Type A Reflection Arrangement & Posets	Family 2: Disjoint Unions of Chains

Characteristic polynomials and chambers for cones in hyperplane arrangements

Galen Dorpalen-Barry¹ (PhD work with V. Reiner¹)

¹University of Minnesota

Combinatorial Geometries, 2018

Type A Reflection Arrangement & Posets	Family 2: Disjoint Unions of Chains

Overview

1 Zaslavsky's Theorem

- 2 Type A Reflection Arrangement & Posets
- 3 Family 1: Width 2 Posets
- 4 Family 2: Disjoint Unions of Chains

Characteristic Polynomial of a Hyperplane Arrangement

Let \mathcal{A} be a hyperplane arrangement in \mathbb{R}^n and let $\mathcal{L}(\mathcal{A})$ denote the set of intersections of \mathcal{A} , ordered by reverse inclusion.

Definition

Then the characteristic polynomial $\chi_{\mathcal{A}}(t)$ of \mathcal{A} is

$$egin{aligned} \chi_{\mathcal{A}}(t) &= \sum_{x \in \mathcal{L}(\mathcal{A})} \mu(\hat{0}, x) t^{\dim x} \ &= \sum_{k=0}^n (-1)^k w_k t^{n-k} \end{aligned}$$

where w_k denotes the signless Whitney number of the 1st kind of $\mathcal{L}(\mathcal{A})$.

Zaslavsky's Theorem

Theorem (Zaslavsky)

Let \mathcal{A} be a hyperplane arrangement in \mathbb{R}^n . Let $\chi_{\mathcal{A}}(t)$ be the characteristic polynomial of \mathcal{A} . Then

$$\chi_{\mathcal{A}}(-1) = (-1)^n \ \# igg(egin{array}{c} { ext{chambers of the}} \ { ext{arrangement}} \ { ext{arrangement}} \end{array} igg)$$

In other words

$$\# \begin{pmatrix} \text{chambers of the} \\ \text{arrangement} \end{pmatrix} = \pm \sum_{x \in \mathcal{L}(\mathcal{A})} \mu(\hat{0}, x) (-1)^{\dim x}$$
$$= \sum_{x: \text{rk} x = 1} |\mu(\hat{0}, x)|$$
$$= w_0 + w_1 + \dots + w_n$$

Galen Dorpalen-Barry

Zaslavsky's Theorem	Type A Reflection Arrangement & Posets	Family 2: Disjoint Unions of Chains
000000000000000000000000000000000000000		

Consider the Type A reflection arrangement in \mathbb{R}^4 . I've drawn a snapshot of a linearly-equivalent arrangement in \mathbb{R}^3 (see note).

Zaslavsky's Theorem	Type A Reflection Arrangement & Posets	Family 2: Disjoint Unions of Chains
000000000000000000000000000000000000000		

Some of the intersections of this arrangement:

Zaslavsky's Theorem	Type A Reflection Arrangement & Posets	Family 2: Disjoint Unions of Chains
000000000000000000000000000000000000000		

The intersection poset is

Galen Dorpalen-Barry

Zaslavsky's Theorem	Type A Reflection Arrangement & Posets	Family 2: Disjoint Unions of Chains
000000000000000000000000000000000000000		

The intersection poset is

Characteristic Polynomial: $\chi_A(t) = t^4 - 6t^3 + 11t^2 - 6t$ Evaluated: $\chi_A(-1) = 1 + 6 + 11 + 6 = 24$

Galen Dorpalen-Barry

Zaslavsky's Theorem	Type A Reflection Arrangement & Posets	Family 2: Disjoint Unions of Chains
000000000000000000000000000000000000000		

Consider the affine arrangement where H_{34} is the line at infinity.

Galen Dorpalen-Barry

Zaslavsky's Theorem	Type A Reflection Arrangement & Posets	Family 2: Disjoint Unions of Chains
000000000000000000000000000000000000000		

Consider the affine arrangement where H_{34} is the line at infinity.

We already computed the intersection poset of this affine arrangement when we did the previous example...

