Sufficient condition for almost-irreducibility

Csongor Gy. Csehi
Budapest University of Technology and Economics, Hungary
2018.09.24.

Motivation

Conjecture

(Recski 1982) The union of graphic matroids is graphic or nonbinary.

Binary: can be represented by a matrix over $G F(2)$ Graphic: $\exists G$ graph on the edge set E, that the independent sets are the circuit free subsets
Union: $M_{1}\left(E, I_{1}\right) \vee M_{2}\left(E, I_{2}\right)$ is the matroid on E where the independents are the sets X which can be partitioned to $X=X_{1} \cup X_{2}$, so that $X_{1} \in I_{1}, X_{2} \in I_{2}$

First approach I

Fix a graphic matroid and characterize those graphic matroids where the union is graphic.

First approach I

Fix a graphic matroid and characterize those graphic matroids where the union is graphic.

Theorem
(Recski 1975) If A is the cycle matroid of the left graph, than the union $A \vee M$ is graphic if and only if M does not contain the cycle matroid of the right graph as a minor.

First approach II

(Cs 2012) Forbidden minor characterization of the next two cases: if the fixed matroid has 3 parallel edges or a 3 long circuit.

First approach III

Theorem
(Cs CG13) Suppose that G_{1} consists of loops and a single circuit of length $n(n \geq 2)$ and $M\left(G_{2}\right)$ is an arbitrary graphic matroid on the same ground set. The union $M_{1} \vee M_{2}$ is graphic if and only if for the reduced pair $M_{1}^{\prime}, M_{2}^{\prime}$ every nonloop circuit C of M_{1}^{\prime} contains a cut set in M_{2}^{\prime} or $M_{2}^{\prime} \backslash C$ is the free matroid.

First approach III

Theorem

(Cs CG13) Suppose that G_{1} consists of loops and a single circuit of length $n(n \geq 2)$ and $M\left(G_{2}\right)$ is an arbitrary graphic matroid on the same ground set. The union $M_{1} \vee M_{2}$ is graphic if and only if for the reduced pair $M_{1}^{\prime}, M_{2}^{\prime}$ every nonloop circuit C of M_{1}^{\prime} contains a cut set in M_{2}^{\prime} or $M_{2}^{\prime} \backslash C$ is the free matroid.

Theorem

(Cs 2013) Suppose that G_{1} consists of loops and two points joined by $n(n \geq 2)$ parallel edges and $M\left(G_{2}\right)$ is an arbitrary graphic matroid on the same ground set. The union $M_{1} \vee M_{2}$ is graphic if and only if for the reduced pair $M_{1}^{\prime}, M_{2}^{\prime}$ every nonloop circuit C of M_{1}^{\prime} contains a cut set in M_{2}^{\prime} or $M_{2}^{\prime} \backslash C$ is the free matroid or the elements of C are not in the same 2-connected component of G^{\prime}.

In both cases: otherwise the union is not binary.

A sufficient, and a necessary condition (Cs 2015)

Theorem
Assume that M_{2} is graphic. Then $M_{1} \vee M_{2}$ is graphic if for every circuit C of length at least two in M_{1} either $r_{2}(E-C)<r_{2}(E)$ or $r_{2}(E-C)=|E-C|$.

A sufficient, and a necessary condition (Cs 2015)

Theorem

Assume that M_{2} is graphic. Then $M_{1} \vee M_{2}$ is graphic if for every circuit C of length at least two in M_{1} either $r_{2}(E-C)<r_{2}(E)$ or $r_{2}(E-C)=|E-C|$.

Theorem

M_{1} and M_{2} graphic matroids. If there exists a disjoint pair X_{1}, X_{2} with the following conditions, then $M_{1} \vee M_{2}$ is not binary.

