Csongor Gy. Csehi

Budapest University of Technology and Economics, Hungary

2018.09.24.

Motivation

Conjecture

(Recski 1982) The union of graphic matroids is graphic or nonbinary.

Binary: can be represented by a matrix over GF(2)Graphic: $\exists G$ graph on the edge set E, that the independent sets are the circuit free subsets Union: $M_1(E, I_1) \lor M_2(E, I_2)$ is the matroid on E where the independents are the sets X which can be partitioned to $X = X_1 \cup X_2$, so that $X_1 \in I_1, X_2 \in I_2$

First approach I

Fix a graphic matroid and characterize those graphic matroids where the union is graphic.

First approach I

Fix a graphic matroid and characterize those graphic matroids where the union is graphic.

Theorem

(Recski 1975) If A is the cycle matroid of the left graph, than the union $A \lor M$ is graphic if and only if M does not contain the cycle matroid of the right graph as a minor.

(Cs 2012) Forbidden minor characterization of the next two cases: if the fixed matroid has 3 parallel edges or a 3 long circuit.

First approach III

Theorem

(Cs CG13) Suppose that G_1 consists of loops and a single circuit of length $n \ (n \ge 2)$ and $M(G_2)$ is an arbitrary graphic matroid on the same ground set. The union $M_1 \lor M_2$ is graphic if and only if for the reduced pair M'_1, M'_2 every nonloop circuit C of M'_1 contains a cut set in M'_2 or $M'_2 \setminus C$ is the free matroid.

First approach III

Theorem

(Cs CG13) Suppose that G_1 consists of loops and a single circuit of length $n \ (n \ge 2)$ and $M(G_2)$ is an arbitrary graphic matroid on the same ground set. The union $M_1 \lor M_2$ is graphic if and only if for the reduced pair M'_1, M'_2 every nonloop circuit C of M'_1 contains a cut set in M'_2 or $M'_2 \setminus C$ is the free matroid.

Theorem

(Cs 2013) Suppose that G_1 consists of loops and two points joined by n ($n \ge 2$) parallel edges and $M(G_2)$ is an arbitrary graphic matroid on the same ground set. The union $M_1 \lor M_2$ is graphic if and only if for the reduced pair M'_1, M'_2 every nonloop circuit C of M'_1 contains a cut set in M'_2 or $M'_2 \setminus C$ is the free matroid or the elements of C are not in the same 2-connected component of G'.

In both cases: otherwise the union is not binary.

A sufficient, and a necessary condition (Cs 2015)

Theorem

Assume that M_2 is graphic. Then $M_1 \vee M_2$ is graphic if for every circuit C of length at least two in M_1 either $r_2(E - C) < r_2(E)$ or $r_2(E - C) = |E - C|$.

A sufficient, and a necessary condition (Cs 2015)

Theorem

Assume that M_2 is graphic. Then $M_1 \vee M_2$ is graphic if for every circuit C of length at least two in M_1 either $r_2(E - C) < r_2(E)$ or $r_2(E - C) = |E - C|$.

Theorem

 M_1 and M_2 graphic matroids. If there exists a disjoint pair X_1, X_2 with the following conditions, then $M_1 \vee M_2$ is not binary.

1.
$$i = 1, 2$$
: $\exists C_i \text{ of } M_i \text{ in } X_i \text{ so that } |C_i| \geq 2$

2.
$$r_i(X_i) = r_i(X_1 \cup X_2)$$
 for $i \in \{1, 2\}$

3. i = 1, 2: $\exists a \neq b \in C_1 \cup C_2$ such that:

- ► $a \in C_i$, $b \in C_{3-i}$ and a and b are in the same component in both matroids **OR**
- a, b ∈ C_i and ∃X'_{3-i} ⊂ X_{3-i} so that in M_{3-i}/X'_{3-i} a and b are diagonals of C_{3-i} connecting distinct pairs of vertices

New directions

Many different approaches, for example: handling union as homomorphism (also defined almost-graphicity: can be get from a graphic matroid with a homomorphism)

New directions

Many different approaches, for example: handling union as homomorphism (also defined almost-graphicity: can be get from a graphic matroid with a homomorphism)

Theorem

(Tutte 1959) A matroid is binary if and only if it has no $U_{2,4}$ minor. A matroid is graphic if and only if it has no $U_{2,4}$, F_7 , F_7^* , $M^*(K_5)$ or $M^*(K_{3,3})$ minor.

Theorem

(Bixby 1977) A binary matroid is graphic if and only if it has no series minor F_7 , F_7^* , R_{10} , $M^*(K_5)$, or $M^*(K_{3,3}^i)$, for some $0 \ge i \ge 3$.

Almost-irreducibility

Almost-irreducible: If M is a series minor in the union $M_1 \vee M_2$, then M must be the series extension of a submatroid of M_1 or M_2 .

Theorem

(Recski 1981) A graphic matroid is almost-irreducible if and only if it is non-separable and does not have a separating series class.

Almost-irreducibility

Almost-irreducible: If M is a series minor in the union $M_1 \vee M_2$, then M must be the series extension of a submatroid of M_1 or M_2 .

Theorem

(Recski 1981) A graphic matroid is almost-irreducible if and only if it is non-separable and does not have a separating series class.

Lemma

(1973 Lovász, Recski) Every arc of a θ -graph (or non-separable line) of M is critical (the sum of the ranks is the size).

Lemma

Every θ -graph M is almost-irreducible.

