Polyhedral representations of oriented matroids

Marcel Celaya
School of Mathematics, Georgia Tech

Combinatorial Geometries 2018
CIRM, Marseille-Luminy, France

The Bergman fan of a matroid

The Bergman fan of a matroid

Definition (Sturmfels, Ardila, Klivans)
The Bergman fan $\mathcal{B}(M)$ is the set of all $\omega \in \mathbf{R}^{E} / \mathbf{R} \cdot \mathbf{1}$ such that ω encodes a chain of flats of M. For example, if $E=\{1,2,3,4,5\}$,

Flag of flats: $\begin{array}{lllllll} & F_{1}: & 1 & 2 & 3 & 4 & 5 \\ & F_{2}: & 0 & 0 & 0 & 0 & * \\ & F_{3}: & 0 & * & * & * & *\end{array} \quad \Longrightarrow \quad \omega=(0,1,1,2,3) \in \mathcal{B}(M)$

The Bergman fan of a matroid

Definition (Sturmfels, Ardila, Klivans)
The Bergman fan $\mathcal{B}(M)$ is the set of all $\omega \in \mathbf{R}^{E} / \mathbf{R} \cdot \mathbf{1}$ such that ω encodes a chain of flats of M. For example, if $E=\{1,2,3,4,5\}$,

Flag of flats: $\begin{array}{llllll} & F_{1}: & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 & * \\ F_{2}: & 0 & 0 & 0 & * & *\end{array} \quad \Longrightarrow \quad \omega=(0,1,1,2,3) \in \mathcal{B}(M)$

Fact
$\mathcal{B}(M)$ is a union of cones in the inner normal fan of the polytope:

$$
P_{M}:=\left\{\sum_{f \in B} \mathbf{e}_{f}: B \text { basis of } M\right\} .
$$

The Bergman fan of a matroid

Definition (Sturmfels, Ardila, Klivans)
The Bergman fan $\mathcal{B}(M)$ is the set of all $\omega \in \mathbf{R}^{E} / \mathbf{R} \cdot \mathbf{1}$ such that ω encodes a chain of flats of M. For example, if $E=\{1,2,3,4,5\}$,

Flag of flats: $\begin{array}{llllll} & F_{1}: & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 & * \\ F_{2}: & 0 & 0 & 0 & * & *\end{array} \quad \Longrightarrow \quad \omega=(0,1,1,2,3) \in \mathcal{B}(M)$

Fact
$\mathcal{B}(M)$ is a union of cones in the inner normal fan of the polytope:

$$
P_{M}:=\left\{\sum_{f \in B} \mathbf{e}_{f}: B \text { basis of } M\right\} .
$$

The Bergman fan of a matroid

The Bergman fan of a matroid

- Here is $\mathcal{B}(M)$ when $M=U_{2,3}$:

The real Bergman fan of an oriented matroid

The real Bergman fan of an oriented matroid

Definition

The real Bergman fan Σ_{M} of an oriented matroid is the set of all $\omega \in \mathbf{R}^{E}$ such that ω is a "signed" flag of conformal covectors:

Flag of covectors: $\begin{array}{lllllll} & \begin{array}{llll}1 & 2 & 3 & 4 \\ X_{3}\end{array} & + & - & + & + & 0 \\ X_{2}: & + & - & + & 0 & 0 \\ X_{1}: & + & 0 & 0 & 0 & 0\end{array} \quad \Longrightarrow \omega=(3,-2,2,1,0) \in \Sigma_{M}$

The real Bergman fan of an oriented matroid

Definition

The real Bergman fan Σ_{M} of an oriented matroid is the set of all $\omega \in \mathbf{R}^{E}$ such that ω is a "signed" flag of conformal covectors:

Flag of covectors: $\begin{array}{lllllll} & \begin{array}{llll}1 & 2 & 3 & 4 \\ & 5 \\ X_{3}: & + & - & + \\ + & 0 \\ X_{2}: & + & - & + \\ & 0 & 0 \\ X_{1}: & + & 0 & 0\end{array} 0 & 0\end{array} \quad \Longrightarrow \omega=(3,-2,2,1,0) \in \Sigma_{M}$
We require that $\operatorname{supp}(\omega)$ equals the support of the largest covector.

