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LE MENU

Tverberg’s theorem: good things happen with a lot of points in Rd

Our Results

A few key ideas and ingredients



When sufficient elements exist, suddenly structure appears

1. “the more the merrier” principle: Every sufficiently large
system contains a large well-organized subsystem. Complete
disorder is impossible!!!

2. Ramsey’s theorem: One will always find monochromatic
cliques in any edge coloring of a sufficiently large complete
graph!!!

3. Erdös Szekeres: Every sufficiently large set of points in
general position contains a subset of k points in convex
position.
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Johann Radon & Helge Tverberg:

SUFFICIENTLY LARGE SETS OF POINTS CAN ALWAYS BE
PARTITIONED IN SPECIAL WAYS...



RADON’s THEOREM ( 1920)

If X ⊂ Rd contains sufficiently many points (at least d + 2
points!!!), then X can be partitioned into two disjoint subsets X1,
X2 such that conv(X1) ∩ conv(X2) 6= ∅



Theorem (H. Tverberg, 1966)

Let X = {a1, . . . , an} be points in Rd . If the number of points
satisfies n > (d + 1)(r − 1), then they can be partitioned into r
disjoint parts A1, . . . ,Ar in such a way that the r convex hulls
convA1, . . . , convAr have a point in common.

Remark This constant is best possible.
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Partitions of Point Set and Nerves

I Let F = {F1, . . . ,Fm} be a family of convex sets in Rd . The
nerve N (F) of F is the simplicial complex with vertex set
[m] := {1, 2 . . . ,m} whose faces are I ⊂ [m] such that
∩i∈IFi 6= ∅.



I Given a collection of points S ⊂ Rd and an m-partition into m
color classes P = S1, . . . ,Sm of S , the nerve of the partition,
N (P) is the nerve complex N ({conv(S1), . . . , conv(Sn)}),

I Question: For a given point set, as we run over all partitions,
what are the possible induced simplicial complexes? What
happens when we have A LOT OF POINTS?
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The point set A(222,243), B(238,13), C(131,50), D(154,105),

E(166,145), F(134,106), G(174,188), H(18,51). cannot be partition to
have a 4-path tree as a nerve!!!

But once you have at least 9 points you will be able to find a
partition that gives a 4-path tree nerve!!!

Theorem (Tverberg’s theorem rephrased 1)

The (m − 1)-simplex is a partition induced for every point
configuration with sufficiently many points!!
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I Definition: A simplicial complex K is d-Tverberg if there
exists a constant Tv(K , d) such that K is partition induced on
all point sets S ⊂ Rd in general position with |S | > Tv(K , d).
The minimal such constant Tv(K , d) is called the Tverberg
number for K in dimension d .

Theorem (Tverberg’s theorem rephrased 2)

The (m − 1)-simplex is a d-Tverberg complex for all d ≥ 1, with
Tverberg number (d + 1)(m − 1) + 1.

I Question: Which simplicial d complexes are d-Tverberg
complexes?
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OUR MAIN RESULTS



Not all complexes are Tverberg

Theorem
The following complex is NOT a 2-Tverberg complex.

Figure: A 2-partition induced one-dimensional complex that is not
2-Tverberg

This 1-dimensional simplicial complex is partition induced on
SOME planar point sets, but not for points in convex position,

regardless of how many points we use!!
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A Tverberg theorem with nerves are TREES or CYCLES

Theorem
All trees and cycles are d-Tverberg complexes for all d ≥ 2.

(A) Every tree Tn on n nodes, is a d-Tverberg complex for d ≥ 2.
The Tverberg number Tv(Tn, d) exists and it is at most
Rd+1((d + 1)(n− 1) + 1). More strongly, Tv(Tn, 2) is at most(4n−4
2n−2

)
+ 1.

(B) Every n-cycle Cn with n ≥ 4 is a d-Tverberg complex for
d ≥ 2. The Tverberg number exists and Tv(Cn, d) is at most
nd + n + 4d.
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Some improvements on the bounds for the Tverberg
numbers of trees

Theorem
If a tree Tn is a caterpillar tree with n nodes, then Tn is
d-Tverberg complex for all d, and its d-Tverberg number
Tv(Tn, d) is no more than (d + 1)(n − 1) + 1.

