Delta-matroids as subsystems of sequences of Higgs lifts: a way to think about delta-matroids from the perspective of matroids

Joseph E. Bonin

George Washington University

Joint work with Carolyn Chun and Steve Noble

These slides are available at http://blogs.gwu.edu/jbonin/

Delta-matroids

A set system (or hypergraph) is a pair $S = (E, \mathcal{F})$ where E is a (finite) set and \mathcal{F} is a set of subsets of E (the feasible sets).

E.g., (E, \mathcal{B}) , where \mathcal{B} is the set of bases of a matroid M on E. Such examples are proper, i.e., $\mathcal{F} \neq \emptyset$.

Delta-matroids

A set system (or hypergraph) is a pair $S = (E, \mathcal{F})$ where E is a (finite) set and \mathcal{F} is a set of subsets of E (the feasible sets).

E.g., (E, \mathcal{B}) , where \mathcal{B} is the set of bases of a matroid M on E. Such examples are proper, i.e., $\mathcal{F} \neq \emptyset$.

One of many basis-exchange properties of matroids:

for all $B_1, B_2 \in \mathcal{B}$ and $u \in B_1 - B_2$, there is a $v \in B_2 - B_1$ with $B_1 \triangle \{u, v\} \in \mathcal{B}$ (symmetric difference).

Delta-matroids

A set system (or hypergraph) is a pair $S = (E, \mathcal{F})$ where E is a (finite) set and \mathcal{F} is a set of subsets of E (the feasible sets).

E.g., (E, \mathcal{B}) , where \mathcal{B} is the set of bases of a matroid M on E. Such examples are proper, i.e., $\mathcal{F} \neq \emptyset$.

One of many basis-exchange properties of matroids:

for all $B_1, B_2 \in \mathcal{B}$ and $u \in B_1 - B_2$, there is a $v \in B_2 - B_1$ with $B_1 \triangle \{u, v\} \in \mathcal{B}$ (symmetric difference).

For delta-matroids, replace set differences by symmetric differences.

A delta-matroid is a proper set system D = (E, F) that satisfies delta-matroid symmetric exchange:

for all $X, Y \in \mathcal{F}$ and $u \in X \triangle Y$, there is a $v \in X \triangle Y$ with $X \triangle \{u, v\} \in \mathcal{F}$. (Bouchet, 1987) A delta-matroid is a proper set system $D = (E, \mathcal{F})$ such that for all $X, Y \in \mathcal{F}$ and $u \in X \triangle Y$, there is a $v \in X \triangle Y$ with $X \triangle \{u, v\} \in \mathcal{F}$.

When
$$u \in X - Y$$
,
if $v = u$, then $X \triangle \{u, v\} = X - u$,
if $v \in X - (Y \cup u)$, then $X \triangle \{u, v\} = X - \{u, v\}$,
if $v \in Y - X$, then $X \triangle \{u, v\} = (X - u) \cup v$.

When $u \in Y - X$, • if v = u, then $X \triangle \{u, v\} = X \cup u$, • if $v \in Y - (X \cup u)$, then $X \triangle \{u, v\} = X \cup \{u, v\}$, • if $v \in X - Y$, then $X \triangle \{u, v\} = (X - v) \cup u$. For matroids Q and L on E, Q is a quotient of L, or L is a lift of Q, if $L = M \setminus A$ and Q = M/A for some matroid M and $A \subseteq E(M)$.

E.g., extend the uniform matroid $U_{5,9}$ on $\{1,2,\ldots,9\}$ by three elements using the modular cuts generated by

•
$$\{1, 2, 3\}$$
 and $\{4, 5, 6\}$

•
$$\{1, 2, 3\}$$
 and $\{7, 8, 9\}$,

•
$$\{4, 5, 6\}$$
 and $\{7, 8, 9\}$,

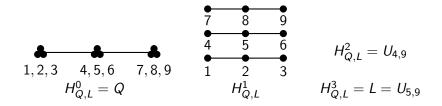
and then contract the added elements to get the quotient

Background for our central example: Higgs lifts

For integers *i* with $0 \le i \le r(L) - r(Q)$, the function r_i given by

$$r_i(X) = \min\{r_Q(X) + i, r_L(X)\},\$$

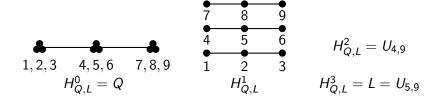
for $X \subseteq E$, is the rank function of a matroid $H_{Q,L}^i$ on E, called the *i*-th Higgs lift of Q toward L.