Galen Dorpalen-Barry

We already computed the intersection poset of this affine arrangement when we did the previous example...

Galen Dorpalen-Barry

Zaslavsky's Theorem	Type A Reflection Arrangement & Posets	Family 2: Disjoint Unions of Chains
000000000000000000000000000000000000000		

We already computed the intersection poset of this affine arrangement when we did the previous example...

Characteristic polynomials and chambers for cones in hyperplane arrangements

Zaslavsky's Theorem	Type A Reflection Arrangement & Posets	Family 2: Disjoint Unions of Chains
000000000000000000000000000000000000000		

We can obtain the characteristic polynomial from the Möbius function...

We can obtain the characteristic polynomial from the Möbius function...

Characteristic Polynomial: $\chi_{\mathcal{A}}(t) = t^4 - 5t^3 + 6t^2$

Evaluated: $\chi_A(-1) = 1 + 5 + 6 = 12$

Galen Dorpalen-Barry

Cone of an Arrangement

Let \mathcal{A} be an arrangement with chambers $\mathcal{C}(\mathcal{A})$.

Definition

Let \mathcal{A} be an arrangement of hyperplanes. Let \mathcal{A}' be a central subarrangement of \mathcal{A} and let $\mathcal{C}(\mathcal{A}')$ the set of chambers of \mathcal{A}' . Then a *cone* \mathcal{K} is an element of $\mathcal{C}(\mathcal{A}')$.

Interior Intersections

Let $\mathcal{L}^{int}(\mathcal{A}, \mathcal{K})$ denote the set of insersections touching the interior of the cone and w_k denote the *k*th signless Whitney number of the first kind.

Definition

Let A be a hyperplane arrangement and K a cone of A. Then the *characteristic polynomial* of K is

$$egin{aligned} \chi_\mathcal{A}(\mathcal{K},t) &= \sum_{x\in\mathcal{L}^{ ext{int}}(\mathcal{A},\mathcal{K})} \mu(\hat{0},x) t^{ ext{dim}\,x} \ &= \sum_{k=0}^n (-1)^{k+1} w_k t^{n-k} \end{aligned}$$

Zaslavsky's Theorem	Type A Reflection Arrangement & Posets	Family 2: Disjoint Unions of Chains
000000000000000000000000000000000000000		

Let's consider a cone \mathcal{K} defined by H_{12} and H_{34} in

Galen Dorpalen-Barry

Zaslavsky's Theorem	Type A Reflection Arrangement & Posets	Family 2: Disjoint Unions of Chains
000000000000000000000000000000000000000		

Let's consider a cone \mathcal{K} defined by H_{12} and H_{34} in

Zaslavsky's Theorem	Type A Reflection Arrangement & Posets	Family 2: Disjoint Unions of Chains
000000000000000000000000000000000000000		

Let's consider a cone \mathcal{K} defined by H_{12} and H_{34} in

Zaslavsky's Theorem	Type A Reflection Arrangement & Posets	Family 2: Disjoint Unions of Chains
000000000000000000000000000000000000000		

The intersection lattice of this cone is

Zaslavsky's Theorem	Type A Reflection Arrangement & Posets	Family 2: Disjoint Unions of Chains
000000000000000000000000000000000000000		

The intersection lattice of this cone is

Galen Dorpalen-Barry

Zaslavsky's Theorem	Type A Reflection Arrangement & Posets	Family 2: Disjoint Unions of Chains
000000000000000000000000000000000000000		

The intersection lattice of this cone is

Zaslavsky's Theorem	Type A Reflection Arrangement & Posets	Family 2: Disjoint Unions of Chains
000000000000000000000000000000000000000		

The intersection lattice of this cone is

Characteristic Polynomial: $\chi_{\mathcal{A}}(\mathcal{K},t) = t^4 - 4t^3 + t^2$

Zaslavsky's Theorem, revisited

Theorem (Zaslavsky, 1977)

