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The Bergman fan of a matroid

Definition (Sturmfels, Ardila, Klivans)
The Bergman fan B(M) is the set of all ω ∈ RE/R · 1 such that ω
encodes a chain of flats of M. For example, if E = {1, 2, 3, 4, 5},

Flag of flats:

1 2 3 4 5
F1 : 0 0 0 0 ∗
F2 : 0 0 0 ∗ ∗
F3 : 0 ∗ ∗ ∗ ∗

=⇒ ω = (0, 1, 1, 2, 3) ∈ B(M)

Fact
B(M) is a union of cones in the inner normal fan of the polytope:

PM :=
{∑

f∈B
ef : B basis of M

}
.
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The Bergman fan of a matroid

I Here is B(M) when M = U2,3:
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The real Bergman fan of an oriented matroid

Definition
The real Bergman fan ΣM of an oriented matroid is the set of all
ω ∈ RE such that ω is a “signed” flag of conformal covectors:

Flag of covectors:

1 2 3 4 5
X3 : + − + + 0
X2 : + − + 0 0
X1 : + 0 0 0 0

=⇒ ω = (3,−2, 2, 1, 0) ∈ ΣM

We require that supp(ω) equals the support of the largest covector.

Fact
ΣM is a union of cones in the outer normal fan of the polytope

P±M∗ :=
{∑

f∈B∗

±ef : B∗ basis of M∗
}
.
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Crinkled zonotopes

I With respect to the triangulation xe ± xf = 0, the intersection
∆M := ΣM ∩ bd([−1, 1]E ) realizes of the order complex of the
proper part of the covector lattice of M.

I Therefore, by the Topological Representation Theorem of Folkman
and Lawrence, ∆M is a sphere!

I In fact, this object has (essentially) been studied under the name
crinkled zonotope by da Silva and Moulton.
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Chirotopes with signs

I Let’s extend the chirotope χ of M by allowing for signs in the
arguments:

χ(s1e1, s2e2, . . . , srer ) := s1s2 · · · srχ(e1, e2, . . . , er )

where each si ∈ {−1, 1}.

I Remarkable fact: Let F = {∅ = X0 � X1 � · · · � Xr} be a maximal
flag of conformal covectors. For i = 1, 2, . . . , r , let

bi ∈ XirXi−1

si = Xi (bi )

Then χ(s1b1, . . . , srbr ) depends only F !
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Chirotopes with signs

I For example, if r = 3 and E = {1, 2, 3, 4, 5, 6} and we have the
following flag F of conformal covectors:

F =

1 2 3 4 5 6
X3 : + + − + − +
X2 : + + − + 0 0
X1 : + + 0 0 0 0

Then, writing bars for the signs, we have, for example,

χ(1, 3, 5) = χ(2, 4, 6) = χ(1, 3, 6) = χ(2, 3, 5).

I Hence χ defines a map

χ : {Maximal flags of conformal covectors} → {−1, 1}
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The orientation of ∆M

I For such F = {∅ = X0 � X1 � · · · � Xr}, define the map

σF : ∆[r ] → ∆M

ei 7→ eXi

where eX ∈ {−1, 0, 1}E represents the sign vector X .

Theorem
The element ∑

F
χ(F)[σF ] ∈ Hr−1(∆M ; Z)

is a generator for the top homology group of ∆M . Here the sum is over
all maximal flags of conformal covectors of M.
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The Bohne-Dress Theorem

I We can use this to establish one direction of the Bohne-Dress
theorem: Every single element lifting M̃ of M can be represented by
a zonotopal tiling of a zonotope ZM representing M.

I Let M + f the result of adjoining a coloop f to M. Consider the
composite map

S r−1 −→ ∆M̃ −→ bd(ZM+f ) −→ S r−1

where ZM+f := ZM × [−ef , ef ] and
I The first map comes from the Topological Representation Theorem.
I The second map is the restriction of a linear map π : RE∪f → Rr+1

to ∆M̃ satisfying
π(∆M+f ) = bd(ZM+f )

I The third map is the radial projection map.
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The Bohne-Dress Theorem

I This composite map

S r−1 −→ ∆M̃ −→ bd(ZM+f ) −→ S r−1

(call it γ) satisfies γ(−x) = −γ(x). Hence, by the Borsuk-Ulam
theorem, γ is surjective.

I This map is furthermore orientation preserving, has degree 1, and is
injective on each simplex of ∆M̃ . Therefore this map is a
homeomorphism.
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The Bohne-Dress Theorem

I From here one can verify Bohne-Dress by noting that the
corresponding piecewise linear map ∆M̃ → bd(ZM) sends tiles of a
zonotopal tiling onto the two copies of ZM realized as facets of
ZM+f :
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Generalizing McMullen’s formula

I Suppose π : RE → Rr is a linear map which restricts to a
homeomorphism π : ΣM → Rr . Define the pseudozonotope Zπ,M to
be the image π(ΣM ∩ [−1, 1]E ).

Theorem (McMullen’s formula for pseudozonotopes)
The volume of Zπ,M is given by

vol(Zπ,M) = 2r

∣∣∣∣∣∣∣
∑

B∈(E
r )
χ(b1, . . . , br ) det(π(eb1 ), . . . , π(ebr ))

∣∣∣∣∣∣∣ .
where the sum is over all r -element subsets B = {b1, . . . , br} of E .

I Note that some of these terms can be negative!
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End.

Thanks for coming!
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