For integers *i* with $0 \le i \le r(L) - r(Q)$, the function r_i given by

$$r_i(X) = \min\{r_Q(X) + i, r_L(X)\},\$$

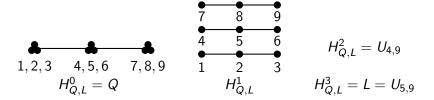
for $X \subseteq E$, is the rank function of a matroid $H_{Q,L}^i$ on E, called the *i*-th Higgs lift of Q toward L.



 $H_{Q,L}^{i}$ is the freest quotient of L of rank r(Q) + ihaving Q as a quotient. For integers *i* with $0 \le i \le r(L) - r(Q)$, the function r_i given by

$$r_i(X) = \min\{r_Q(X) + i, r_L(X)\},\$$

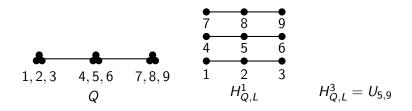
for $X \subseteq E$, is the rank function of a matroid $H_{Q,L}^i$ on E, called the *i*-th Higgs lift of Q toward L.



 $H_{Q,L}^{i}$ is the freest quotient of L of rank r(Q) + ihaving Q as a quotient.

Its bases are the sets of size r(Q) + ithat span (contain a basis of) Q and are independent in (contained in a basis of) L. An example of a delta-matroid

For all $X, Y \in \mathcal{F}$ and $u \in X \triangle Y$, there is a $v \in X \triangle Y$ with $X \triangle \{u, v\} \in \mathcal{F}$.

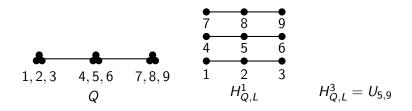


Consider $(\{1, 2, ..., 9\}, \mathcal{F})$ where $\mathcal{F} = \mathcal{B}(Q) \cup \mathcal{B}(H^1_{Q,L}) \cup \mathcal{B}(L)$.

For $X = \{1, 4\}$, $Y = \{2, 3, 7, 8, 9\}$, and u = 2, we must take either v = 1, giving $\{2, 4\}$, or v = u, giving $\{1, 2, 4\}$.

An example of a delta-matroid

For all $X, Y \in \mathcal{F}$ and $u \in X \triangle Y$, there is a $v \in X \triangle Y$ with $X \triangle \{u, v\} \in \mathcal{F}$.

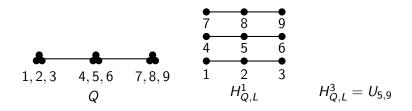


Consider $(\{1, 2, ..., 9\}, \mathcal{F})$ where $\mathcal{F} = \mathcal{B}(Q) \cup \mathcal{B}(H^1_{Q,L}) \cup \mathcal{B}(L)$.

For $X = \{1, 4\}$, $Y = \{1, 2, 3, 4, 5\}$, and u = 2, we must take v = u, giving $\{1, 2, 4\}$.

An example of a delta-matroid

For all $X, Y \in \mathcal{F}$ and $u \in X \triangle Y$, there is a $v \in X \triangle Y$ with $X \triangle \{u, v\} \in \mathcal{F}$.



Consider $(\{1, 2, \dots, 9\}, \mathcal{F})$ where $\mathcal{F} = \mathcal{B}(Q) \cup \mathcal{B}(H^1_{Q,L}) \cup \mathcal{B}(L)$.

For $X = \{1, 2, 4, 5, 6\}$, $Y = \{1, 4\}$, and u = 2, we must take either v = 5, giving $\{1, 4, 6\}$, or v = 6, giving $\{1, 4, 5\}$.

(Bonin, Chun, Noble, 2017)

Fix a matroid L on E and a quotient Q of L. Set k = r(L) - r(Q). Let K be a subset of $\{0, 1, 2, ..., k\}$ for which $\{0, 1, 2, ..., k\} - K$ contains no two consecutive integers. Then (E, \mathcal{F}) , where

$$\mathcal{F} = \bigcup_{i \in K} \mathcal{B}(H_{Q,L}^i),$$

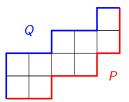
is a delta-matroid.

When $K = \{0, 1, 2, ..., k\}$, we get the full Higgs lift delta-matroid of the pair (Q, L).

Tardos studied that case, calling them generalized matroids (1985); Dupont, Fink, and Moci call them saturated delta-matroids (preprint).

