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The question

Let Λ be a clutter (an antichain of subsets of a finite set Ω)

Which is the matroid closest to Λ?

Example: let Λ = {1 2 3, 1 2 4, 3 4 5}
I Both {1 2 3, 1 2 4, 3 4} and {1 3 4, 2 3 4, 3 4 5, 1 2, 1 5, 2 5} are

are clutters of circuits of a matroid:
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I Both {1 2 3, 1 2 4} and {1 2 3, 1 2 4, 3 4 5, 1 3 4, 2 3 5, 2 4 5} are
clutters of bases of a matroid:
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Previous efforts in linking clutters and matroids

I Vaderlind, 1986: Clutters and semimatroids

I Dress and Wenzel, 1990: Matroidizing set systems: a new
approach to matroid theory

I Cordovil, Fukuda, and Moreira, 1991: Clutters and matroids

I Traldi, 1997-2003:Clutters and circuits I, II, III

I Blasiak, Rowe, Traldi, and Yacobi, 2005: Several definitions of
matroids

I Martini and Wenzel, 2005: Symmetrization of closure
operators and visibility



Definitions: clutters
Denote by Clutt(Ω) the set of all clutters on a finite set Ω

For Λ ∈ Clutt(Ω), let

Λ+ = {B ⊆ Ω : B ⊇ A for some A ∈ Λ}
Λ− = {B ⊆ Ω : B ⊆ A for some A ∈ Λ}

Hence
Λ = minimal(Λ+) = maximal(Λ−)

Ex: for a matroid M, C(M)+ → dependent sets
B(M)− → independent sets

Define the following two partial orders on Clutt(Ω)

Λ1 6+ Λ2 ⇐⇒ Λ+
1 ⊆ Λ+

2

⇐⇒ ∀ A ∈ Λ1 ∃ A′ ∈ Λ2 s.t. A ⊇ A′

Λ1 6− Λ2 ⇐⇒ Λ−1 ⊆ Λ−2
⇐⇒ ∀ A ∈ Λ1 ∃ A′ ∈ Λ2 s.t. A ⊆ A′
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Definitions: clutters

The clutter Λc is {Ω \ A : A ∈ Λ}

The blocker of a clutter is

b(Λ) = minimal{B : B ∩ A 6= ∅ for all A ∈ Λ}

It is well known that b(b(Λ)) = Λ (Edmonds, Fulkerson 70)

Lem Λ1 6+ Λ2 ⇔ Λc
1 6− Λc

2

Λ1 6+ Λ2 ⇔ b(Λ2) 6+ b(Λ1)
Λ1 6− Λ2 ⇔ b(Λc

2)c 6− b(Λc
1)c
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Definitions: interpretations

For matroids:

Λ Λc b(Λ)

B(M) B(M∗) C(M∗)

C(M) H(M∗) B(M∗)

H(M) C(M∗) –

C(M1) 6+ C(M2)⇔ M1 is above M2 in the weak order

B(M1) 6− B(M2)⇔ M1 is below M2 in the weak order

B(M1) 6+ B(M2)⇔ M∗1 is below M∗2 in the weak order



Answering our initial question

Given Λ ∈ Clutt(Ω):

I We want it close to a matroid clutter. Do we choose circuit
clutters or basis clutters? (Or hyperplane clutters, or . . .)
Let’s say we choose Σ ⊆ Clutt(Ω)

I Now, which order do we use to compare? 6+ or 6− ? Let’s
say we take order

I And, with respect to order, we seek clutters from Σ that are
above or below our clutter Λ? Let’s say we take side

Thm (Informal)
For any choice of order and side, there is a family of clutters
F ⊂ Clutt(Ω) such that:
If F ⊆ Σ, then there exist Λ1, . . . ,Λs in Σ that are closest to Λ
with respect to order and side. (The optimal completions)
Moreover, Λ can be recovered from Λ1, . . . ,Λs .

(The decomposition)
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Decomposition theorems: in general

(Mart́ı-Farré, dM 17)

Thm Let Λ ∈ Clutt(Ω) and Σ ⊆ Clutt(Ω)
If for all S = {x1, . . . , xr} ⊆ Ω the clutter ΛS = {{x1}, . . . , {xr}}
belongs to Σ, then

(1) there exists some Λ′ ∈ Σ such that Λ 6+ Λ′

(2) if Λ1, . . . ,Λs ∈ Σ are the minimal clutters in (1) then
Λ = minimal

(
Λ+

1 ∩ · · · ∩ Λ+
s

)



Decomposition theorems: in general
(Mart́ı-Farré, dM 17)

Thm

6+, upper
F+
u =

{
{{x1}, . . . , {xr}} : x1, . . . , xr ∈ Ω

}
Λ = minimal

(
Λ+

1 ∩ · · · ∩ Λ+
s

)
6+, lower

F+
` = {{x1 . . . xr} : x1, . . . , xr ∈ Ω}

Λ = minimal
(
Λ+

1 ∪ · · · ∪ Λ+
s

)
6−, upper

F−u = {{Ω \ x1, . . . ,Ω \ xr} : x1, . . . , xr ∈ Ω}
Λ = maximal

(
Λ−1 ∩ · · · ∩ Λ−s

)
6−, lower

F−` = {{x1 . . . xr} : x1, . . . , xr ∈ Ω}
Λ = maximal

(
Λ−1 ∪ · · · ∪ Λ−s

)

Lem All clutters above are clutters of bases, and all are clutters of
circuits except F−u
(and of bases/circuits of graphic/representable/transversal
matroids)
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Decomposition theorems: matroids

So, given Λ we can consider approximations for any combination of
circuits / bases; 6+ / 6−; upper / lower

except: circuits, 6−, upper

Now, can we effectively find them?