1. $i=1,2: \exists C_{i}$ of M_{i} in X_{i} so that $\left|C_{i}\right| \geq 2$
2. $r_{i}\left(X_{i}\right)=r_{i}\left(X_{1} \cup X_{2}\right)$ for $i \in\{1,2\}$
3. $i=1,2: \exists a \neq b \in C_{1} \cup C_{2}$ such that:

- $a \in C_{i}, b \in C_{3-i}$ and a and b are in the same component in both matroids OR
- $a, b \in C_{i}$ and $\exists X_{3-i}^{\prime} \subset X_{3-i}$ so that in $M_{3-i} / X_{3-i}^{\prime} a$ and b are diagonals of C_{3-i} connecting distinct pairs of vertices

New directions

Many different approaches, for example: handling union as homomorphism (also defined almost-graphicity: can be get from a graphic matroid with a homomorphism)

New directions

Many different approaches, for example: handling union as homomorphism (also defined almost-graphicity: can be get from a graphic matroid with a homomorphism)

Theorem
(Tutte 1959) A matroid is binary if and only if it has no $U_{2,4}$ minor. A matroid is graphic if and only if it has no $U_{2,4}, F_{7}, F_{7}^{*}, M^{*}\left(K_{5}\right)$ or $M^{*}\left(K_{3,3}\right)$ minor.

Theorem
(Bixby 1977) A binary matroid is graphic if and only if it has no series minor $F_{7}, F_{7}^{*}, R_{10}, M^{*}\left(K_{5}\right)$, or $M^{*}\left(K_{3,3}^{i}\right)$, for some $0 \geq i \geq 3$.

Almost-irreducibility

Almost-irreducible: If M is a series minor in the union $M_{1} \vee M_{2}$, then M must be the series extension of a submatroid of M_{1} or M_{2}.
Theorem
(Recski 1981) A graphic matroid is almost-irreducible if and only if it is non-separable and does not have a separating series class.

Almost-irreducibility

Almost-irreducible: If M is a series minor in the union $M_{1} \vee M_{2}$, then M must be the series extension of a submatroid of M_{1} or M_{2}.
Theorem
(Recski 1981) A graphic matroid is almost-irreducible if and only if it is non-separable and does not have a separating series class.

Lemma
(1973 Lovász, Recski) Every arc of a θ-graph (or non-separable line) of M is critical (the sum of the ranks is the size).

Lemma
Every θ-graph M is almost-irreducible.

Generalizing Recski's result

The graphicity is needed in Recski's proof for two properties:

1. Every series class can be an arc of a θ-graph
2. There is a θ-connection path between any two circuits

Generalizing Recski's result

The graphicity is needed in Recski's proof for two properties:

1. Every series class can be an arc of a θ-graph
2. There is a θ-connection path between any two circuits

- (Cs CG18) The first property is true for almost all of Bixby's series minors $\left(F_{7}, R_{10}, M^{*}\left(K_{5}\right), M^{*}\left(K_{3,3}^{i}\right): i \in\{0,1,2,3\}\right)$, but is not true for F_{7}^{*}.
- (Cs CG18) The second property is true for all of Bixby's series minors $\left(F_{7}, F_{7}^{*}, R_{10}, M^{*}\left(K_{5}\right), M^{*}\left(K_{3,3}^{i}\right): i \in\{0,1,2,3\}\right)$

Problem with the proof

- As mentioned F_{7}^{*} can not be good (misses property 1)
- I could not reproduce the proof for binary matroids (not necessary graphic)
- I found an error in the original proof (probably not fatal, but not easily repairable)

Cunningham's results

Theorem
(Cunningham 1978) A binary matroid is irreducible if and only if it is non-separable and does not have a separating element.

Cunningham's results

Theorem
(Cunningham 1978) A binary matroid is irreducible if and only if it is non-separable and does not have a separating element.
Cunningham's proof uses Tutte's ideas (1965: for a circuit Y define the Y - components and Y - bridges, etc.) Later Duke gave an easier proof using Mason construction (1988).
Theorem
(Cunningham 1978) in the union $M_{1} \vee M_{2}$ of binary matroids, every element which is not a loop in M_{1} and not a loop in M_{2} must be separating $\left(\left(M_{1} \vee M_{2}\right) \backslash e\right.$ is not connected).

Generalizing Cunningham's result

Conjecture

A binary matroid is almost-irreducible if and only if it is the series extension of an irreducible matroid.

If we could prove that contracting an element from a series class in the union is somehow equivalent with contracting something in an addend...