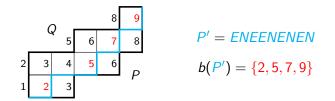
Background for a concrete class of examples

Fix two lattice paths P and Q from (0,0) to a point (m,r), where P never rises above Q. Thus, P and Q bound a region \mathcal{R} in \mathbb{R}^2 .



Background for a concrete class of examples

Fix two lattice paths P and Q from (0,0) to a point (m,r), where P never rises above Q. Thus, P and Q bound a region \mathcal{R} in \mathbb{R}^2 .

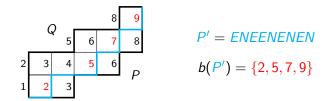


Let \mathcal{P} be the set of lattice paths from (0,0) to (m,r) that stay in \mathcal{R} . View paths as words in the alphabet $\{E, N\}$ (east, north).

For $P' \in \mathcal{P}$, let b(P') be the set of positions in P' where N occurs.

Background for a concrete class of examples

Fix two lattice paths P and Q from (0,0) to a point (m,r), where P never rises above Q. Thus, P and Q bound a region \mathcal{R} in \mathbb{R}^2 .



Let \mathcal{P} be the set of lattice paths from (0, 0) to (m, r) that stay in \mathcal{R} . View paths as words in the alphabet $\{E, N\}$ (east, north). For $P' \in \mathcal{P}$, let b(P') be the set of positions in P' where N occurs. Then $\{b(P') : P' \in \mathcal{P}\}$ is the set of bases of a transversal matroid. Such matroids are lattice path matroids. (Bonin, de Mier, Noy, 2003; orientations, Lawrence, 1984)

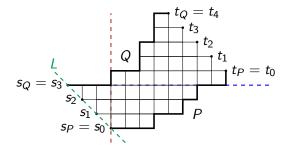
Some properties of lattice path matroids

- Lattice path matroids form a minor-closed, dual-closed class, that is not well-quasi-ordered by minors.
- We know the excluded minors: there are five infinite families and four sporadic excluded minors.
- The Tutte polynomial of a lattice path matroid can be computed in polynomial time. This uses an interpretation of basis activities that has intrinsic significance for lattice paths.
- Other aspects that have been studied include: matroid base polytopes, *h*-vectors, toric ideals, Bergman complexes, the Rayleigh property, negative correlation, fast mixing, connections with decompositions of Grassmannians, the Merino-Welsh conjecture holds for these matroids, ...

Generalize the diagram to get delta-matroids

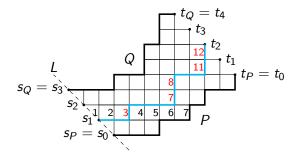
Fix lattice paths P, from s_P to t_P , and Q, from s_Q to t_Q , where

- each has n steps,
- ▶ the line L through s_P and s_Q has slope −1,
- \blacktriangleright t_Q is on or to the right of the vertical line through s_P ,
- t_P is on or above the horizontal line through s_Q ,
- and P never rises above Q.



Paths *P* and *Q*, the line *L*, and the line through t_P and t_Q bound a region \mathcal{R} in \mathbb{R}^2 .

Generalize the diagram to get delta-matroids

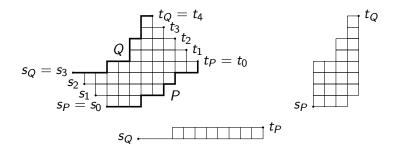


Label each north step in \mathcal{R} by its distance from L, so the set of labels is $E = \{1, 2, ..., n\}$.

Let \mathcal{P} be the set of lattice paths from an s_i to a t_i that stay in \mathcal{R} .

For a path $P' \in \mathcal{P}$, let b(P') be the set of labels on its north steps.

Identify the extremes as lattice path matroids



The set $\{b(P') : P' \in \mathcal{P} \text{ from } s_Q \text{ to } t_P\}$ is the set of bases of a lattice path matroid, $M(\mathcal{R}_{\min})$, on E.

Likewise, $\{b(P') : P' \in \mathcal{P} \text{ from } s_P \text{ to } t_Q\}$ is the set of bases of a lattice path matroid, $M(\mathcal{R}_{max})$, on E.

Delta-matroids from lattice paths

Theorem

(Bonin, Chun, Noble, 2017)

- 1. $M(\mathcal{R}_{\min})$ is a quotient of $M(\mathcal{R}_{\max})$, and
- 2. the map $P' \mapsto b(P')$ is a surjection from \mathcal{P} onto the set of feasible sets of the full Higgs lift delta-matroid of the pair $(\mathcal{M}(\mathcal{R}_{\min}), \mathcal{M}(\mathcal{R}_{\max})).$

The resulting class of lattice path delta-matroids is minor-closed and dual-closed (to be defined soon).

