Representable Orientable Matroids that are not Real-Representable

Rutger Campbell
"The fundamental question of completely characterizing [real-representable matroids] is left unsolved."

$$
\text { Whitney, } 1935
$$

Bad News:
Theorem (Mayhew, Newman, Whittle):
Each real-representable matroid is a minor of an excluded-minor for real-representability.

Bad News:
Theorem (Mayhew, Newman, Whittle):
Each real-representable matroid is a minor of an excluded-minor for real-representability.

Theorem (Mayhew, Newman, Whittle):
There is no sentence in the monadic second-order language $M S_{0}$ that characterizes real-representability.

Bad News:
Theorem (Mayhew, Newman, Whittle):
Each real-representable matroid is a minor of an excluded-minor for real-representability.

Theorem (Mayhew, Newman, Whittle):
There is no sentence in the monadic second-order language $M S_{0}$ that characterizes real-representability.

Theorem (Seymour):
Real-representability is not polynomially-certifiable with rank evaluations.

Theorem (Bland, Las Vergnas; Folkman, Lawrence): All real-representable matroids are orientable.

Theorem (Bland, Las Vergnas; Folkman, Lawrence): All real-representable matroids are orientable.

Theorem (Bland, Las Vergnas):
If an orientable matroid is binary, then it is real-representable.

Theorem (Bland, Las Vergnas; Folkman, Lawrence): All real-representable matroids are orientable.

Theorem (Bland, Las Vergnas):
If an orientable matroid is binary, then it is real-representable.

Theorem (Lee, Scobee):
If an orientable matroid is ternary, then it is real-representable.

Conjecture (Whittle):
If an orientable matroid is representable over some field, then it is real-representable.

Conjecture (Whittle):
If an orientable matroid is representable over some field, then it is real-representable. False!

Conjecture (Whittle):
If an orientable matroid is representable over some field, then it is real-representable. False!

Theorem:
For each odd prime power $q>3$, there exists an orientable matroid that is $G F(q)$-representable but not real-representable.

Facts about Fields

$$
G F(q)^{*} \cong \mathbb{Z}_{q-1}
$$

Facts about Fields

$$
G F(q)^{*} \cong \mathbb{Z}_{q-1}
$$

For an odd prime power $q>3$, there is an element $\alpha \in G F(q)$ with order $2 k=q-1$ for some $k>1$.

Facts about Fields

$$
G F(q)^{*} \cong \mathbb{Z}_{q-1}
$$

For an odd prime power $q>3$, there is an element $\alpha \in G F(q)$ with order $2 k=q-1$ for some $k>1$.

For $k>1$, there is no element of the reals with order $2 k$.

Facts about Fields

$$
G F(q)^{*} \cong \mathbb{Z}_{q-1}
$$

For an odd prime power $q>3$, there is an element $\alpha \in G F(q)$ with order $2 k=q-1$ for some $k>1$.

For $k>1$, there is no element of the reals with order $2 k$.

$$
\left|\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & -\alpha_{N} \\
-\alpha_{1} & 0 & \cdots & 0 & 0 \\
0 & -\alpha_{2} & \cdots & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & -\alpha_{N-1} & 1
\end{array}\right|=0 \quad \Leftrightarrow \quad \alpha_{1} \alpha_{2} \cdots \alpha_{N}=1
$$

Swirl-like Matroids
$M:$

A transversal of M is a set $T=\left\{a_{1}, a_{2}, \ldots, a_{N}\right\}$ where $a_{i} \in E_{i}$; this is either a circuit hyperplane or a basis.
Let $C(M)$ be the dependent transversals of M.

Swirl-like Matroids

A transversal of M is a set $T=\left\{a_{1}, a_{2}, \ldots, a_{N}\right\}$ where $a_{i} \in E_{i}$; this is either a circuit hyperplane or a basis.
Let $C(M)$ be the dependent transversals of M.
Remark:
A swirl-like matroid M is uniquely determined by its vertices, edges and $C(M)$.

