Delta-matroids as subsystems of sequences of Higgs lifts:
 a way to think about delta-matroids from the perspective of matroids

Joseph E. Bonin

George Washington University

Joint work with
Carolyn Chun and Steve Noble

These slides are available at
http://blogs.gwu.edu/jbonin/

Delta-matroids

A set system (or hypergraph) is a pair $S=(E, \mathcal{F})$ where E is a (finite) set and \mathcal{F} is a set of subsets of E (the feasible sets).
E.g., (E, \mathcal{B}), where \mathcal{B} is the set of bases of a matroid M on E.

Such examples are proper, i.e., $\mathcal{F} \neq \emptyset$.

Delta-matroids

A set system (or hypergraph) is a pair $S=(E, \mathcal{F})$ where E is a (finite) set and \mathcal{F} is a set of subsets of E (the feasible sets).
E.g., (E, \mathcal{B}), where \mathcal{B} is the set of bases of a matroid M on E.

Such examples are proper, i.e., $\mathcal{F} \neq \emptyset$.
One of many basis-exchange properties of matroids:

$$
\begin{aligned}
& \text { for all } B_{1}, B_{2} \in \mathcal{B} \text { and } u \in B_{1}-B_{2} \text {, there is a } v \in B_{2}-B_{1} \\
& \text { with } B_{1} \triangle\{u, v\} \in \mathcal{B} \quad \text { (symmetric difference). }
\end{aligned}
$$

Delta-matroids

A set system (or hypergraph) is a pair $S=(E, \mathcal{F})$ where E is a (finite) set and \mathcal{F} is a set of subsets of E (the feasible sets).
E.g., (E, \mathcal{B}), where \mathcal{B} is the set of bases of a matroid M on E. Such examples are proper, i.e., $\mathcal{F} \neq \emptyset$.

One of many basis-exchange properties of matroids:

$$
\begin{aligned}
& \text { for all } B_{1}, B_{2} \in \mathcal{B} \text { and } u \in B_{1}-B_{2} \text {, there is a } v \in B_{2}-B_{1} \\
& \text { with } B_{1} \triangle\{u, v\} \in \mathcal{B} \quad \text { (symmetric difference). }
\end{aligned}
$$

