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" The fundamental question of completely characterizing
C real - representable matroids ] is left unsolved

.

"

Whitney ,
1935
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Theorem CSeymour) :

Real - re presentability is not polynomial ly - certifiable with rank evaluations
.
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Theorem C Lee
,

Scobee ) :

If an orientable matroid is ternary,
then it is real - representable .
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Theorem :

For each odd prime power q > 3
,

there exists an orientable matroid

that is GFW - representable but not real - representable .
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A transversal of M is a set F- Eai
,
aas . . .

, an } where ai E Ei ; this is

either a circuit hyperplane or a basis
.

Let CCM) be the dependent transversal s of M
.

Remark :

A swirl - like matroid M is uniquely determined by its vertices
, edges and CCM)

.
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Theorem :

For each odd prime power q > 3
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Theorem :

For each prime power q with q
- I composite

,
there exists an

orientable matroid that is GEE) - representable but not real - representable .

Problem :

If an orientable matroid is GFC24 - representable for some 2n with

2^-1 prime ,
then must it be real - representable ?



Theorem K ,
Geel en ) :

There exists anorientable matroid that is complex - representable but
not real - representable .







Thank You !