The real Bergman fan of an oriented matroid

Definition

The real Bergman fan Σ_{M} of an oriented matroid is the set of all $\omega \in \mathbf{R}^{E}$ such that ω is a "signed" flag of conformal covectors:

Flag of covectors: $\begin{array}{lllllll} & \begin{array}{llll}1 & 2 & 3 & 4 \\ & & 5 \\ X_{3}: & + & - & + \\ + & 0 \\ X_{2} & + & - & + \\ & 0 & 0\end{array} \Longrightarrow \omega=(3,-2,2,1,0) \in \Sigma_{M} \\ X_{1}: & + & 0 & 0 & 0 & 0\end{array}$
We require that $\operatorname{supp}(\omega)$ equals the support of the largest covector.
Fact
Σ_{M} is a union of cones in the outer normal fan of the polytope

$$
P_{M^{*}}^{ \pm}:=\left\{\sum_{f \in B^{*}} \pm \mathbf{e}_{f}: B^{*} \text { basis of } M^{*}\right\} .
$$

The real Bergman fan of an oriented matroid

Definition

The real Bergman fan Σ_{M} of an oriented matroid is the set of all $\omega \in \mathbf{R}^{E}$ such that ω is a "signed" flag of conformal covectors:

Flag of covectors: $\begin{array}{lllllll} & \begin{array}{llll}1 & 2 & 3 & 4 \\ & & 5 \\ X_{3}: & + & - & + \\ + & 0 \\ X_{2} & + & - & + \\ & 0 & 0\end{array} \Longrightarrow \omega=(3,-2,2,1,0) \in \Sigma_{M} \\ X_{1}: & + & 0 & 0 & 0 & 0\end{array}$
We require that $\operatorname{supp}(\omega)$ equals the support of the largest covector.
Fact
Σ_{M} is a union of cones in the outer normal fan of the polytope

$$
P_{M^{*}}^{ \pm}:=\left\{\sum_{f \in B^{*}} \pm \mathbf{e}_{f}: B^{*} \text { basis of } M^{*}\right\} .
$$

The Bergman fan of a matroid

The Bergman fan of a matroid

- Here is Σ_{M} when $M=U_{2,3}$:

Crinkled zonotopes

Crinkled zonotopes

- With respect to the triangulation $x_{e} \pm x_{f}=0$, the intersection $\Delta_{M}:=\Sigma_{M} \cap \mathrm{bd}\left([-1,1]^{E}\right)$ realizes of the order complex of the proper part of the covector lattice of M.

Crinkled zonotopes

- With respect to the triangulation $x_{e} \pm x_{f}=0$, the intersection $\Delta_{M}:=\Sigma_{M} \cap \mathrm{bd}\left([-1,1]^{E}\right)$ realizes of the order complex of the proper part of the covector lattice of M.
- Therefore, by the Topological Representation Theorem of Folkman and Lawrence, Δ_{M} is a sphere!

Crinkled zonotopes

- With respect to the triangulation $x_{e} \pm x_{f}=0$, the intersection $\Delta_{M}:=\Sigma_{M} \cap \mathrm{bd}\left([-1,1]^{E}\right)$ realizes of the order complex of the proper part of the covector lattice of M.
- Therefore, by the Topological Representation Theorem of Folkman and Lawrence, Δ_{M} is a sphere!
- In fact, this object has (essentially) been studied under the name crinkled zonotope by da Silva and Moulton.

Crinkled zonotopes

- With respect to the triangulation $x_{e} \pm x_{f}=0$, the intersection $\Delta_{M}:=\Sigma_{M} \cap \mathrm{bd}\left([-1,1]^{E}\right)$ realizes of the order complex of the proper part of the covector lattice of M.
- Therefore, by the Topological Representation Theorem of Folkman and Lawrence, Δ_{M} is a sphere!
- In fact, this object has (essentially) been studied under the name crinkled zonotope by da Silva and Moulton.

Chirotopes with signs

Chirotopes with signs

- Let's extend the chirotope χ of M by allowing for signs in the arguments:

$$
\chi\left(s_{1} e_{1}, s_{2} e_{2}, \ldots, s_{r} e_{r}\right):=s_{1} s_{2} \cdots s_{r} \chi\left(e_{1}, e_{2}, \ldots, e_{r}\right)
$$

where each $s_{i} \in\{-1,1\}$.

