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The Bergman fan of a matroid

Definition (Sturmfels, Ardila, Klivans)

The Bergman fan B(M) is the set of all w € RE/R - 1 such that w
encodes a chain of flats of M. For example, if E = {1,2,3,4,5},
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The Bergman fan of a matroid

Definition (Sturmfels, Ardila, Klivans)

The Bergman fan B(M) is the set of all w € RE/R - 1 such that w
encodes a chain of flats of M. For example, if E = {1,2,3,4,5},

1 2 3 45
~ FK: 0 0 0 0 = B
Flag of flats: F: 00 0 = « = w=(0,1,1,2,3) € B(M)
F3: 0 % % x x
Fact

B(M) is a union of cones in the inner normal fan of the polytope:

Py = {ZEf : B basis ofl\/l}.

feB
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The Bergman fan of a matroid

» Here is B(M) when M = U, 3:
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The real Bergman fan of an oriented matroid
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The real Bergman fan of an oriented matroid

Definition

The real Bergman fan ¥, of an oriented matroid is the set of all

w € RE such that w is a “signed” flag of conformal covectors:

Flag of covectors:

X3:
XQZ
Xli
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— w=(3,-2,2,1,0) € Ty



The real Bergman fan of an oriented matroid

Definition
The real Bergman fan ¥, of an oriented matroid is the set of all
w € RE such that w is a “signed” flag of conformal covectors:

1 2 3 4 5
Xzt 4 — 4+ 4+ 0 B
Flag of covectors: X 4+ — 1+ 0 0 = w=(3,-2,2,1,00 € Xy
Xt: + 0 0 0 O

We require that supp(w) equals the support of the largest covector.
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The real Bergman fan of an oriented matroid

Definition
The real Bergman fan ¥, of an oriented matroid is the set of all
w € RE such that w is a “signed” flag of conformal covectors:

1 2 3 4 5
Xzt 4 — 4+ 4+ 0 B
Flag of covectors: X 4+ — 1+ 0 0 = w=(3,-2,2,1,00 € Xy
Xt: + 0 0 0 O

We require that supp(w) equals the support of the largest covector.

Fact
Y\ is a union of cones in the outer normal fan of the polytope

Py. = { Z +er : B* basis ofM*} .
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The Bergman fan of a matroid
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The Bergman fan of a matroid

> Here is >y when M = U 3:
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Crinkled zonotopes
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Crinkled zonotopes

» With respect to the triangulation x. + xf = 0, the intersection
Ay = Ty Nbd([—1,1]F) realizes of the order complex of the
proper part of the covector lattice of M.
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Crinkled zonotopes

» With respect to the triangulation x. + xf = 0, the intersection
Ay = Ty Nbd([—1,1]F) realizes of the order complex of the
proper part of the covector lattice of M.

» Therefore, by the Topological Representation Theorem of Folkman
and Lawrence, Ay is a sphere!
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proper part of the covector lattice of M.
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and Lawrence, Ay is a sphere!

» In fact, this object has (essentially) been studied under the name
crinkled zonotope by da Silva and Moulton.

Marcel Celaya Polyhedral representations of oriented matroids



Crinkled zonotopes

» With respect to the triangulation x. + xf = 0, the intersection
Ay = Ty Nbd([—1,1]F) realizes of the order complex of the
proper part of the covector lattice of M.

» Therefore, by the Topological Representation Theorem of Folkman
and Lawrence, Ay is a sphere!

» In fact, this object has (essentially) been studied under the name
crinkled zonotope by da Silva and Moulton.

Marcel Celaya Polyhedral representations of oriented matroids



Chirotopes with signs
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Chirotopes with signs

> Let's extend the chirotope x of M by allowing for signs in the
arguments:

x(sie1, 26,...,5.6) =515 --s.x(e1, €,...,e)

where each s; € {—1,1}.
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Chirotopes with signs

> Let's extend the chirotope x of M by allowing for signs in the
arguments:

x(sie1, 2€2,...,5r¢) =515 sx(e1, e,...,€)
where each s; € {—1,1}.

