TOPOLOGICAL HYPERFIELDS AND HYPERFIELD GRASSMANNIANS

Jim Davis Indiana University

CIRM, September 2018

Main Points

- Joint work with Laura Anderson
- Topological hyperfields
 - Examples
 - Hyperfield Grassmannians (with topology)
 - Cohomology (Steifel-Whitney classes)
 - Realization spaces as point inverses of continuous maps

Hyperfield (definition)

Slogan: A hyperfield is a field, but with multivalued addition:

DEFINITION

A hyperfield $(F,\cdot,\boxplus,1,0)$ is

- set F
- elements $0, 1 \in F$ with $0 \neq 1$.
- $\bullet : F \times F \to F$
- $\bullet \; \boxplus : F \times F \to \{ \text{non-empty subsets of } F \}$

so that

- $F^{\times} = (F \{0\}, \cdot, 1)$ is an abelian group.
- $x \cdot 0 = 0 = 0 \cdot x$
- $x \cdot (y \boxplus z) = (x \cdot y) \boxplus (x \cdot z)$
- $(F, \boxplus, 0)$ is an abelian hypergroup
 - $0 \boxplus x = x$
 - $\forall x, \exists ! x$, so that $0 \in x \boxplus -x$ • associative, commutative

TOPOLOGICAL HYPERFIELD

DEFINITION (AD)

A topological hyperfield is a hyperfield $F=(F,\cdot,\boxplus,1,0)$ with a topology on F so that

- \bullet F^{\times} is a topological group (i.e. multiplication and inversion are continuous)
- F^{\times} is open (i.e. $\{0\}$ is closed).

AD wrote "The reader may think it is odd that we do not require addition to be continuous. We do too!"

DEFINITION

A morphism $f: F \to F'$ of topological hyperfields is

- continuous
- hyperfield homomorphism $f(0) = 0, f(1) = 1, f(xy) = f(x)f(y), f(x \boxplus y) \subset f(x) \boxplus f(y)$

POSET TOPOLOGY

DEFINITION

Let P be a poset. $U \subset P$ is an upper set if $x \in U, y \ge x \Longrightarrow y \in U$

DEFINITION

The *poset topology* on a poset P is the topology where the open sets are the upper sets.

The largest vertex map from the order complex is continuous!

$$||P|| \to P$$

THEOREM (McCord 66)

This is a weak homotopy equivalence (isomorphism on homotopy groups)

Viro's dequantization; graph of $z=(x^5+y^5)^{1/5}$

