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Motivation

Conjecture

(Recski 1982) The union of graphic matroids is graphic or
nonbinary.

Binary: can be represented by a matrix over GF(2)

Graphic: 3G graph on the edge set E, that the independent sets
are the circuit free subsets

Union: Mi(E, )V Ma(E, ) is the matroid on E where the
independents are the sets X which can be partitioned to
X=XiUXy,sothat Xy €, Xo € b



First approach |

Fix a graphic matroid and characterize those graphic matroids
where the union is graphic.
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Fix a graphic matroid and characterize those graphic matroids
where the union is graphic.

Theorem

(Recski 1975) If A is the cycle matroid of the left graph, than the

union AV M is graphic if and only if M does not contain the cycle
matroid of the right graph as a minor.




First approach Il

(Cs 2012) Forbidden minor characterization of the next two cases:
if the fixed matroid has 3 parallel edges or a 3 long circuit.




First approach Ill

Theorem

(Cs CG13) Suppose that Gy consists of loops and a single circuit of
length n (n > 2) and M(Gy) is an arbitrary graphic matroid on the
same ground set. The union My v My is graphic if and only if for
the reduced pair My, M} every nonloop circuit C of M contains a
cut set in M} or M}, \ C is the free matroid.



First approach Ill

Theorem

(Cs CG13) Suppose that Gy consists of loops and a single circuit of
length n (n > 2) and M(Gy) is an arbitrary graphic matroid on the
same ground set. The union My v My is graphic if and only if for
the reduced pair My, M} every nonloop circuit C of M contains a
cut set in M} or M}, \ C is the free matroid.

Theorem

(Cs 2013) Suppose that Gy consists of loops and two points joined
by n (n > 2) parallel edges and M(Gy) is an arbitrary graphic
matroid on the same ground set. The union My v My is graphic if
and only if for the reduced pair My, M5 every nonloop circuit C of
M contains a cut set in M} or M5\ C is the free matroid or the
elements of C are not in the same 2-connected component of G'.

In both cases: otherwise the union is not binary.



A sufficient, and a necessary condition (Cs 2015)

Theorem
Assume that M, is graphic. Then My v M, is graphic if for every

circuit C of length at least two in My either rn(E — C) < n(E) or
n(E—-C)=|E—-C|.



A sufficient, and a necessary condition (Cs 2015)

Theorem

Assume that M, is graphic. Then My v M, is graphic if for every
circuit C of length at least two in My either rn(E — C) < n(E) or
n(E—-C)=|E-C|.

Theorem
My and My graphic matroids. If there exists a disjoint pair X1, X,
with the following conditions, then My vV My is not binary.

1. i=1,2:3C of M; in X; so that ’C,‘ >2

2. r,-(X,-) = r,-(X1 U X2) fori € {1,2}

3. i=1,2:da# be GG UG such that:

» ac€ C, be G_; and a and b are in the same component in
both matroids OR

» a,be G and 3X,_;, C Xs_; so that in M3_;/X5_; a and b are
diagonals of C5_; connecting distinct pairs of vertices



New directions

Many different approaches, for example: handling union as
homomorphism (also defined almost-graphicity: can be get from a
graphic matroid with a homomorphism)
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Many different approaches, for example: handling union as
homomorphism (also defined almost-graphicity: can be get from a
graphic matroid with a homomorphism)

Theorem

(Tutte 1959) A matroid is binary if and only if it has no Uz 4 minor.
A matroid is graphic if and only if it has no Usa, F7, F5, M*(Ks)
or M*(Ks 3) minor.

Theorem

(Bixby 1977) A binary matroid is graphic if and only if it has no
series minor F7, F3, Rio, M*(Ks), or M*(K3"73), for some
0>i>3.



Almost-irreducibility

Almost-irreducible: If M is a series minor in the union My Vv My,
then M must be the series extension of a submatroid of M; or M.

Theorem
(Recski 1981) A graphic matroid is almost-irreducible if and only if
it is non-separable and does not have a separating series class.



Almost-irreducibility

Almost-irreducible: If M is a series minor in the union My Vv My,
then M must be the series extension of a submatroid of M; or M.

Theorem
(Recski 1981) A graphic matroid is almost-irreducible if and only if
it is non-separable and does not have a separating series class.

Lemma
(1973 Lovdsz, Recski) Every arc of a 0-graph (or non-separable
line) of M is critical (the sum of the ranks is the size).

Lemma
Every 0-graph M is almost-irreducible.



Generalizing Recski's result

The graphicity is needed in Recski's proof for two properties:
1. Every series class can be an arc of a #-graph

2. There is a f-connection path between any two circuits



Generalizing Recski's result

The graphicity is needed in Recski's proof for two properties:
1. Every series class can be an arc of a #-graph

2. There is a f-connection path between any two circuits

» (Cs CG18) The first property is true for almost all of Bixby's
series minors (F7, Rio, M*(Ks), M*(K33) : i € {0,1,2,3}),
but is not true for F7.