Generalizing Cunningham's result

Conjecture

A binary matroid is almost-irreducible if and only if it is the series extension of an irreducible matroid.
If we could prove that contracting an element from a series class in the union is somehow equivalent with contracting something in an addend...That would be good.

Counterexample: $\{a, e\} \vee\{b, e\}$
Suppose that a and b are serial in the union: if an edge a is a loop in M_{2} then a can be contracted in M_{1}; if a and b are parallel in both M_{1} and M_{2} then a can be contracted in M_{1}.

Something is missing in the middle

Theorem
(Cs CG18) Suppose that for every series class S in $M\left(=M_{1} \vee M_{2}\right)$ S is critical and $M \backslash S$ is connected. Then S contains a separator of M_{i} for $i=1$ or 2 .

Something is missing in the middle

Theorem
(Cs CG18) Suppose that for every series class S in $M\left(=M_{1} \vee M_{2}\right)$ S is critical and $M \backslash S$ is connected. Then S contains a separator of M_{i} for $i=1$ or 2 .
Sketch of the proof:

- Indirectly: $\exists P_{1}, P_{2} \subset E \backslash S, P_{i} \in M_{i}$ but $P_{i} \notin M_{i} / S$
- $\forall e_{k} \in P_{1} \cup P_{2}$ get the series class S_{k} of e in M
- $\bigcup_{k} S_{k}$ is disjoint from S
- any spanning set X of $\bigcup_{i} S_{i}$ in M must be critical
- $r(X \cup S) \leq|X \cup S|-2$ contradicting that S is a series class

Sufficient condition for almost-irreducibility

Corollary
Suppose that M is a series extension of a binary irreducible matroid. If every series class is critical in M then it is almost-irreducible.

Sufficient condition for almost-irreducibility

Corollary

Suppose that M is a series extension of a binary irreducible matroid. If every series class is critical in M then it is almost-irreducible.

Bixby's minors?
Lemma
If every element of M is an arc of a proper θ-graph, and N is a series extension of M then every series class of N is critical.

Lemma
If N is connected and a series class S of N is an arc of a proper θ-graph then S is non-separating.

Sufficient condition for almost-irreducibility

Corollary

Suppose that M is a series extension of a binary irreducible matroid. If every series class is critical in M then it is almost-irreducible.

Bixby's minors?

Lemma

If every element of M is an arc of a proper θ-graph, and N is a series extension of M then every series class of N is critical.

Lemma
If N is connected and a series class S of N is an arc of a proper θ-graph then S is non-separating.

Corollary
The series extensions of $F_{7}, R_{10}, M^{*}\left(K_{5}\right)$ and $M^{*}\left(K_{3,3}^{i}\right): i \in\{0,1,2,3\}$ are almost-irreducible.

F_{7}^{*} remains a problem?

Lemma
(Cunningham 1978) Let Y be a circuit in $M=M_{1} \vee M_{2}$ and $A, B \subset Y$ cricital sets in M. If $A \cup B \neq Y$ then $A \cap B$ must be critical also.

F_{7}^{*} remains a problem?

Lemma
(Cunningham 1978) Let Y be a circuit in $M=M_{1} \vee M_{2}$ and $A, B \subset Y$ cricital sets in M. If $A \cup B \neq Y$ then $A \cap B$ must be critical also.

Lemma
Every element of F_{7}^{*} is critical.
Corollary
The series extensions of F_{7}^{*} are almost-irreducible.

Revisiting motivating conjecture

Conjecture
(Recski 1982) The union of graphic matroids is graphic or nonbinary.

Revisiting motivating conjecture

Conjecture
(Recski 1982) The union of graphic matroids is graphic or nonbinary.
Proved to be true

Revisiting motivating conjecture

Conjecture

(Recski 1982) The union of graphic matroids is graphic or nonbinary.

Proved to be true

Another consequence:
The union of regular matroids is regular or nonbinary.

Open questions

Is the series extension of any irreducible matroid is almost-irreducible? (S must be critical if $M \backslash S$ is connected?)

Is the minor irreducibility similar to almost-irreducibility?

What about the non-binary matroids. Is there a meaningful irreducibility for them?