Representations of Swirl-like Matroids

M:

For a representation $f: E \rightarrow \mathbb{F}^{N}$, of a swirl-like matroid $M=(E, r)$, we may assume that: $f\left(b_{i}\right)=e_{i}$ for $b_{i} \in B$, and $f(a)=e_{i}-\alpha_{a} e_{i 11}$ for some $\alpha_{a} \in \mathbb{F}$ for $a \in E_{i}$

Representations of Swirl-like Matroids

For a representation $f: E \rightarrow \mathbb{F}^{N}$, of a swirl-like matroid $M=(E, r)$, we may assume that: $f\left(b_{i}\right)=e_{i}$ for $b_{i} \in B$, and $f(a)=e_{i}-\alpha_{a} e_{i+1}$ for some $\alpha_{a} \in \mathbb{F}$ for $a \in E_{i}$
When it is clear which edge E_{i} we are in, we use $\alpha \in \mathbb{F}$ to label the element with representation $e_{i}-\alpha e_{i+1}$.

Representations of Swirl-like Matroids

For a representation $f: E \rightarrow \mathbb{F}^{N}$, of a swirl-like matroid $M=(E, r)$, we may assume that: $f\left(b_{i}\right)=e_{i}$ for $b_{i} \in B$, and

$$
f(a)=e_{i}-\alpha_{a} e_{i+1} \text { for some } \alpha_{a} \in \mathbb{F} \text { for } a \in E_{i}
$$

When it is clear which edge E_{i} we are in, we use $\alpha \in \mathbb{F}$ to label the element with representation $e_{i}-\alpha e_{i+1}$.

$$
T=\left\{a_{1}, a_{2}, \cdots, a_{N}\right\} \in \mathcal{C}(M) \Leftrightarrow\left|\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & -\alpha_{N} \\
-\alpha_{1} & - & 0 & \cdots & 0 & 0 \\
0 & -\alpha_{2} & 1 & \cdots & 0 & 0 \\
0 & \cdots & \cdots & \vdots \\
0 & 0 & \ddots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 0 \\
\alpha_{N} & 1
\end{array}\right|=0 \Leftrightarrow \alpha_{1}, \alpha_{2} \cdots \alpha_{N}=1
$$

Theorem:
For each odd prime power $q>3$, there exists an orientable matroid that is $G F(q)$-representable but not real-representable.

Theorem:
For each odd prime power $q>3$, there exists an orientable matroid that is $G F(q)$-representable but not real-representable.

Construction:
For an odd prime power $q>3$, we have $\alpha \in G F(q)$ with order $q-1=2 k$.

Theorem:
For each odd prime power $q>3$, there exists an orientable matroid that is $G F(q)$-representable but not real-representable.
Construction:
For an odd prime power $q>3$, we have $\alpha \in G F(q)$ with order $q-1=2 k$.

Theorem:
For each odd prime power $q>3$, there exists an orientable matroid that is $G F(q)$-representable but not real-representable.
Construction:
For an odd prime power $q>3$, we have $\alpha \in G F(q)$ with order $q-1=2 k$.

Theorem:
For each prime power q with $q-1$ composite, there exists an orientable matroid that is $G F(q)$-representable but not real-representable.

Theorem:
For each prime power q with $q-1$ composite, there exists an orientable matroid that is $G F(q)$-representable but not real-representable.

Problem:
If an orientable matroid is $G F\left(2^{n}\right)$-representable for some 2^{n} with $2^{n}-1$ prime, then must it be real-representable?

Theorem (C, Geelen):
There exists an orientable matroid that is complex-representable but not real-representable.

Worse News:
Corollary (analog of result by Mayhew, Newman, Whittle): Each real-representable matroid is a minor of an excluded-minor for real-representability that is complex-representable and orientable.

Corollary (analog of result by Mayhew, Newman, Whittle):
There is no sentence in the monadic second-order language $M S_{0}$ that characterizes real-representability for complex-representable orientable matroids.

Corollary (analog of result by Seymour):
Real-representability is not polynomially-certifiable with rank evaluations for complex-representable orientable matroids.

Whittle's Conjecture (revised):
If an orientable matroid is representable over some field, then it is complex-representable.

Thank You!

