DYCK PATHS AND POSITROIDS FROM UNIT INTERVAL ORDERS

Anastasia Chavez

NSF Postdoctoral Fellow President's Postdoctoral Fellow UC Davis

Joint work with Felix Gotti, UC Berkeley

CIRM 2018

Anastasia Chavez

- Unit interval orders originated in the study of *psychological preferences*, in the work of Norbert Wiener (1914).
- W. E. Armstrong (1939), among others, later explored them in greater detail. For a flavor of this field, Armstrong describes one possible assumption about preferences as follows:

- Unit interval orders originated in the study of *psychological preferences*, in the work of Norbert Wiener (1914).
- W. E. Armstrong (1939), among others, later explored them in greater detail. For a flavor of this field, Armstrong describes one possible assumption about preferences as follows:

(1) An estimate of

the relative pleasurableness or painfulness of the alternatives is made, and the alternative estimated to be most pleasurable is chosen.

- Unit interval orders originated in the study of *psychological preferences*, in the work of Norbert Wiener (1914).
- W. E. Armstrong (1939), among others, later explored them in greater detail. For a flavor of this field, Armstrong describes one possible assumption about preferences as follows:

(1) An estimate of the relative pleasurableness or painfulness of the alternatives is made, and the alternative estimated to be most pleasurable is chosen.

 Robert Luce (1956) studied unit interval orders to axiomatize a class of utilities in the theory of preferences.

- Unit interval orders originated in the study of *psychological preferences*, in the work of Norbert Wiener (1914).
- W. E. Armstrong (1939), among others, later explored them in greater detail. For a flavor of this field, Armstrong describes one possible assumption about preferences as follows:

(1) An estimate of the relative pleasurableness or painfulness of the alternatives is made, and the alternative estimated to be most pleasurable is chosen.

- Robert Luce (1956) studied unit interval orders to axiomatize a class of utilities in the theory of preferences.
- Unit interval orders show up in many circles: psychology, economics, game theory, mathematics ...

・ 同 ト ・ ヨ ト ・ ヨ ト

• Get to know unit interval orders (UIO).

• Introduce Matroids (and Positroids) and their connection to UIOs.

■ Main results and final thoughts.

Anastasia Chavez

DYCK PATHS AND POSITROIDS FROM UNIT INTERVAL ORDERS

UNIT INTERVAL ORDERS

DEFINITION

A poset P is a *unit interval order* if it can be represented by a collection of intervals $[q_i, q_i + 1]$ for $q_i \in \mathbb{R}$ such that for distinct $i, j \in P$,

$$i <_P j \quad \longleftrightarrow \quad \bigsqcup_i \quad \bigsqcup_j$$

EXAMPLE 5 4 3 1 I_2 I_4 I_5

Anastasia Chavez

ANTIADJACENCY MATRICES OF LABELED POSETS

DEFINITION (ANTIADJACENCY MATRIX)

If P is a poset on n elements, then the antiadjacency matrix of P is the $n \times n$ binary matrix $A = (a_{i,j})$ with $a_{i,j} = 0$ if and only if $i <_P j$.

EXAMPLE

ANTIADJACENCY MATRICES OF LABELED POSETS

PROPOSITION (SKANDERA-REED, 2003)

A unit interval order has an altitude preserving labeling if and only if its antiadjacency matrix has the 0's and 1's separated by a Dyck path supported on the main diagonal.

EXAMPLE

DYCK MATRICES

DEFINITION (DYCK MATRIX)

A binary square matrix is called a *Dyck matrix* if the 0's and 1's are separated by a Dyck path supported on the main diagonal. Denote the set of Dyck matrices of size n as \mathcal{D}_n .

PROPOSITIONS

- (Stanley, 1999) Every Dyck matrix is totally positive (all minors ≥ 0).
- (Freund-Wine, 1957; Dean-Keller, 1968)

 $|\mathcal{D}_n| = \frac{1}{n+1} {\binom{2n}{n}}, \text{ the } n\text{-th}$ Catalan number.

MATROIDS AND POSITROIDS

DEFINITION (MATROID)

Let *E* be a finite set, and let \mathcal{B} be a nonempty collection of subsets, called *bases*, of *E*. The pair $\mathcal{M} = (E, \mathcal{B})$ is a *matroid* if they satisfy the following axioms:

(B1) $\mathcal{B} \neq \emptyset$.

(B2) For all $A, B \in \mathcal{B}$ and $a \in A \setminus B$, there exists $b \in B \setminus A$ such that $(A \setminus \{a\}) \cup \{b\} \in \mathcal{B}$.

DEFINITION (POSITROID)

A representable matroid \mathcal{M} on [n] of rank d, associated with matrix A, is a *positroid* when A is totally nonnegative (all maximal minors are nonnegative).

Positroids

EXAMPLE

Recall the 3×6 real matrix

$$A = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & -1 & -1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix}$$

All maximal minors are nonnegative, thus A is totally nonnegative.
The matroid \$\mathcal{M} = ([6], \mathcal{B}\$)\$ represented by A is a positroid.