For delta-matroids, replace set differences by symmetric differences.
A delta-matroid is a proper set system $D=(E, \mathcal{F})$ that satisfies delta-matroid symmetric exchange:

```
for all }X,Y\in\mathcal{F}\mathrm{ and }u\inX\triangleY\mathrm{ , there is a v }\inX\triangle
with }X\triangle{u,v}\in\mathcal{F}\mathrm{ .

\section*{Delta-matroids}

A delta-matroid is a proper set system \(D=(E, \mathcal{F})\) such that for all \(X, Y \in \mathcal{F}\) and \(u \in X \triangle Y\), there is a \(v \in X \triangle Y\) with \(X \triangle\{u, v\} \in \mathcal{F}\).

When \(u \in X-Y\),
- if \(v=u\), then \(X \triangle\{u, v\}=X-u\),
- if \(v \in X-(Y \cup u)\), then \(X \triangle\{u, v\}=X-\{u, v\}\),
- if \(v \in Y-X\), then \(X \triangle\{u, v\}=(X-u) \cup v\).

When \(u \in Y-X\),
- if \(v=u\), then \(X \triangle\{u, v\}=X \cup u\),
- if \(v \in Y-(X \cup u)\), then \(X \triangle\{u, v\}=X \cup\{u, v\}\),
- if \(v \in X-Y\), then \(X \triangle\{u, v\}=(X-v) \cup u\).

\section*{Background for our central example: quotients}

For matroids \(Q\) and \(L\) on \(E, Q\) is a quotient of \(L\), or \(L\) is a lift of \(Q\), if \(L=M \backslash A\) and \(Q=M / A\) for some matroid \(M\) and \(A \subseteq E(M)\).
E.g., extend the uniform matroid \(U_{5,9}\) on \(\{1,2, \ldots, 9\}\) by three elements using the modular cuts generated by
- \(\{1,2,3\}\) and \(\{4,5,6\}\),
- \(\{1,2,3\}\) and \(\{7,8,9\}\),
- \(\{4,5,6\}\) and \(\{7,8,9\}\),
and then contract the added elements to get the quotient


\section*{Background for our central example: Higgs lifts}

For integers \(i\) with \(0 \leq i \leq r(L)-r(Q)\), the function \(r_{i}\) given by
\[
r_{i}(X)=\min \left\{r_{Q}(X)+i, r_{L}(X)\right\}
\]
for \(X \subseteq E\), is the rank function of a matroid \(H_{Q, L}^{i}\) on \(E\), called the \(i\)-th Higgs lift of \(Q\) toward \(L\).

\[
H_{Q, L}^{1}
\]
\[
H_{Q, L}^{2}=U_{4,9}
\]
\[
H_{Q, L}^{3}=L=U_{5,9}
\]

\section*{Background for our central example: Higgs lifts}

For integers \(i\) with \(0 \leq i \leq r(L)-r(Q)\), the function \(r_{i}\) given by
\[
r_{i}(X)=\min \left\{r_{Q}(X)+i, r_{L}(X)\right\}
\]
for \(X \subseteq E\), is the rank function of a matroid \(H_{Q, L}^{i}\) on \(E\), called the \(i\)-th Higgs lift of \(Q\) toward \(L\).

\[
H_{Q, L}^{2}=U_{4,9}
\]
\[
H_{Q, L}^{3}=L=U_{5,9}
\]
\(H_{Q, L}^{i}\) is the freest quotient of \(L\) of rank \(r(Q)+i\) having \(Q\) as a quotient.

\section*{Background for our central example: Higgs lifts}

For integers \(i\) with \(0 \leq i \leq r(L)-r(Q)\), the function \(r_{i}\) given by
\[
r_{i}(X)=\min \left\{r_{Q}(X)+i, r_{L}(X)\right\}
\]
for \(X \subseteq E\), is the rank function of a matroid \(H_{Q, L}^{i}\) on \(E\), called the \(i\)-th Higgs lift of \(Q\) toward \(L\).

\(H_{Q, L}^{1}\)
\[
H_{Q, L}^{2}=U_{4,9}
\]
\[
H_{Q, L}^{3}=L=U_{5,9}
\]
\(H_{Q, L}^{i}\) is the freest quotient of \(L\) of rank \(r(Q)+i\) having \(Q\) as a quotient. that span (contain a basis of) \(Q\) and are independent in (contained in a basis of) \(L\).

For all \(X, Y \in \mathcal{F}\) and \(u \in X \triangle Y\), there is a \(v \in X \triangle Y\) with \(X \triangle\{u, v\} \in \mathcal{F}\).

\[
H_{Q, L}^{3}=U_{5,9}
\]

Consider \((\{1,2, \ldots, 9\}, \mathcal{F})\) where \(\mathcal{F}=\mathcal{B}(Q) \cup \mathcal{B}\left(H_{Q, L}^{1}\right) \cup \mathcal{B}(L)\).