Let \mathcal{A} be a hyperplane arrangement in \mathbb{R}^n and \mathcal{K} be a cone of \mathcal{A} . Let $\chi_{\mathcal{A}}(\mathcal{K}, t)$ be the characteristic polynomial of the cone. Then

$$\chi_{\mathcal{A}}^{int}(\mathcal{K},-1) = (-1)^n \# \begin{pmatrix} \text{chambers interior} \\ \text{to the cone } \mathcal{K} \end{pmatrix}$$

In other words

$$\# \begin{pmatrix} \text{chambers of the} \\ \text{arrangement} \end{pmatrix} = \pm \sum_{x \in \mathcal{L}(\mathcal{A}, \mathcal{K})} \mu(\hat{0}, x) (-1)^{\dim x}$$
$$= \sum_{x: \text{rk} x = 1} |\mu(\hat{0}, x)|$$
$$= w_0 + w_1 + \dots + w_n$$

Zaslavsky's Theorem, revisited

Theorem (Zaslavsky, 1977)

Let \mathcal{A} be a hyperplane arrangement in \mathbb{R}^n and \mathcal{K} be a cone of \mathcal{A} . Let $\chi_{\mathcal{A}}(\mathcal{K}, t)$ be the characteristic polynomial of the cone. Then

$$\chi_{\mathcal{A}}^{int}(\mathcal{K},-1) = (-1)^n \# \begin{pmatrix} chambers \ interior \\ to \ the \ cone \ \mathcal{K} \end{pmatrix}$$

Note:

- This is implicit in Brown's work on BHR random walks in hyperplane arrangements and cones (2000).
- $\mathcal{L}^{int}(\mathcal{A}, \mathcal{K})$ appears independently in work of Gente (2013) and Aguiar-Mahajan (2017) on Varchenko's determinant for cones.

Zaslavsky's Theorem	Type A Reflection Arrangement & Posets	Family 2: Disjoint Unions of Chains
000000000000000000000000000000000000000		

The intersection lattice of this cone is

Characteristic Polynomial: $\chi_A(\mathcal{K}, t) = t^4 - 4t^3 + t^2$

Evaluated: $\chi_{\mathcal{A}}(\mathcal{K}, -1) = 1 + 4 + 1 = 6$

Type A Reflection Arrangement & Posets	Family 2: Disjoint Unions of Chains
000000000	

The Type A Reflection Arrangement

Definition

The *Type A Reflection Arrangement* A_{n-1} is the arrangement with hyperplanes $H_{ij} = {\vec{x} \in \mathbb{R}^n | x_i - x_j = 0}$ for all $1 \le i < j \le n$.

Linear Extensions and Chambers

Chambers of A_{n-1}

The chambers A_{n-1} can be labelled by permutations on [n] in which if i appears before j in the permutation, then $x_i < x_j$.

Example (A_{3-1} , projected into \mathbb{R}^2)

Type A Reflection Arrangement & Posets	Family 2: Disjoint Unions of Chains
00000000	

Example $(A_{4-1}, \text{projected } \underline{\text{into } \mathbb{R}^4})$

Galen Dorpalen-Barry

Type A Reflection Arrangement & Posets	Family 2: Disjoint Unions of Chains
00000000	

Example $(A_{4-1}, \text{projected into } \mathbb{R}^4)$

Galen Dorpalen-Barry

Cones of the Type A Reflection Arrangement

Cones of A_{n-1}

Cones of A_{n-1} can be encoded as posets P on [n] by the rule if $x_i < x_j$ in the cone, then i < j in P.

- If we have a cone of A_{n-1} defined by P, we'll call it \mathcal{K}_P .
- The chambers of \mathcal{K}_P can be labelled by linear extensions of P.

Type A Reflection Arrangement & Posets	Family 2: Disjoint Unions of Chains
00000000	

Type A Reflection Arrangement & Posets	Family 2: Disjoint Unions of Chains
000000000	

We can label the chambers of \mathcal{K}_P by linear extensions of P.

Galen Dorpalen-Barry

We can label the chambers of \mathcal{K}_P by linear extensions of P.