Corollary

Let $j = r(M(\mathcal{R}_{min}))$ and $k = r(M(\mathcal{R}_{max}))$. Fix a subset K of $\{j, j + 1, ..., k\}$ for which $\{j, j + 1, ..., k\} - K$ contains no two consecutive integers. Then $\{b(P) : P \in \mathcal{P} \text{ and } |b(P)| \in K\}$ is the set of feasible sets of a delta-matroid.

The relation of full Higgs lift delta-matroids to delta-matroids in general

Theorem

(Bouchet)

For any delta-matroid D,

- the maximal-sized feasible sets are the bases of a matroid, denoted D_{max},
- the minimal-sized feasible sets are the bases of a matroid, denoted D_{min},
- D_{min} is a quotient of D_{max}, and
- each feasible set contains a basis of D_{min} and is contained in a basis of D_{max}.

Corollary

Each feasible set in a delta-matroid D is feasible in the full Higgs lift delta-matroid of the pair (D_{min}, D_{max}) .

Which feasible sets can be removed from Higgs lift delta-matroids?

Next goal: an excluded-minor characterization of delta-matroids within the broader structure of set systems.

Which feasible sets can be removed from Higgs lift delta-matroids?

Next goal: an excluded-minor characterization of delta-matroids within the broader structure of set systems.

An element in a proper set system $S = (E, \mathcal{F})$ is a loop if it is in no sets in \mathcal{F} ; it is a coloop if it is in all sets in \mathcal{F} .

When e is not a loop, the contraction of e, written S/e, is

$$S/e = (E - e, \{F - e : e \in F \in \mathcal{F}\}).$$

When e is not a coloop, the deletion of e, written $S \setminus e$, is

$$S \setminus e = (E - e, \{F \subseteq E - e : F \in \mathcal{F}\}).$$

For loops or coloops, we set $S/e = S \setminus e$ (one is already defined).

Which feasible sets can be removed from Higgs lift delta-matroids?

Next goal: an excluded-minor characterization of delta-matroids within the broader structure of set systems.

An element in a proper set system $S = (E, \mathcal{F})$ is a loop if it is in no sets in \mathcal{F} ; it is a coloop if it is in all sets in \mathcal{F} .

When e is not a loop, the contraction of e, written S/e, is

$$S/e = (E - e, \{F - e : e \in F \in \mathcal{F}\}).$$

When e is not a coloop, the deletion of e, written $S \setminus e$, is

$$S \setminus e = (E - e, \{F \subseteq E - e : F \in \mathcal{F}\}).$$

For loops or coloops, we set $S/e = S \setminus e$ (one is already defined).

Sequences of deletions and contractions yields the minors of S.

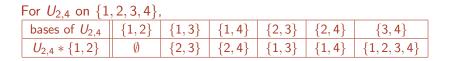
The order of operations can matter. Minors are proper set systems.

For $A \subseteq E$, the twist of S on A, denoted S * A, is given by $S * A = (E, \{F \triangle A : F \in \mathcal{F}\}).$

 For $U_{2,4}$ on $\{1, 2, 3, 4\}$,

 bases of $U_{2,4}$ $\{1, 2\}$ $\{1, 3\}$ $\{1, 4\}$ $\{2, 3\}$ $\{2, 4\}$ $\{3, 4\}$
 $U_{2,4} * \{1, 2\}$ Ø
 $\{2, 3\}$ $\{2, 4\}$ $\{1, 3\}$ $\{1, 4\}$ $\{1, 2, 3, 4\}$

For $A \subseteq E$, the twist of S on A, denoted S * A, is given by $S * A = (E, \{F \triangle A : F \in F\}).$



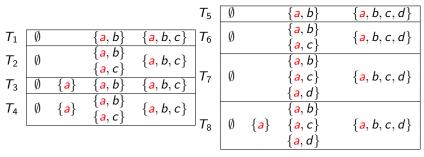
Minors and twists of delta-matroids are delta-matroids.

Note that $S/e = (S * e) \setminus e$ and (S * A) * A = S.

The dual S^* of S is S * E.

The excluded minors for delta-matroids, within set systems

Let $S_i = (\{1, 2, ..., i\}, \{\emptyset, \{1, 2, ..., i\}\})$. Let S be the set of all twists of $S_3, S_4, ...$. Let T_1, T_2, T_3, T_4 , on $\{a, b, c\}$, and T_5, T_6, T_7, T_8 , on $\{a, b, c, d\}$, be given by:



Let \mathcal{T} be the set of all 51 twists of T_1, T_2, \ldots, T_8 .