» Remarkable fact: Let F = {0 = X5 < X1 < --- < X;} be a maximal
flag of conformal covectors. For i =1,2,...,r, let

b; € Xi~Xi_1
S; = X,(b,)

Then x(s1b1,...,sb,) depends only F!
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Chirotopes with signs
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Chirotopes with signs

» For example, if r =3 and E = {1,2,3,4,5,6} and we have the
following flag F of conformal covectors:

1 2 3 4 5 6

F_ X3: + + — + — +
XQZ + 4+ - + 0 0
X11 + + 0 0 0 0

Then, writing bars for the signs, we have, for example,

x(1,3,5) = x(2,4,6) = x(1,3,6) = x(2,3,5).
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Chirotopes with signs

» For example, if r =3 and E = {1,2,3,4,5,6} and we have the
following flag F of conformal covectors:

1 2 3 4 5 6

F_ X3: + + — + — +
XQZ + 4+ - + 0 0
X11 + + 0 0 0 0

Then, writing bars for the signs, we have, for example,
x(1,3,5) = x(2,4,6) = x(1,3,6) = x(2,3,5).
» Hence x defines a map

X : {Maximal flags of conformal covectors} — {—1,1}
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The orientation of Ay
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The orientation of Ay

» Forsuch F ={0 =Xy < X1 < -+ < X,}, define the map

0']:ZA[,,] — Ay

e — ex;

where ex € {—1,0,1}£ represents the sign vector X.
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The orientation of Ay

» Forsuch F ={0 =Xy < X1 < -+ < X,}, define the map

0']:ZA[,,] — Ay

e — ex;
where ex € {—1,0,1}£ represents the sign vector X.

Theorem
The element

ZX Mozl € H—1(Awm; Z)

is a generator for the top homology group of Ap;. Here the sum is over
all maximal flags of conformal covectors of M.
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The Bohne-Dress Theorem

Marcel Celaya Polyhedral representations of oriented matroids 10/14



The Bohne-Dress Theorem

> We can use this to establish one direction of the Bohne-Dress
theorem: Every single element lifting M of M can be represented by
a zonotopal tiling of a zonotope Z); representing M.
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The Bohne-Dress Theorem

> We can use this to establish one direction of the Bohne-Dress
theorem: Every single element lifting M of M can be represented by
a zonotopal tiling of a zonotope Z); representing M.

> Let M + f the result of adjoining a coloop f to M. Consider the
composite map

STt — Ay — bd(Zmyr) — ST

where ZM+{ = ZM X [—Ef,ef] and
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> Let M + f the result of adjoining a coloop f to M. Consider the
composite map

STt — Ay — bd(Zmyr) — ST

where ZM+{ = ZM X [—Ef,ef] and

> The first map comes from the Topological Representation Theorem.
» The second map is the restriction of a linear map 7 : REY" — R™*!
to Ay, satisfying
T(Amir) = bd(Zmyr)

> The third map is the radial projection map.
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The Bohne-Dress Theorem
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The Bohne-Dress Theorem

» This composite map
STt — Agy — bd(Zuyr) — ST

(call it «y) satisfies v(—x) = —(x). Hence, by the Borsuk-Ulam
theorem, ~ is surjective.
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The Bohne-Dress Theorem

» This composite map
STt — Agy — bd(Zuyr) — ST

(call it «y) satisfies v(—x) = —(x). Hence, by the Borsuk-Ulam
theorem, ~ is surjective.

» This map is furthermore orientation preserving, has degree 1, and is

injective on each simplex of Ay,. Therefore this map is a
homeomorphism.
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The Bohne-Dress Theorem
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The Bohne-Dress Theorem

» From here one can verify Bohne-Dress by noting that the
corresponding piecewise linear map Ay — bd(Zu) sends tiles of a
zonotopal tiling onto the two copies of Z), realized as facets of

Zpmyf:

X
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Generalizing McMullen's formula
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Generalizing McMullen's formula

» Suppose 7 : RE — R’ is a linear map which restricts to a
homeomorphism 7 : >y — R". Define the pseudozonotope Z p to
be the image 7(Xm N [—1,1]5).
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Generalizing McMullen's formula

» Suppose 7 : RE — R’ is a linear map which restricts to a
homeomorphism 7 : >y — R". Define the pseudozonotope Z p to
be the image 7(Xm N [—1,1]5).

Theorem (McMullen's formula for pseudozonotopes)
The volume of Z, \ is given by

vol(Zrm) =27 Y x(by, ..., b)det((es,), ..., m(es))]| -
Be(%)

where the sum is over all r-element subsets B = {by,...,b,} of E.
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Generalizing McMullen's formula

» Suppose 7 : RE — R’ is a linear map which restricts to a
homeomorphism 7 : >y — R". Define the pseudozonotope Z p to
be the image 7(Xm N [—1,1]5).

Theorem (McMullen's formula for pseudozonotopes)
The volume of Z, \ is given by

vol(Zrm) =27 Y x(by, ..., b)det((es,), ..., m(es))]| -
Be(%)

where the sum is over all r-element subsets B = {by,...,b,} of E.

» Note that some of these terms can be negative!
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End.

Thanks for coming!
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