Posets & Characteristic Polynomials

Let P be any poset on [n] and let LinExt(P) denote the set of linear extensions of P. Then

$$w_0 + w_1 + \dots + w_n = (-1)^n \chi_{\mathcal{A}}^{\text{int}}(\mathcal{K}_P, t) \mid_{t=-1}$$
$$= \# \text{LinExt}(P).$$

where w_k is the *k*th Whitney number of $\mathcal{L}(\mathcal{A}, \mathcal{K})$.

Question

What do the unsigned Whitney numbers w_0, w_1, \ldots, w_n count?

Rephrasing: Fibres of Maps

Let P be any poset on [n] and let LinExt(P) denote the set of linear extensions of P.

Question

Can we find a map φ : LinExt(P) $\rightarrow \mathcal{L}^{int}(\mathcal{A}, \mathcal{K}_P)$ such that for $x \in \mathcal{L}^{int}(\mathcal{A}, \mathcal{K}_P)$, the cardinality of the preimage is precisely $|\mu(\hat{0}, x)|$? That is

$$\#\varphi^{-1}(x) = |\mu(\hat{0}, x)|$$

Then the Whitney numbers are precisely

$$w_k = \#\{\sigma \in \mathsf{LinExt}(P) \mid \mathsf{rk}\varphi(\sigma) = k\}$$

Family 1: Width 2 Posets

Recall Dilworth's theorem (the width of a poset):

Theorem (Dilworth, 1950)

Let P be a poset and $A \subseteq P$ be an antichain of largest cadinality. Then A has the same number of elements as a minimum chain decomposition of P, called the width of a poset.

Family 1: Width 2 Posets

Proposition (GDB, 2018)

If P is a width 2 poset then $\#LinExt(P) = \#\mathcal{L}^{int}(\mathcal{A}, \mathcal{K}_P)$.

Proof.

Since no antichain has more than two elements, the Möbius function values of $X \in \mathcal{L}^{int}(\mathcal{A}, \mathcal{K}_P)$ are ± 1 .

Theorem (GDB, 2018)

For a choice of decomposition $P = P_1 \sqcup P_2$ into 2 chains, there is a (simple) bijection φ : LinExt(P) $\rightarrow \mathcal{L}^{int}(\mathcal{A}, \mathcal{K}_P)$.

Galen Dorpalen-Barry

Case Study: Ferrers' Posets

Let $F_{2,n}$ denote the poset associated to a $2 \times n$ rectangular Ferrers' diagram. Recall that

$$C_n = \frac{1}{n+1} \binom{2n}{n} = \text{LinExt}(F_{2,n})$$

Theorem (GDB, 2018)

We have $C_n = LinExt(F_{2,n}) = w_0 + w_1 + \cdots + w_{n-1}$ where the w_k are Narayana numbers

$$w_k = N(n, k+1) = \frac{1}{n} {n \choose k} {n \choose k-1}.$$

Galen Dorpalen-Barry

In this bijection, intersections of 2 hyperplanes in $\mathcal{L}^{int}(\mathcal{A}, \mathcal{K}_P)$ correspond to valleys *DU*-adjacent pairs of the Dyck path.

Disjoint Union of Chains

Suppose $P = \mathbf{a}_1 \sqcup \mathbf{a}_2 \sqcup \cdots \sqcup \mathbf{a}_\ell$ is a disjoint union of ℓ chains with cardinalities a_i . Then the Dilworth decomposition is unique (up to labelling chains).

Example

Let $P = \mathbf{a}_1 \sqcup \mathbf{a}_2$ where $a_1 = a_2 = 2$.

$$P = \begin{array}{c} 1 & 2 \\ 1 & 1 \\ 1 & 2 \end{array}$$

Linear extensions of P: 1122, 1212, 2112,1221,2121,2211

The linear extensions are permutations of a multiset $\{1^{a_1}, 2^{a_2}, \ldots, \ell^{a_\ell}\}$.