Chirotopes with signs

- Let's extend the chirotope χ of M by allowing for signs in the arguments:

$$
\chi\left(s_{1} e_{1}, s_{2} e_{2}, \ldots, s_{r} e_{r}\right):=s_{1} s_{2} \cdots s_{r} \chi\left(e_{1}, e_{2}, \ldots, e_{r}\right)
$$

where each $s_{i} \in\{-1,1\}$.

- Remarkable fact: Let $\mathcal{F}=\left\{\emptyset=X_{0} \leq X_{1} \leq \cdots \leq X_{r}\right\}$ be a maximal flag of conformal covectors. For $i=1,2, \ldots, r$, let

$$
\begin{aligned}
& b_{i} \in X_{i} \backslash X_{i-1} \\
& s_{i}=X_{i}\left(b_{i}\right)
\end{aligned}
$$

Then $\chi\left(s_{1} b_{1}, \ldots, s_{r} b_{r}\right)$ depends only \mathcal{F} !

Chirotopes with signs

Chirotopes with signs

- For example, if $r=3$ and $E=\{1,2,3,4,5,6\}$ and we have the following flag \mathcal{F} of conformal covectors:

$$
\mathcal{F}=\begin{array}{lllllll}
& 1 & 2 & 3 & 4 & 5 & 6 \\
X_{3}: & + & + & - & + & - & + \\
X_{2}: & + & + & - & + & 0 & 0 \\
X_{1}: & + & + & 0 & 0 & 0 & 0
\end{array}
$$

Then, writing bars for the signs, we have, for example,

$$
\chi(1, \overline{3}, \overline{5})=\chi(2,4,6)=\chi(1, \overline{3}, 6)=\chi(2, \overline{3}, \overline{5}) .
$$

Chirotopes with signs

- For example, if $r=3$ and $E=\{1,2,3,4,5,6\}$ and we have the following flag \mathcal{F} of conformal covectors:

$$
\mathcal{F}=\begin{array}{lllllll}
& 1 & 2 & 3 & 4 & 5 & 6 \\
X_{3}: & + & + & - & + & - & + \\
X_{2}: & + & + & - & + & 0 & 0 \\
X_{1}: & + & + & 0 & 0 & 0 & 0
\end{array}
$$

Then, writing bars for the signs, we have, for example,

$$
\chi(1, \overline{3}, \overline{5})=\chi(2,4,6)=\chi(1, \overline{3}, 6)=\chi(2, \overline{3}, \overline{5}) .
$$

- Hence χ defines a map

$$
\chi:\{\text { Maximal flags of conformal covectors }\} \rightarrow\{-1,1\}
$$

The orientation of Δ_{M}

The orientation of Δ_{M}

- For such $\mathcal{F}=\left\{\emptyset=X_{0} \lesseqgtr X_{1} \leftrightarrows \cdots \lesseqgtr X_{r}\right\}$, define the map

$$
\begin{aligned}
\sigma_{\mathcal{F}}: \Delta_{[r]} & \rightarrow \Delta_{M} \\
\mathbf{e}_{i} & \mapsto \mathbf{e}_{X_{i}}
\end{aligned}
$$

where $\mathbf{e}_{X} \in\{-1,0,1\}^{E}$ represents the sign vector X.

The orientation of Δ_{M}

- For such $\mathcal{F}=\left\{\emptyset=X_{0} \lesseqgtr X_{1} \lesseqgtr \cdots \lesseqgtr X_{r}\right\}$, define the map

$$
\begin{aligned}
\sigma_{\mathcal{F}}: \Delta_{[r]} & \rightarrow \Delta_{M} \\
\mathbf{e}_{i} & \mapsto \mathbf{e}_{X_{i}}
\end{aligned}
$$

where $\mathbf{e}_{X} \in\{-1,0,1\}^{E}$ represents the sign vector X.
Theorem
The element

$$
\sum_{\mathcal{F}} \chi(\mathcal{F})\left[\sigma_{\mathcal{F}}\right] \in H_{r-1}\left(\Delta_{M} ; \mathbf{Z}\right)
$$

is a generator for the top homology group of Δ_{M}. Here the sum is over all maximal flags of conformal covectors of M.