Theorem

(A) The 2-Tverberg numbers Tv(Sn, 2) for a star tree with n
nodes equals 2n.

(B) The 2-Tverberg numbers of the path and cycle with four
nodes are Tv(P4, 2) = 9 and 11 ≤ Tv(C4, 2) ≤ 13.
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NICE IDEAS BEHIND



Trees are induced by partitions of “large” point sets in
CONVEX POSITION
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Figure: Example of a tree with seven nodes and shown as partition
induced on a set S of 14 points in convex position



Extending the Partition
We can always extend the partition (or coloring) of convex position
points to the rest of the points in S̄ , which may not be in the
convex polytope
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Figure: The extension of the partition obtained in Figure 2. The left
figure, is the extension up to n = 4, the central figure is the extension up
to n = 6



Using Matroids 1: A Multi-dimensional Erdős-Szekeres
I Theorem: [Grünbaum, Cordovil and Duchet]: There exist a

number N = N(k , d) such that every set of at least N points
in general position in Rd contains the vertices of an ordered
cyclic d-polytope. Cm(d).

d(x, y) = h iff and only if x is in the dual facet of
y.

Theorem: Let � ⇢ R3 be a Reuleaux polytope.
Then G� is a self-dual graph, where the automor-
phism ⌧ is given by ⌧ (x) = S(x, h) \ �, for every
x 2 T . Furthermore, ⌧ is an involution; that is,
a vertex x belongs to the cell ⌧ (y) if and only if
the vertex y belongs to the cell ⌧ (x).

Theorem: A body � has constant width if and
only if it has a binormal in every direction.

Theorem: A body has constant width if and only
if each of its normals is a binormal.

Theorem: Let T ⇢ R3 be a set of size m and
diameter h. Then T has at most 2m�2 diameters,
and the diameter of T is attained 2m � 2 times
if and only if the points of T are singular points
of bdB(T, h)) and every vertex singular point of
bdB(T, h) belongs to T .

F (S) =
P

l�0

P
k�0 f (k, l)Xk,l(S).

M0(S) =
P

k�3(�1)k+1Xk(S)
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Figure: Two cyclic polytopes, left we show a tree on two nodes
shown as a partition in a set S of five vertices of the cyclic polytope
C5(3). On the right side we represent a tree on three nodes as a
partition of the nine vertices of another cyclic polytope in R3, this
time C9(3).



Using Matroids 2: Using OM classification in small rank

I lemma Let S1,S2 be two point sets in Rd with the same
oriented matroid, and let σ be a bijection from S1 to S2 that
preserves the orientation of any (d + 1)-tuple in S1. Then any
partition P = (P1,P2, . . . ,Pn) of S1 and the corresponding
partition of S2 via σ, denoted
σP = {σ(P1), σ(P2), . . . , σ(Pn)}, have the same intersection
graph N1(P).

I Moral: It suffices to check one representative configuration of
points from each oriented matroid type, reducing calculations
to finitely many cases!

I For small complexes, we can use exhaustive computer
enumeration of all possible partitions, over all possible
oriented matroids of point sets with fewer than ten points in
rank 3. Luckily, they were classified by Aichholzer et al.
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Lemma But the chirotope-preserving bijections do not preserve
the higher-dimensional skeleton of the nerve of a partition!

Figure: Only the 1-skeleton of the nerve is preserved by order-preserving
bijection.

NOTE: We can still make use of Lemma oriented matroids
because in our cases, the nerve complex equal their 1-skeleton!



Open Questions

1. OPEN PROBLEM: What is the exact value of Tv(Tn, d)
where Tn is a tree with n nodes? Is (d + 1)(n − 1) + 1 the
correct value? What about the case of d = 2?

2. OPEN PROBLEM: What is the computational complexity of
determining if a point configuration can partition induce a
given complex?

3. OPEN PROBLEM: What is the computational complexity of
computing the Tverberg numbers of a given Tverberg
complex, such as a tree?

4. OPEN PROBLEM: Is there a complex K which is not
d-Tverberg for any d?

5. OPEN PROBLEM: Is there a complex K and i , j ∈ N, i < j so
that K is i-Tverberg but not j-Tverberg?
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