No T_i is a delta-matroid since a is in all feasible sets except \emptyset .

(Bonin, Chun, Noble, 2017)

A proper set system is a delta-matroid if and only if it has no minor in $S \cup T$.

(Bonin, Chun, Noble, 2017)

A proper set system is a delta-matroid if and only if it has no minor in $S \cup T$.

A matroid is a delta-matroid in which all feasible sets have the same size, so:

Corollary

A proper set system S = (E, F) is a matroid if and only if all sets in F have the same size, and S has no minor in

$$\{T_5 * \{a, c\}, T_6 * \{a, d\}\} \cup \{S_{2k} * \{1, 2, \dots, k\} : k \ge 2\}.$$

 $\begin{array}{ll} T_5 * \{a,c\}; & \{a,c\}, & \{b,c\}, & \{b,d\} \\ T_6 * \{a,d\}; & \{a,d\}, & \{b,c\}, & \{b,d\}, & \{c,d\} \end{array}$

More excluded-minor results

Given a set system (E, \mathcal{F}) , set $f_{\min} = \min\{|X| : X \in \mathcal{F}\}$, $f_{\max} = \max\{|X| : X \in \mathcal{F}\}$, and $\mathcal{F}_i = \{X \in \mathcal{F} : |X| = i\}$ for $f_{\min} \leq i \leq f_{\max}$.

Apart from D_{\min} and D_{\max} , (E, \mathcal{F}_i) does not have to be a matroid.

A set system or delta-matroid (E, \mathcal{F}) is sparse paving if each proper set system (E, \mathcal{F}_i) with $f_{\min} \leq i \leq f_{\max}$ is a sparse paving matroid.

Corollary

A sparse paving set system is a sparse paving delta-matroid if and only if it has no minor in

 $\{S_i: i \geq 3\} \cup \{T_2, T_2^*, T_3 * b, T_4 * b, T_4 * \{a, c\}\}.$

More excluded-minor results

Paving set systems and delta-matroids are defined similarly.

Corollary

A paving set system is a paving delta-matroid if and only if it has none of the following minors:

$$S_{i} \text{ for } i \geq 3,$$

$$T_{1} * \{b, c\}, T_{1}^{*},$$

$$T_{2}, T_{2} * \{a, b\}, T_{2} * \{b, c\}, T_{2}^{*},$$

$$T_{3} * b, T_{3} * \{b, c\},$$

$$T_{4}, T_{4} * b, T_{4} * \{a, c\}, T_{4} * \{b, c\},$$

$$T_{6} * \{b, c, d\},$$

$$T_{7}, T_{7} * b, T_{7} * \{b, c, d\},$$

$$T_{8}, T_{8} * \{b, c, d\}.$$

A set system or delta-matroid (E, \mathcal{F}) is a quotient stack if for each *i* with $f_{\min} \leq i < f_{\max}$, the set system (E, \mathcal{F}_i) is a matroid and is a quotient of (E, \mathcal{F}_{i+1}) .

Corollary

A quotient stack set system is a quotient stack delta-matroid if and only if it does not have a minor in either $\{S_i : i \ge 3\}$ or

 $\{T_1, T_1^*, T_2, T_2^*, T_3, T_4, T_4^*, T_5, T_6, T_7, T_7^*, T_8, T_8^*\}.$

(Bonin, Chun, Noble, 2017)

A delta-matroid is a full Higgs lift delta-matroid if and only if it has neither of the following as minors:

 $(\{a,b\},\{\emptyset,a,\{a,b\}\}),$ $(\{a,b\},\{\emptyset,\{a,b\}\}).$

(Bonin, Chun, Noble, 2017)

A delta-matroid is a full Higgs lift delta-matroid if and only if it has neither of the following as minors:

 $(\{a,b\},\{\emptyset,a,\{a,b\}\}), (\{a,b\},\{\emptyset,\{a,b\}\}).$

What are the excluded minors for lattice path delta-matroids?

(Bonin, Chun, Noble, 2017)

A delta-matroid is a full Higgs lift delta-matroid if and only if it has neither of the following as minors:

 $(\{a,b\},\{\emptyset,a,\{a,b\}\}), (\{a,b\},\{\emptyset,\{a,b\}\}).$

What are the excluded minors for lattice path delta-matroids?

Thank you for listening.