For \(X=\{1,4\}, Y=\{2,3,7,8,9\}\), and \(u=2\), we must take either \(v=1\), giving \(\{2,4\}\), or \(v=u\), giving \(\{1,2,4\}\).

For all \(X, Y \in \mathcal{F}\) and \(u \in X \triangle Y\), there is a \(v \in X \triangle Y\) with \(X \triangle\{u, v\} \in \mathcal{F}\).

\[
H_{Q, L}^{3}=U_{5,9}
\]

Consider \((\{1,2, \ldots, 9\}, \mathcal{F})\) where \(\mathcal{F}=\mathcal{B}(Q) \cup \mathcal{B}\left(H_{Q, L}^{1}\right) \cup \mathcal{B}(L)\).
For \(X=\{1,4\}, Y=\{1,2,3,4,5\}\), and \(u=2\), we must take \(v=u\), giving \(\{1,2,4\}\).

For all \(X, Y \in \mathcal{F}\) and \(u \in X \triangle Y\), there is a \(v \in X \triangle Y\) with \(X \triangle\{u, v\} \in \mathcal{F}\).

\[
H_{Q, L}^{3}=U_{5,9}
\]

Consider \((\{1,2, \ldots, 9\}, \mathcal{F})\) where \(\mathcal{F}=\mathcal{B}(Q) \cup \mathcal{B}\left(H_{Q, L}^{1}\right) \cup \mathcal{B}(L)\).

For \(X=\{1,2,4,5,6\}, Y=\{1,4\}\), and \(u=2\), we must take either \(v=5\), giving \(\{1,4,6\}\), or \(v=6\), giving \(\{1,4,5\}\).

\section*{Theorem}
(Bonin, Chun, Noble, 2017)
Fix a matroid \(L\) on \(E\) and a quotient \(Q\) of \(L\). Set \(k=r(L)-r(Q)\). Let \(K\) be a subset of \(\{0,1,2, \ldots, k\}\) for which \(\{0,1,2, \ldots, k\}-K\) contains no two consecutive integers. Then \((E, \mathcal{F})\), where
\[
\mathcal{F}=\bigcup_{i \in K} \mathcal{B}\left(H_{Q, L}^{i}\right)
\]
is a delta-matroid.

When \(K=\{0,1,2, \ldots, k\}\), we get the full Higgs lift delta-matroid of the pair \((Q, L)\).
Tardos studied that case, calling them generalized matroids (1985); Dupont, Fink, and Moci call them saturated delta-matroids (preprint).

\section*{Background for a concrete class of examples}

Fix two lattice paths \(P\) and \(Q\) from \((0,0)\) to a point \((m, r)\), where \(P\) never rises above \(Q\). Thus, \(P\) and \(Q\) bound a region \(\mathcal{R}\) in \(\mathbb{R}^{2}\).


Fix two lattice paths \(P\) and \(Q\) from \((0,0)\) to a point \((m, r)\), where \(P\) never rises above \(Q\). Thus, \(P\) and \(Q\) bound a region \(\mathcal{R}\) in \(\mathbb{R}^{2}\).

\[
\begin{aligned}
& P^{\prime}=\text { ENEENENEN } \\
& b\left(P^{\prime}\right)=\{2,5,7,9\}
\end{aligned}
\]

Let \(\mathcal{P}\) be the set of lattice paths from \((0,0)\) to \((m, r)\) that stay in \(\mathcal{R}\). View paths as words in the alphabet \(\{E, N\}\) (east, north).

For \(P^{\prime} \in \mathcal{P}\), let \(b\left(P^{\prime}\right)\) be the set of positions in \(P^{\prime}\) where \(N\) occurs.

Fix two lattice paths \(P\) and \(Q\) from \((0,0)\) to a point \((m, r)\), where \(P\) never rises above \(Q\). Thus, \(P\) and \(Q\) bound a region \(\mathcal{R}\) in \(\mathbb{R}^{2}\).

\[
\begin{aligned}
& P^{\prime}=\text { ENEENENEN } \\
& b\left(P^{\prime}\right)=\{2,5,7,9\}
\end{aligned}
\]

Let \(\mathcal{P}\) be the set of lattice paths from \((0,0)\) to \((m, r)\) that stay in \(\mathcal{R}\). View paths as words in the alphabet \(\{E, N\}\) (east, north).

For \(P^{\prime} \in \mathcal{P}\), let \(b\left(P^{\prime}\right)\) be the set of positions in \(P^{\prime}\) where \(N\) occurs. Then \(\left\{b\left(P^{\prime}\right): P^{\prime} \in \mathcal{P}\right\}\) is the set of bases of a transversal matroid. Such matroids are lattice path matroids.
- Lattice path matroids form a minor-closed, dual-closed class, that is not well-quasi-ordered by minors.
- We know the excluded minors: there are five infinite families and four sporadic excluded minors.