Type A Reflection Arrangement & Posets	Family 2: Disjoint Unions of Chains
	000000000000

The permutations of $M = \{1^2, 2^2\}$ are

$$\begin{pmatrix} 1 & 1 & 2 & 2 \\ 1 & 1 & 2 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 2 & 2 \\ 1 & 2 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 2 & 2 \\ 2 & 1 & 1 & 2 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 1 & 2 & 2 \\ 1 & 2 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 2 & 2 \\ 2 & 1 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 2 & 2 \\ 2 & 2 & 1 & 1 \end{pmatrix}$$

The bottom row of each of these permutations corresponds to a linear extension of P: 1122, 1212, 2112,1221,2121,2211.

Question

Is there some statistic on multisets that will help us describe $w_0, w_1, ...$ for a cone defined by a disjoint union of chains?

Foata's Intercalation Product

Example

Let
$$\sigma = \begin{pmatrix} 1 & 1 & 2 & 3 \\ 1 & 2 & 3 & 1 \end{pmatrix}$$
 and let $\rho = \begin{pmatrix} 1 & 2 & 2 & 3 & 4 \\ 2 & 2 & 4 & 3 & 1 \end{pmatrix}$. To compute $\sigma \neq \rho$, we first juxtapose σ and ρ . This gives
$$\begin{pmatrix} 1 & 1 & 2 & 3 \\ 1 & 2 & 3 & 1 \\ 2 & 2 & 4 & 3 & 1 \end{pmatrix}$$
.
Then we *stably sort* columns in nondecreasing order

$$\begin{pmatrix} 1 & 1 & 1 & 2 & 2 & 2 & 3 & 3 & 4 \\ (1 & 2 & 2 & 3 & 2 & 4 & 1 & 3 & 1 \end{pmatrix}$$
.

Decomposition into Primes: Existence and Uniqueness

Theorem (Foata, 1969)

Every multiset permutation has a decomposition into a product of prime cycles. That is, for a multiset permutation σ there exist $t \ge 0$ prime cycles $\sigma_1, \ldots, \sigma_t$ such that

 $\sigma = \sigma_1 \mathsf{T} \sigma_2 \cdots \mathsf{T} \sigma_t.$

Theorem (Foata, 1969)

The cycle decomposition of a multiset permutation is unique up to interchanging pairs of adjacent, disjoint prime cycles.

Intercalation Statistic

The intercalation product gives a map $f : \text{LinExt}(P) \to \mathcal{L}^{\text{int}}(\mathcal{A}, \mathcal{K}_P)$ in which $\sigma \in \text{LinExt}(P)$ is sent to $x \in \mathcal{L}^{\text{int}}(\mathcal{A}, \mathcal{K}_P)$ which has blocks corresponding to cycles of σ .

Example $(M = \{1^2, 2^2\})$

$$\begin{pmatrix} 1 & 1 & 2 & 2 \\ 2 & 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \mathsf{T} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \mathsf{T} \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \mathsf{T} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \mathsf{T} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Then
$$f \begin{pmatrix} 1 & 1 & 2 & 2 \\ 2 & 1 & 1 & 2 \end{pmatrix}$$
 is 13|2|4.

Intercalation and Characteristic Polynomials

For a multiset permutation σ , let fcyc(σ) denote number of cycles in the decomposition of σ into prime cycles.

Theorem (GDB, 2018)

Let
$$\mathbf{a} \vDash n$$
, $P = \mathbf{a_1} \sqcup \cdots \sqcup \mathbf{a_\ell}$ and $M = \{1^{a_1}, 2^{a_2}, \dots, \ell^{a_\ell}\}$. Then

$$\chi_{A_{n-1}}^{int}(\mathcal{K}_{P},t) = \sum_{(-t)^{fcyc(\omega)}} (-t)^{fcyc(\omega)}.$$

multiset permutations ω of M

Galen Dorpalen-Barry

Type A Reflection Arrangement & Posets	Family 2: Disjoint Unions of Chains
	0000000000000

Consider the cone defined by

Let's compute the characteristic polynomial in two ways.