» (Cs CG18) The second property is true for all of Bixby's series
minors (F7, F5, Rig, M*(Ks), /\/I*(K3’;73) 11 €{0,1,2,3})



Problem with the proof

» As mentioned F; can not be good (misses property 1)

» | could not reproduce the proof for binary matroids (not
necessary graphic)

» | found an error in the original proof (probably not fatal, but
not easily repairable)



Cunningham'’s results

Theorem
(Cunningham 1978) A binary matroid is irreducible if and only if
it is non-separable and does not have a separating element.



Cunningham'’s results

Theorem
(Cunningham 1978) A binary matroid is irreducible if and only if
it is non-separable and does not have a separating element.

Cunningham'’s proof uses Tutte's ideas (1965: for a circuit Y
define the Y — components and Y — bridges, etc.)
Later Duke gave an easier proof using Mason construction (1988).

Theorem

(Cunningham 1978) in the union My N/ M, of binary matroids,
every element which is not a loop in My and not a loop in M,
must be separating (M1 V Ma) \ e is not connected).



Generalizing Cunningham'’s result

Conjecture

A binary matroid is almost-irreducible if and only if it is the series
extension of an irreducible matroid.

If we could prove that contracting an element from a series class in

the union is somehow equivalent with contracting something in an
addend...



Generalizing Cunningham'’s result

Conjecture

A binary matroid is almost-irreducible if and only if it is the series
extension of an irreducible matroid.

If we could prove that contracting an element from a series class in
the union is somehow equivalent with contracting something in an
addend... That would be good.

Counterexample: {a,e} V {b, e}

Suppose that a and b are serial in the union: if an edge a is a loop
in M5 then a can be contracted in My; if a and b are parallel in
both M; and M, then a can be contracted in Mj.



Something is missing in the middle

Theorem

(Cs CG18) Suppose that for every series class S in M(= My vV Ma)
S is critical and M\ 'S is connected. Then S contains a separator
of M; fori =1 or 2.



Something is missing in the middle

Theorem

(Cs CG18) Suppose that for every series class S in M(= My vV Ma)
S is critical and M\ 'S is connected. Then S contains a separator
of M; fori =1 or 2.

Sketch of the proof:
» Indirectly: 3P;, P, C E\'S, P € M; but P; ¢ M;/S
> Ve, € P; U P, get the series class S of e in M
> [Jy Sk is disjoint from S
» any spanning set X of |J; S; in M must be critical
» r(XUS) <|X US| — 2 contradicting that S is a series class



Sufficient condition for almost-irreducibility

Corollary

Suppose that M is a series extension of a binary irreducible
matroid. If every series class is critical in M then it is
almost-irreducible.



Sufficient condition for almost-irreducibility

Corollary
Suppose that M is a series extension of a binary irreducible

matroid. If every series class is critical in M then it is
almost-irreducible.

Bixby's minors?

Lemma
If every element of M is an arc of a proper 0-graph, and N is a
series extension of M then every series class of N is critical.

Lemma
If N is connected and a series class S of N is an arc of a proper
f-graph then S is non-separating.



Sufficient condition for almost-irreducibility

Corollary

Suppose that M is a series extension of a binary irreducible
matroid. If every series class is critical in M then it is
almost-irreducible.

Bixby's minors?

Lemma
If every element of M is an arc of a proper 0-graph, and N is a
series extension of M then every series class of N is critical.

Lemma
If N is connected and a series class S of N is an arc of a proper
f-graph then S is non-separating.

Corollary

The series extensions of F7, Rig, M*(Ks) and
M*(K33) - i € {0,1,2,3} are almost-irreducible.
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7 remains a problem?

Lemma
(Cunningham 1978) Let Y be a circuit in M = My vV My and
A, B C Y cricital setsin M. If AUB # Y then AN B must be

critical also.
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7

remains a problem?

Lemma

(Cunningham 1978) Let Y be a circuit in M = My vV My and
A, B C Y cricital setsin M. If AUB # Y then AN B must be
critical also.

Lemma
Every element of F; is critical.

Corollary
The series extensions of F; are almost-irreducible.
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(Recski 1982) The union of graphic matroids is graphic or
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Revisiting motivating conjecture

Conjecture

(Recski 1982) The union of graphic matroids is graphic or
nonbinary.

Proved to be true

Another consequence:
The union of regular matroids is regular or nonbinary.



Open questions

Is the series extension of any irreducible matroid is
almost-irreducible? (S must be critical if M\ S is connected?)

Is the minor irreducibility similar to almost-irreducibility?

What about the non-binary matroids. Is there a meaningful
irreducibility for them?