By combining blockers and complements, it is enough to solve one
case in each group

(circuits, 6+, upper)
(bases, 6+, lower)
(bases, 6−, lower)

(circuits, 6+, lower)
(bases, 6+, upper)
(bases, 6−, upper)

(circuits, 6−, lower)



Decomposition theorems: matroids

So, given Λ we can consider approximations for any combination of
circuits / bases; 6+ / 6−; upper / lower

except: circuits, 6−, upper

Now, can we effectively find them?

By combining blockers and complements, it is enough to solve one
case in each group

(circuits, 6+, upper)
(bases, 6+, lower)
(bases, 6−, lower)

(circuits, 6+, lower)
(bases, 6+, upper)
(bases, 6−, upper)

(circuits, 6−, lower)



Finding the completions

Mart́ı-Farré 14: algorithm for (circuits, 6+, upper)

Mart́ı-Farré, dM 17: algorithms for (circuits, 6+, lower) and
(circuits, 6−, lower)

Idea: For distinct A1,A2 ∈ Λ, define

IΛ(A1 ∪ A2) =
⋂

X∈Λ,X⊆A1∪A2

X

Then:

Λ is the clutter of circuits of some matroid

m

IΛ(A1 ∪ A2) = ∅ for all A1 6= A2 ∈ Λ
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The lattice structure

Recall the operations from the theorems:

Λ1 u+ Λ2 = min
(
Λ+

1 ∩ Λ+
2

)
Λ1 t+ Λ2 = min

(
Λ+

1 ∪ Λ+
2

)
Λ1 u− Λ2 = max

(
Λ−1 ∩ Λ−2

)
Λ1 t− Λ2 = max

(
Λ−1 ∪ Λ−r

)
Obs (Clutt(Ω),6+,t+,u+) and (Clutt(Ω),6−,t−,u−) are
distributive lattices



The lattice structure
{∅}

{{1}, {2}, {3}}

{{1}, {2}} {{1},{3}} {{2}, {3}}

{{1}, {2, 3}} {{2}, {1, 3}} {{3}, {1, 2}}

{{1, 2}, {1, 3}, {2, 3}}

{{1, 2}, {1, 3}} {{1,2},{2,3}} {{1, 3}, {2, 3}}

{{1, 2}} {{1, 3}} {{2, 3}}

{{1, 2, 3}}

{}

{{1, 2, 3}}

{{1, 2}, {1, 3}, {2, 3}}

{{1}, {2}}{{1},{3}}{{2}, {3}}

{{1}, {2, 3}} {{2}, {1, 3}} {{3}, {1, 2}}

{{1}, {2}, {3}}

{{1, 2}, {1, 3}}{{1,2},{2,3}}{{1, 3}, {2, 3}}

{{1, 2}}{{1, 3}}{{2, 3}}

{∅}

{}

{{1}} {{2}} {{3}}

{{3}} {{2}}

{{1}}

{{1}}

(Clutt({1, 2, 3}),≤+) (Clutt({1, 2, 3}),≤−)



The lattice structure
The “special families” are nothing but join/meet-irreducibles in
this lattices!
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{{1, 2, 3}}
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{{1, 2}, {1, 3}, {2, 3}}

{{1, 3}, {2, 3}} {{1,2},{2,3}} {{1, 2}, {1, 3}}

{{3}}{{3}} {{1}}

{∅}

{{2}}



Fixing the ground set
Let

Clutt0(Ω) = {Λ ∈ Clutt(Ω) :
⋃
A∈Λ

A = Ω}
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Fixing the ground set

(Mart́ı-Farré, dM, Ruiz 18+)

(Clutt0(Ω),6−,t−,u−) is a lattice, but (Clutt0(Ω),6+) is not

I To decompose Λ ∈ Clutt0(Ω) with members of a family
Σ ⊆ Clutt0(Ω) with respect to the order 6−, one only needs
to check if Σ0 contains the corresponding meet- or join-
irreducibles

I To decompose Λ ∈ Clutt0(Ω) with members of a family
Σ ⊆ Clutt0(Ω) with respect to the order 6+, the family Σ0

must contain
I The clutter {1 2 . . . n} and all clutters of the form
{α1, α2, . . . , αm, β β1, . . . , β βn−m−1} (upper case)

I The clutter {1, 2, . . . , n} and all clutters of the form
{α1 α2 . . . αm β, α1 α2 . . . αm β1 . . . βn−m−1} (lower case)
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A few of the questions we’d like to solve

I Why in some cases not all optimal completions are needed in
the decomposition formula? If only two matroids are needed
in the decomposition, does this gives an interesting class of
quasi-matroidal clutters?

I When computing completions, can we work directly with
respect to bases? how do we restrict to some class of
matroids?

I How do deletion and contraction (for clutters) behave in this
framework?