Type A Reflection Arrangement & Posets	Family 2: Disjoint Unions of Chains
	000000000000

Example (Method 1)

Galen Dorpalen-Barry

Example (Method 2)

For $M = \{1^2, 2^2\}$, we have

$$\begin{pmatrix} 1 & 1 & 2 & 2 \\ 1 & 1 & 2 & 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \mathsf{T} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \mathsf{T} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \mathsf{T} \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 1 & 2 & 2 \\ 1 & 2 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \mathsf{T} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \mathsf{T} \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 1 & 2 & 2 \\ 2 & 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \mathsf{T} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \mathsf{T} \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 1 & 2 & 2 \\ 1 & 2 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \mathsf{T} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \mathsf{T} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \mathsf{T} \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 1 & 2 & 2 \\ 1 & 2 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \mathsf{T} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 1 & 2 & 2 \\ 2 & 1 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \mathsf{T} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 1 & 2 & 2 \\ 2 & 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \mathsf{T} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

Example (Method 2)

For $M = \{1^2, 2^2\}$, we have

$$\begin{pmatrix} 1 & 1 & 2 & 2 \\ 1 & 1 & 2 & 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \mathsf{T} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \mathsf{T} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \mathsf{T} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \qquad t^4 \\ \begin{pmatrix} 1 & 1 & 2 & 2 \\ 1 & 2 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \mathsf{T} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \mathsf{T} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \qquad -t^3 \\ \begin{pmatrix} 1 & 1 & 2 & 2 \\ 2 & 1 & 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \mathsf{T} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \mathsf{T} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \qquad -t^3 \\ \begin{pmatrix} 1 & 1 & 2 & 2 \\ 1 & 2 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \mathsf{T} \begin{pmatrix} 2 \\ 2 \end{pmatrix} \mathsf{T} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \qquad -t^3 \\ \begin{pmatrix} 1 & 1 & 2 & 2 \\ 1 & 2 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \mathsf{T} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \mathsf{T} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad -t^3 \\ \begin{pmatrix} 1 & 1 & 2 & 2 \\ 2 & 1 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \mathsf{T} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \mathsf{T} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad -t^3 \\ \begin{pmatrix} 1 & 1 & 2 & 2 \\ 2 & 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \mathsf{T} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \qquad t^2$$

Characteristic polynomials and chambers for cones in hyperplane arrangements

+³

+³

Type A Reflection Arrangement & Posets	Family 2: Disjoint Unions of Chains
	0000000000000

Adding up terms gives

$$\chi_{A_{n-1}}^{\text{int}}(\mathcal{K}_P,t)=t^4-4t^3+t^2.$$

Compare this to what we got from the intersection poset:

$$\chi_{A_{n-1}}^{\text{int}}(\mathcal{K}_P,t)=t^4-4t^3+t^2.$$

They are the same!

Characteristic polynomials and chambers for cones in hyperplane arrangements

Type A Reflection Arrangement & Posets	Family 2: Disjoint Unions of Chains
	00000000000000

Future Work

Goal: Extend Foata's theory of multisets to arbitrary posets using a choice of Dilworth decomposition.

- I have a rough idea of what the map might look like.
- I'm working on refining that idea.

Type A Reflection Arrangement & Posets	Family 2: Disjoint Unions of Chains
	00000000000000

Thank you!

Selected References

- Aguiar, Marcelo, and Swapneel Mahajan. *Topics in Hyperplane Arrangements.* American Mathematical Society, 2017.
- Brown, Kenneth "Semigroups, Rings, and Markov Chains." Journal of Theoretical Probability, Vol 13, No. 3, 2000.
 - Gente, Regina. "The Varchenko Matrix for Cones." Universität Marburg, 2013.
- Knuth, Donald Ervin. The Art of Computer Programming. Addison-Wesley, 2015.
- Stanley, Richard. "An Introduction to Hyperplane Arrangements." Geometric Combinatorics IAS/Park City Mathematics Series, 2007, pp. 389-496., doi:10.1090/pcms/013/08.