The Bohne-Dress Theorem

The Bohne-Dress Theorem

- We can use this to establish one direction of the Bohne-Dress theorem: Every single element lifting \tilde{M} of M can be represented by a zonotopal tiling of a zonotope \mathcal{Z}_{M} representing M.

The Bohne-Dress Theorem

- We can use this to establish one direction of the Bohne-Dress theorem: Every single element lifting \tilde{M} of M can be represented by a zonotopal tiling of a zonotope \mathcal{Z}_{M} representing M.
- Let $M+f$ the result of adjoining a coloop f to M. Consider the composite map

$$
S^{r-1} \longrightarrow \Delta_{\tilde{M}} \longrightarrow \operatorname{bd}\left(\mathcal{Z}_{M+f}\right) \longrightarrow S^{r-1}
$$

where $\mathcal{Z}_{M+f}:=\mathcal{Z}_{M} \times\left[-\mathbf{e}_{f}, \mathbf{e}_{f}\right]$ and

The Bohne-Dress Theorem

- We can use this to establish one direction of the Bohne-Dress theorem: Every single element lifting \tilde{M} of M can be represented by a zonotopal tiling of a zonotope \mathcal{Z}_{M} representing M.
- Let $M+f$ the result of adjoining a coloop f to M. Consider the composite map

$$
S^{r-1} \longrightarrow \Delta_{\tilde{M}} \longrightarrow \operatorname{bd}\left(\mathcal{Z}_{M+f}\right) \longrightarrow S^{r-1}
$$

where $\mathcal{Z}_{M+f}:=\mathcal{Z}_{M} \times\left[-\mathbf{e}_{f}, \mathbf{e}_{f}\right]$ and

- The first map comes from the Topological Representation Theorem.

The Bohne-Dress Theorem

- We can use this to establish one direction of the Bohne-Dress theorem: Every single element lifting \tilde{M} of M can be represented by a zonotopal tiling of a zonotope \mathcal{Z}_{M} representing M.
- Let $M+f$ the result of adjoining a coloop f to M. Consider the composite map

$$
S^{r-1} \longrightarrow \Delta_{\tilde{M}} \longrightarrow \operatorname{bd}\left(\mathcal{Z}_{M+f}\right) \longrightarrow S^{r-1}
$$

where $\mathcal{Z}_{M+f}:=\mathcal{Z}_{M} \times\left[-\mathbf{e}_{f}, \mathbf{e}_{f}\right]$ and

- The first map comes from the Topological Representation Theorem.
- The second map is the restriction of a linear map $\pi: \mathbf{R}^{E \cup f} \rightarrow \mathbf{R}^{r+1}$ to $\Delta_{\tilde{M}}$ satisfying

$$
\pi\left(\Delta_{M+f}\right)=\operatorname{bd}\left(\mathcal{Z}_{M+f}\right)
$$

The Bohne-Dress Theorem

- We can use this to establish one direction of the Bohne-Dress theorem: Every single element lifting \tilde{M} of M can be represented by a zonotopal tiling of a zonotope \mathcal{Z}_{M} representing M.
- Let $M+f$ the result of adjoining a coloop f to M. Consider the composite map

$$
S^{r-1} \longrightarrow \Delta_{\tilde{M}} \longrightarrow \operatorname{bd}\left(\mathcal{Z}_{M+f}\right) \longrightarrow S^{r-1}
$$

where $\mathcal{Z}_{M+f}:=\mathcal{Z}_{M} \times\left[-\mathbf{e}_{f}, \mathbf{e}_{f}\right]$ and

- The first map comes from the Topological Representation Theorem.
- The second map is the restriction of a linear map $\pi: \mathbf{R}^{E \cup f} \rightarrow \mathbf{R}^{r+1}$ to $\Delta_{\tilde{M}}$ satisfying

$$
\pi\left(\Delta_{M+f}\right)=\operatorname{bd}\left(\mathcal{Z}_{M+f}\right)
$$

- The third map is the radial projection map.