- The Tutte polynomial of a lattice path matroid can be computed in polynomial time.
This uses an interpretation of basis activities that has intrinsic significance for lattice paths.
- Other aspects that have been studied include: matroid base polytopes, \(h\)-vectors, toric ideals, Bergman complexes, the Rayleigh property, negative correlation, fast mixing, connections with decompositions of Grassmannians, the Merino-Welsh conjecture holds for these matroids, ...

Fix lattice paths \(P\), from \(s_{P}\) to \(t_{P}\), and \(Q\), from \(s_{Q}\) to \(t_{Q}\), where
- each has \(n\) steps,
- the line \(L\) through \(s_{P}\) and \(s_{Q}\) has slope -1 ,
- \(t_{Q}\) is on or to the right of the vertical line through \(s_{P}\),
- \(t_{P}\) is on or above the horizontal line through \(s_{Q}\),
- and \(P\) never rises above \(Q\).


Paths \(P\) and \(Q\), the line \(L\), and the line through \(t_{P}\) and \(t_{Q}\) bound a region \(\mathcal{R}\) in \(\mathbb{R}^{2}\).

\section*{Generalize the diagram to get delta-matroids}


Label each north step in \(\mathcal{R}\) by its distance from \(L\), so the set of labels is \(E=\{1,2, \ldots, n\}\).

Let \(\mathcal{P}\) be the set of lattice paths from an \(s_{i}\) to a \(t_{j}\) that stay in \(\mathcal{R}\).
For a path \(P^{\prime} \in \mathcal{P}\), let \(b\left(P^{\prime}\right)\) be the set of labels on its north steps.



The set \(\left\{b\left(P^{\prime}\right): P^{\prime} \in \mathcal{P}\right.\) from \(s_{Q}\) to \(\left.t_{P}\right\}\) is the set of bases of a lattice path matroid, \(M\left(\mathcal{R}_{\text {min }}\right)\), on \(E\).

Likewise, \(\left\{b\left(P^{\prime}\right): P^{\prime} \in \mathcal{P}\right.\) from \(s_{P}\) to \(\left.t_{Q}\right\}\) is the set of bases of a lattice path matroid, \(M\left(\mathcal{R}_{\max }\right)\), on \(E\).

\section*{Theorem}
(Bonin, Chun, Noble, 2017)
1. \(M\left(\mathcal{R}_{\text {min }}\right)\) is a quotient of \(M\left(\mathcal{R}_{\text {max }}\right)\), and
2. the map \(P^{\prime} \mapsto b\left(P^{\prime}\right)\) is a surjection from \(\mathcal{P}\) onto the set of feasible sets of the full Higgs lift delta-matroid of the pair \(\left(M\left(\mathcal{R}_{\min }\right), M\left(\mathcal{R}_{\max }\right)\right)\).

The resulting class of lattice path delta-matroids is minor-closed and dual-closed (to be defined soon).

\section*{Corollary}

Let \(j=r\left(M\left(\mathcal{R}_{\min }\right)\right)\) and \(k=r\left(M\left(\mathcal{R}_{\max }\right)\right)\). Fix a subset \(K\) of \(\{j, j+1, \ldots, k\}\) for which \(\{j, j+1, \ldots, k\}-K\) contains no two consecutive integers. Then \(\{b(P): P \in \mathcal{P}\) and \(|b(P)| \in K\}\) is the set of feasible sets of a delta-matroid.

\section*{Theorem}

For any delta-matroid \(D\),
- the maximal-sized feasible sets are the bases of a matroid, denoted \(D_{\text {max }}\),
- the minimal-sized feasible sets are the bases of a matroid, denoted \(D_{\text {min }}\),
- \(D_{\min }\) is a quotient of \(D_{\text {max }}\), and
- each feasible set contains a basis of \(D_{\min }\) and is contained in a basis of \(D_{\text {max }}\).

\section*{Corollary}

Each feasible set in a delta-matroid \(D\) is feasible in the full Higgs lift delta-matroid of the pair \(\left(D_{\min }, D_{\max }\right)\).

Which feasible sets can be removed from Higgs lift delta-matroids?
