by the rule if x; < x; in
the cone, then /i < j in P.

o If we have a cone of A,_; defined by P, we'll call it Kp.
@ The chambers of ICp can be labelled by linear extensions of P.
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The chambers are labelled by linear extensions of P:

1234, 1324, 1342, 3124, 3142, 3412
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Example (Az—1)

We can label the chambers of Kp by linear extensions of P.
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Example (Az—1)

We can label the chambers of Kp by linear extensions of P.

\ < 1234 | 1324 2

Galen Do
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Posets & Characteristic Polynomials

Let P be any poset on [n] and let LinExt(P) denote the set of linear
extensions of P. Then

wo+wp+ -+ w, = (_1)" XiT(ICP? t) |t:_1
= # LinExt(P).

where wy is the kth Whitney number of L(A, K).

Question
What do the unsigned Whitney numbers wy, wy, . .., w, count?
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Rephrasing: Fibres of Maps

Let P be any poset on [n] and let LinExt(P) denote the set of linear
extensions of P.

Question

Can we find a map ¢ : LinExt(P) — L™ (A, Kp) such that for
x € LA, Kp), the cardinality of the preimage is precisely |u(0, x)|?
That is

#o~ 1 (x) = (0, x)|

Then the Whitney numbers are precisely

wyx = #{0 € LinExt(P) | rke(o) = k}
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Family 1: Width 2 Posets

Recall Dilworth's theorem (the width of a poset):

Theorem (Dilworth, 1950)

Let P be a poset and A C P be an antichain of largest cadinality. Then A
has the same number of elements as a minimum chain decomposition of P,
called the width of a poset.
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Family 1: Width 2 Posets

Proposition (GDB, 2018)

If P is a width 2 poset then #LinExt(P) = #L™(A, Kp).

Since no antichain has more than two elements, the Mdbius function
values of X € L™(A,Kp) are £1. O

Theorem (GDB, 2018)

For a choice of decomposition P = P_1 LI P, into 2 chains, there is a
(simple) bijection ¢ : LinExt(P) — L™( A, Kp).

Galen Dorpalen-Barry

Characteristic polynomials and chambers for cones in hyperplane arrangements



Family 1: Width 2 Posets
[e]e] lo)

Case Study: Ferrers' Posets

Let F, , denote the poset associated to a 2 x n rectangular Ferrers’
diagram. Recall that

1 (2
C, = ( ”) = LinExt(F2.,)

n+1\n

Theorem (GDB, 2018)

We have C, = LinExt(F,,) = wo + wy + - - - + wp_1 where the wy are
Narayana numbers

wk:N(n,k—i—l):%(Z)(kil).
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In this bijection, intersections of 2 hyperplanes in £L"(A, Kp) correspond
to valleys DU-adjacent pairs of the Dyck path.

6

3 5 <  UUDDUD
NN
2 4
N
1
6
I\
<  UDUDUD
AN
2 4
N
1

Galen Dorpalen-Barry

Characteristic polynomials and chambers for cones in hyperplane arrangements



Family 2: Disjoint Unions of Chains
9000000000000 0

Disjoint Union of Chains

Suppose P =a; Lay Ll---Uay is a disjoint union of £ chains with
cardinalities a;. Then the Dilworth decomposition is unique (up to
labelling chains).

Example

Let P = a; Llas where a; = a» = 2.
P:

Linear extensions of P: 1122, 1212, 2112,1221,2121,2211

The linear extensions are permutations of a multiset {12,2% ... (2},

Galen Dorpalen-Barry
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The permutations of M = {1222} are
1 2 11 2 11 2 2
1 27 \1 2 2/7\2 1 1 2
1 1 2 11 2 1 1 2
1 2 1/)7\2 1 1)7\2 2 1
The bottom row of each of these permutations corresponds to a linear
extension of P: 1122, 1212, 2112,1221,2121,2211.

Is there some statistic on multisets that will help us describe wy, wy, . . .
for a cone defined by a disjoint union of chains?

NN NN
NN =N
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Foata's Intercalation Product

letoe (P12 3 e, (1 4
eto=11 2 3 1) r=1, 1

o T p, we first juxtapose o and p. This gives
11 2 3|1 2 2 3 4
12 3 1(2 2 4 3 1)°
Then we stably sort columns in nondecreasing order

1112 2 2 3 3 4
12 2 3 2 413 1)°

2 2 3 T N
5 4 3 . To compute
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Decomposition into Primes: Existence and Uniqueness

Theorem (Foata, 1969)
Every multiset permutation has a decomposition into a product of prime
cycles. That is, for a multiset permutation o there exist t > 0 prime cycles

01,...,0¢ such that
O=01T02 T O¢.

Theorem (Foata, 1969)

The cycle decomposition of a multiset permutation is unique up to
interchanging pairs of adjacent, disjoint prime cycles.
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Intercalation Statistic

The intercalation product gives a map f : LinExt(P) — L™(A, Kp) in
which o € LinExt(P) is sent to x € L™(.A, Kp) which has blocks
corresponding to cycles of o.

Example (M = {12,2?})

G126 ()G
@)

11 2 2).
Then f(2 11 2) is 13]2/4.
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Intercalation and Characteristic Polynomials

For a multiset permutation o, let fcyc(o) denote number of cycles in the
decomposition of ¢ into prime cycles.

Theorem (GDB, 2018)
LetaEn P=ajlU---Uay and M = {1%,2% ... (3} Then

><i"’:71(lclz,7 t) = Z (—t)ferele),

multiset
permutations

w of M

Galen Dorpalen-Barry
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Example (As-1)

Consider the cone defined by
Hos

Let's compute the characteristic polynomial in two ways.
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Example (Method 1)

The intersection meet semilattice of Kp is

13 | 24

/N

1423 13|2|4 1]24|3 1|23|4

112|134

int _ +4 8 2
We have x3t (Kp,t) = t* —4t> + t°.
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Example (Method 2)
For M = {12,22}, we have

32 2)=()7 () () (3
(329-0)G )0
G119-G )00
(1339-0-0)G 3
G139-0G )0
G31D-G )G
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Example (Method 2)
For M = {12,22}, we have

(322)=G)6) GG
CRID-OEDD
CLID-EDOD -
C1ID-00E)
CLID-O D
EEID-ED ) f
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Example

Adding up terms gives
int _ .4 3., 42
Xa,_,(Kp, t) =t" —4t> + =
Compare this to what we got from the intersection poset:
XAt (Kp,t) =t"— 48 + 2.

They are the same!
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Future Work

Goal: Extend Foata's theory of multisets to arbitrary posets using a choice
of Dilworth decomposition.

@ | have a rough idea of what the map might look like.

@ I'm working on refining that idea.
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Thank you!
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