Generalizing Recski's result

The graphicity is needed in Recski's proof for two properties:

- 1. Every series class can be an arc of a θ -graph
- 2. There is a θ -connection path between any two circuits

Generalizing Recski's result

The graphicity is needed in Recski's proof for two properties:

- 1. Every series class can be an arc of a θ -graph
- 2. There is a θ -connection path between any two circuits

- ▶ (Cs CG18) The first property is true for almost all of Bixby's series minors (F_7 , R_{10} , $M^*(K_5)$, $M^*(K_{3,3}^i)$: $i \in \{0, 1, 2, 3\}$), but is not true for F_7^* .
- ► (Cs CG18) The second property is true for all of Bixby's series minors (F₇, F^{*}₇, R₁₀, M^{*}(K₅), M^{*}(Kⁱ_{3,3}) : i ∈ {0,1,2,3})

Problem with the proof

- As mentioned F_7^* can not be good (misses property 1)
- I could not reproduce the proof for binary matroids (not necessary graphic)
- I found an error in the original proof (probably not fatal, but not easily repairable)

Cunningham's results

Theorem

(Cunningham 1978) A **binary** matroid is **irreducible** if and only if it is non-separable and does not have a separating element.

Cunningham's results

Theorem

(Cunningham 1978) A **binary** matroid is **irreducible** if and only if it is non-separable and does not have a separating element.

Cunningham's proof uses Tutte's ideas (1965: for a circuit Y define the Y - components and Y - bridges, etc.) Later Duke gave an easier proof using Mason construction (1988).

Theorem

(Cunningham 1978) in the union $M_1 \vee M_2$ of binary matroids, every element which is not a loop in M_1 and not a loop in M_2 must be separating ($(M_1 \vee M_2) \setminus e$ is not connected).

Generalizing Cunningham's result

Conjecture

A binary matroid is almost-irreducible if and only if it is the series extension of an irreducible matroid.

If we could prove that contracting an element from a series class in the union is somehow equivalent with contracting something in an addend...

Generalizing Cunningham's result

Conjecture

A binary matroid is almost-irreducible if and only if it is the series extension of an irreducible matroid.

If we could prove that contracting an element from a series class in the union is somehow equivalent with contracting something in an addend...That would be good.

Counterexample: $\{a, e\} \lor \{b, e\}$ Suppose that *a* and *b* are serial in the union: if an edge *a* is a loop in M_2 then *a* can be contracted in M_1 ; if *a* and *b* are parallel in both M_1 and M_2 then *a* can be contracted in M_1 .

Something is missing in the middle

Theorem

(Cs CG18) Suppose that for every series class S in $M(= M_1 \vee M_2)$ S is critical and $M \setminus S$ is connected. Then S contains a separator of M_i for i = 1 or 2.

Something is missing in the middle

Theorem

(Cs CG18) Suppose that for every series class S in $M(= M_1 \vee M_2)$ S is critical and $M \setminus S$ is connected. Then S contains a separator of M_i for i = 1 or 2.

Sketch of the proof:

- ▶ Indirectly: $\exists P_1, P_2 \subset E \setminus S$, $P_i \in M_i$ but $P_i \notin M_i/S$
- $\forall e_k \in P_1 \cup P_2$ get the series class S_k of e in M
- $\bigcup_k S_k$ is disjoint from S
- any spanning set X of $\bigcup_i S_i$ in M must be critical
- $r(X \cup S) \le |X \cup S| 2$ contradicting that S is a series class

Corollary

Suppose that M is a series extension of a binary irreducible matroid. If every series class is critical in M then it is almost-irreducible.

Corollary

Suppose that M is a series extension of a binary irreducible matroid. If every series class is critical in M then it is almost-irreducible.

Bixby's minors?

Lemma

If every element of M is an arc of a proper θ -graph, and N is a series extension of M then every series class of N is critical.

Lemma

If N is connected and a series class S of N is an arc of a proper θ -graph then S is non-separating.

Corollary

Suppose that M is a series extension of a binary irreducible matroid. If every series class is critical in M then it is almost-irreducible.

Bixby's minors?

Lemma

If every element of M is an arc of a proper θ -graph, and N is a series extension of M then every series class of N is critical.

Lemma

If N is connected and a series class S of N is an arc of a proper θ -graph then S is non-separating.

Corollary

The series extensions of F_7 , R_{10} , $M^*(K_5)$ and $M^*(K_{3,3}^i)$: $i \in \{0, 1, 2, 3\}$ are almost-irreducible.

F_7^* remains a problem?

Lemma

(Cunningham 1978) Let Y be a circuit in $M = M_1 \vee M_2$ and $A, B \subset Y$ cricital sets in M. If $A \cup B \neq Y$ then $A \cap B$ must be critical also.

F_7^* remains a problem?

Lemma

(Cunningham 1978) Let Y be a circuit in $M = M_1 \vee M_2$ and $A, B \subset Y$ cricital sets in M. If $A \cup B \neq Y$ then $A \cap B$ must be critical also.

Lemma

Every element of F_7^* is critical.

Corollary

The series extensions of F_7^* are almost-irreducible.

Revisiting motivating conjecture

Conjecture

(Recski 1982) The union of graphic matroids is graphic or nonbinary.

Revisiting motivating conjecture

Conjecture

(Recski 1982) The union of graphic matroids is graphic or nonbinary.

Proved to be true

Revisiting motivating conjecture

Conjecture

(Recski 1982) The union of graphic matroids is graphic or nonbinary.

Proved to be true

Another consequence:

The union of regular matroids is regular or nonbinary.

Is the series extension of any irreducible matroid is almost-irreducible? (S must be critical if $M \setminus S$ is connected?)

Is the minor irreducibility similar to almost-irreducibility?

What about the non-binary matroids. Is there a meaningful irreducibility for them?