Next goal: an excluded-minor characterization of delta-matroids within the broader structure of set systems.

\section*{Which feasible sets can be removed from Higgs lift delta-matroids?}

Next goal: an excluded-minor characterization of delta-matroids within the broader structure of set systems.
An element in a proper set system \(S=(E, \mathcal{F})\) is a loop if it is in no sets in \(\mathcal{F}\); it is a coloop if it is in all sets in \(\mathcal{F}\).

When \(e\) is not a loop, the contraction of \(e\), written \(S / e\), is
\[
S / e=(E-e,\{F-e: e \in F \in \mathcal{F}\}) .
\]

When \(e\) is not a coloop, the deletion of \(e\), written \(S \backslash e\), is
\[
S \backslash e=(E-e,\{F \subseteq E-e: F \in \mathcal{F}\})
\]

For loops or coloops, we set \(S / e=S \backslash e\) (one is already defined).

\section*{Which feasible sets can be removed from Higgs lift delta-matroids?}

Next goal: an excluded-minor characterization of delta-matroids within the broader structure of set systems.
An element in a proper set system \(S=(E, \mathcal{F})\) is a loop if it is in no sets in \(\mathcal{F}\); it is a coloop if it is in all sets in \(\mathcal{F}\).

When \(e\) is not a loop, the contraction of \(e\), written \(S / e\), is
\[
S / e=(E-e,\{F-e: e \in F \in \mathcal{F}\}) .
\]

When \(e\) is not a coloop, the deletion of \(e\), written \(S \backslash e\), is
\[
S \backslash e=(E-e,\{F \subseteq E-e: F \in \mathcal{F}\})
\]

For loops or coloops, we set \(S / e=S \backslash e\) (one is already defined).

Sequences of deletions and contractions yields the minors of \(S\).
The order of operations can matter. Minors are proper set systems.

For \(A \subseteq E\), the twist of \(S\) on \(A\), denoted \(S * A\), is given by
\[
S * A=(E,\{F \triangle A: F \in \mathcal{F}\}) .
\]

For \(U_{2,4}\) on \(\{1,2,3,4\}\),
\begin{tabular}{|c||c|c|c|c|c|c|}
\hline bases of \(U_{2,4}\) & \(\{1,2\}\) & \(\{1,3\}\) & \(\{1,4\}\) & \(\{2,3\}\) & \(\{2,4\}\) & \(\{3,4\}\) \\
\hline\(U_{2,4} *\{1,2\}\) & \(\emptyset\) & \(\{2,3\}\) & \(\{2,4\}\) & \(\{1,3\}\) & \(\{1,4\}\) & \(\{1,2,3,4\}\) \\
\hline
\end{tabular}

For \(A \subseteq E\), the twist of \(S\) on \(A\), denoted \(S * A\), is given by
\[
S * A=(E,\{F \triangle A: F \in \mathcal{F}\}) .
\]

For \(U_{2,4}\) on \(\{1,2,3,4\}\),
\begin{tabular}{|c||c|c|c|c|c|c|}
\hline bases of \(U_{2,4}\) & \(\{1,2\}\) & \(\{1,3\}\) & \(\{1,4\}\) & \(\{2,3\}\) & \(\{2,4\}\) & \(\{3,4\}\) \\
\hline\(U_{2,4} *\{1,2\}\) & \(\emptyset\) & \(\{2,3\}\) & \(\{2,4\}\) & \(\{1,3\}\) & \(\{1,4\}\) & \(\{1,2,3,4\}\) \\
\hline
\end{tabular}

Minors and twists of delta-matroids are delta-matroids.

Note that \(S / e=(S * e) \backslash e\) and \((S * A) * A=S\).
The dual \(S^{*}\) of \(S\) is \(S * E\).

Let \(S_{i}=(\{1,2, \ldots, i\},\{\emptyset,\{1,2, \ldots, i\}\})\). Let \(\mathcal{S}\) be the set of all twists of \(S_{3}, S_{4}, \ldots\).
Let \(T_{1}, T_{2}, T_{3}, T_{4}\), on \(\{a, b, c\}\), and \(T_{5}, T_{6}, T_{7}, T_{8}\), on \(\{a, b, c, d\}\), be given by:


Let \(\mathcal{T}\) be the set of all 51 twists of \(T_{1}, T_{2}, \ldots, T_{8}\).
No \(T_{i}\) is a delta-matroid since \(a\) is in all feasible sets except \(\emptyset\).

\section*{Excluded-minor results}

\section*{Theorem \\ (Bonin, Chun, Noble, 2017)}

A proper set system is a delta-matroid if and only if it has no minor in \(\mathcal{S} \cup \mathcal{T}\).