INDUCED POSITROIDS

LEMMA (POSTNIKOV 2007)

For an $n \times n$ real matrix $A = (a_{i,j})$, consider the $n \times 2n$ matrix $B = \phi(A)$, where

$$\begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n-1,1} & \dots & a_{n-1,n} \\ a_{n,1} & \dots & a_{n,n} \end{pmatrix} \stackrel{\phi}{\mapsto} \begin{pmatrix} 1 & \dots & 0 & 0 & \pm a_{n,1} & \dots & \pm a_{n,n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & 0 & -a_{2,1} & \dots & -a_{2,n} \\ 0 & \dots & 0 & 1 & a_{1,1} & \dots & a_{1,n} \end{pmatrix}.$$

Then minors of A correspond to maximal minors of $\phi(A)$.

INDUCED POSITROIDS

LEMMA (POSTNIKOV 2007)

For an $n \times n$ real matrix $A = (a_{i,j})$, consider the $n \times 2n$ matrix $B = \phi(A)$, where

$$\begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n-1,1} & \dots & a_{n-1,n} \\ a_{n,1} & \dots & a_{n,n} \end{pmatrix} \stackrel{\phi}{\mapsto} \begin{pmatrix} 1 & \dots & 0 & 0 & \pm a_{n,1} & \dots & \pm a_{n,n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & 0 & -a_{2,1} & \dots & -a_{2,n} \\ 0 & \dots & 0 & 1 & a_{1,1} & \dots & a_{1,n} \end{pmatrix}.$$

Then minors of A correspond to maximal minors of $\phi(A)$.

This allows us to associate each Dyck matrix to a positroid.

INDUCED POSITROIDS

EXAMPLE

By Lemma, the Dyck matrix A induces the positroid represented by $\phi(A)$:

Anastasia Chave2

UNIT INTERVAL POSITROID

DEFINITION (UNIT INTERVAL POSITROID)

For an $n \times n$ Dyck matrix D, the positroid on [2n] represented by $\phi(D)$ is called a *unit interval positroid*.

THEOREM (C.-GOTTI 2017)

Every n-element unit interval order induces a unit interval positroid on the ground set [2n]. This implies there are $\frac{1}{n+1}\binom{2n}{n}$ unit interval positroids on [2n].

POSITROID REPRESENTATIONS

THEOREM (POSTNIKOV 2007)

Positroids can be represented by several classes of combinatorial objects, with bijections existing among them:

- Grassmann necklaces
- Decorated permutations
- Le-diagrams
- Plabic graphs

POSITROID REPRESENTATIONS

THEOREM (POSTNIKOV 2007)

Positroids can be represented by several classes of combinatorial objects, with bijections existing among them:

- Grassmann necklaces
- $\bullet Decorated permutations \checkmark$
- Le-diagrams
- Plabic graphs

DECORATED PERMUTATION

DEFINITION (DECORATED PERMUTATION)

A decorated permutation is an element $\pi \in S_n$ whose fixed points j are marked either "clockwise" (denoted by $\pi(j) = \underline{j}$) or "counterclockwise" (denoted by $\pi(j) = \overline{j}$).

Example

Decorated Permutations of Unit Interval Positroids

Theorem (C.-Gotti 2017)

- The decorated permutation representation of a unit interval positroid encodes a Dyck path as a full-length cycle.
- The decorated permutation can be recovered by a special labeling of the Dyck path on the associated antiadjacency matrix.

EXAMPLE

The decorated permutation π associated to the positroid represented by the 5 \times 5 Dyck matrix D

EXAMPLE

The decorated permutation π associated to the positroid represented by the 5 \times 5 Dyck matrix D

EXAMPLE

The decorated permutation π associated to the positroid represented by the 5 \times 5 Dyck matrix D

EXAMPLE

The decorated permutation π associated to the positroid represented by the 5 \times 5 Dyck matrix D

EXAMPLE

The decorated permutation π associated to the positroid represented by the 5 \times 5 Dyck matrix D

can be read bottom to top from the Dyck path of D, obtaining

$$\pi = (1, 2, 10, 3, 9, 4, 8, 7, 5, 6).$$

Anastasia Chavez

DECORATED PERMUTATION FROM INTERVAL REPRESENTATION

THEOREM (C-GOTTI)

Given a unit interval representation, label the left and right endpoints of $[q_i, q_i + 1]$ by n + i and n + 1 - i, respectively. Then the decorated permutation representation of the associated unit interval positroid is the cycle given by reading the labels from right to left.

EXAMPLE

The decorated permutation (1, 12, 2, 3, 11, 10, 4, 5, 9, 6, 8, 7) is obtained by reading the labels from right to left.

Reference: A. Chavez and F. Gotti, *Dyck Paths and Positroids from Unit Interval Orders*, J. Comb. Theory A Ser. A, **154** (2018), 507–532.

email: anachavez@math.ucdavis.edu