The Bohne-Dress Theorem

The Bohne-Dress Theorem

- This composite map

$$
S^{r-1} \longrightarrow \Delta_{\tilde{M}} \longrightarrow \operatorname{bd}\left(\mathcal{Z}_{M+f}\right) \longrightarrow S^{r-1}
$$

(call it γ) satisfies $\gamma(-x)=-\gamma(x)$. Hence, by the Borsuk-Ulam theorem, γ is surjective.

The Bohne-Dress Theorem

- This composite map

$$
S^{r-1} \longrightarrow \Delta_{\tilde{M}} \longrightarrow \operatorname{bd}\left(\mathcal{Z}_{M+f}\right) \longrightarrow S^{r-1}
$$

(call it γ) satisfies $\gamma(-x)=-\gamma(x)$. Hence, by the Borsuk-Ulam theorem, γ is surjective.

- This map is furthermore orientation preserving, has degree 1 , and is injective on each simplex of $\Delta_{\tilde{M}}$. Therefore this map is a homeomorphism.

The Bohne-Dress Theorem

The Bohne-Dress Theorem

- From here one can verify Bohne-Dress by noting that the corresponding piecewise linear map $\Delta_{\tilde{M}} \rightarrow \mathrm{bd}\left(\mathcal{Z}_{M}\right)$ sends tiles of a zonotopal tiling onto the two copies of \mathcal{Z}_{M} realized as facets of \mathcal{Z}_{M+f} :

Generalizing McMullen's formula

Generalizing McMullen's formula

- Suppose $\pi: \mathbf{R}^{E} \rightarrow \mathbf{R}^{r}$ is a linear map which restricts to a homeomorphism $\pi: \Sigma_{M} \rightarrow \mathbf{R}^{r}$. Define the pseudozonotope $\mathcal{Z}_{\pi, M}$ to be the image $\pi\left(\Sigma_{M} \cap[-1,1]^{E}\right)$.

Generalizing McMullen's formula

- Suppose $\pi: \mathbf{R}^{E} \rightarrow \mathbf{R}^{r}$ is a linear map which restricts to a homeomorphism $\pi: \Sigma_{M} \rightarrow \mathbf{R}^{r}$. Define the pseudozonotope $\mathcal{Z}_{\pi, M}$ to be the image $\pi\left(\Sigma_{M} \cap[-1,1]^{E}\right)$.

Theorem (McMullen's formula for pseudozonotopes)
The volume of $\mathcal{Z}_{\pi, M}$ is given by

$$
\operatorname{vol}\left(\mathcal{Z}_{\pi, M}\right)=2^{r}\left|\sum_{B \in\binom{E}{r}} \chi\left(b_{1}, \ldots, b_{r}\right) \operatorname{det}\left(\pi\left(\mathbf{e}_{b_{1}}\right), \ldots, \pi\left(\mathbf{e}_{b_{r}}\right)\right)\right|
$$

where the sum is over all r-element subsets $B=\left\{b_{1}, \ldots, b_{r}\right\}$ of E.

Generalizing McMullen's formula

- Suppose $\pi: \mathbf{R}^{E} \rightarrow \mathbf{R}^{r}$ is a linear map which restricts to a homeomorphism $\pi: \Sigma_{M} \rightarrow \mathbf{R}^{r}$. Define the pseudozonotope $\mathcal{Z}_{\pi, M}$ to be the image $\pi\left(\Sigma_{M} \cap[-1,1]^{E}\right)$.

Theorem (McMullen's formula for pseudozonotopes)

The volume of $\mathcal{Z}_{\pi, M}$ is given by

$$
\operatorname{vol}\left(\mathcal{Z}_{\pi, M}\right)=2^{r}\left|\sum_{B \in\binom{E}{r}} \chi\left(b_{1}, \ldots, b_{r}\right) \operatorname{det}\left(\pi\left(\mathbf{e}_{b_{1}}\right), \ldots, \pi\left(\mathbf{e}_{b_{r}}\right)\right)\right| .
$$

where the sum is over all r-element subsets $B=\left\{b_{1}, \ldots, b_{r}\right\}$ of E.

- Note that some of these terms can be negative!

End.

Thanks for coming!