A proper set system is a delta-matroid if and only if it has no minor in \(\mathcal{S} \cup \mathcal{T}\).

A matroid is a delta-matroid in which all feasible sets have the same size, so:

\section*{Corollary}

A proper set system \(S=(E, \mathcal{F})\) is a matroid if and only if all sets in \(\mathcal{F}\) have the same size, and \(S\) has no minor in
\[
\left\{T_{5} *\{a, c\}, T_{6} *\{a, d\}\right\} \cup\left\{S_{2 k} *\{1,2, \ldots, k\}: k \geq 2\right\} .
\]
\(T_{5} *\{a, c\}:\{a, c\},\{b, c\}, \quad\{b, d\}\)
\(T_{6} *\{a, d\}:\{a, d\},\{b, c\},\{b, d\},\{c, d\}\)

Given a set system \((E, \mathcal{F})\), set \(f_{\text {min }}=\min \{|X|: X \in \mathcal{F}\}\), \(f_{\text {max }}=\max \{|X|: X \in \mathcal{F}\}\), and \(\mathcal{F}_{i}=\{X \in \mathcal{F}:|X|=i\}\) for \(f_{\text {min }} \leq i \leq f_{\text {max }}\).

Apart from \(D_{\min }\) and \(D_{\max },\left(E, \mathcal{F}_{i}\right)\) does not have to be a matroid.

A set system or delta-matroid \((E, \mathcal{F})\) is sparse paving if each proper set system \(\left(E, \mathcal{F}_{i}\right)\) with \(f_{\min } \leq i \leq f_{\max }\) is a sparse paving matroid.

\section*{Corollary}

A sparse paving set system is a sparse paving delta-matroid if and only if it has no minor in
\[
\left\{S_{i}: i \geq 3\right\} \cup\left\{T_{2}, T_{2}^{*}, T_{3} * b, T_{4} * b, T_{4} *\{a, c\}\right\}
\]

Paving set systems and delta-matroids are defined similarly.

\section*{Corollary}

A paving set system is a paving delta-matroid if and only if it has none of the following minors:
\[
\begin{aligned}
& S_{i} \text { for } i \geq 3, \\
& T_{1} *\{b, c\}, T_{1}^{*}, \\
& T_{2}, T_{2} *\{a, b\}, T_{2} *\{b, c\}, T_{2}^{*}, \\
& T_{3} * b, T_{3} *\{b, c\}, \\
& T_{4}, T_{4} * b, T_{4} *\{a, c\}, T_{4} *\{b, c\}, \\
& T_{6} *\{b, c, d\}, \\
& T_{7}, T_{7} * b, T_{7} *\{b, c, d\}, \\
& T_{8}, T_{8} *\{b, c, d\}
\end{aligned}
\]

\section*{More excluded-minor results}

A set system or delta-matroid \((E, \mathcal{F})\) is a quotient stack if for each \(i\) with \(f_{\min } \leq i<f_{\max }\), the set system \(\left(E, \mathcal{F}_{i}\right)\) is a matroid and is a quotient of \(\left(E, \mathcal{F}_{i+1}\right)\).

\section*{Corollary}

A quotient stack set system is a quotient stack delta-matroid if and only if it does not have a minor in either \(\left\{S_{i}: i \geq 3\right\}\) or
\[
\left\{T_{1}, T_{1}^{*}, T_{2}, T_{2}^{*}, T_{3}, T_{4}, T_{4}^{*}, T_{5}, T_{6}, T_{7}, T_{7}^{*}, T_{8}, T_{8}^{*}\right\}
\]

Theorem
(Bonin, Chun, Noble, 2017)
A delta-matroid is a full Higgs lift delta-matroid if and only if it has neither of the following as minors:
\[
(\{a, b\},\{\emptyset, a,\{a, b\}\}), \quad(\{a, b\},\{\emptyset,\{a, b\}\}) .
\]

\section*{Theorem} (Bonin, Chun, Noble, 2017)
A delta-matroid is a full Higgs lift delta-matroid if and only if it has neither of the following as minors:
\[
(\{a, b\},\{\emptyset, a,\{a, b\}\}), \quad(\{a, b\},\{\emptyset,\{a, b\}\}) .
\]

What are the excluded minors for lattice path delta-matroids?

\section*{Theorem} (Bonin, Chun, Noble, 2017)
A delta-matroid is a full Higgs lift delta-matroid if and only if it has neither of the following as minors:
\[
(\{a, b\},\{\emptyset, a,\{a, b\}\}), \quad(\{a, b\},\{\emptyset,\{a, b\}\}) .
\]

What are the excluded minors for lattice path delta-matroids?

Thank you for listening.```

