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Delta-matroids

A set system (or hypergraph) is a pair S = (E ,F) where E is a
(finite) set and F is a set of subsets of E (the feasible sets).

E.g., (E ,B), where B is the set of bases of a matroid M on E .

Such examples are proper, i.e., F 6= ∅.

One of many basis-exchange properties of matroids:

for all B1,B2 ∈ B and u ∈ B1−B2, there is a v ∈ B2−B1

with B14{u, v} ∈ B (symmetric difference).

For delta-matroids, replace set differences by symmetric differences.

A delta-matroid is a proper set system D = (E ,F) that satisfies
delta-matroid symmetric exchange:

for all X ,Y ∈ F and u ∈ X4Y , there is a v ∈ X4Y
with X4{u, v} ∈ F . (Bouchet, 1987)
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Delta-matroids

A delta-matroid is a proper set system D = (E ,F) such that

for all X ,Y ∈ F and u ∈ X4Y , there is a v ∈ X4Y
with X4{u, v} ∈ F .

When u ∈ X − Y ,

I if v = u, then X4{u, v} = X − u,

I if v ∈ X − (Y ∪ u), then X4{u, v} = X − {u, v},
I if v ∈ Y − X , then X4{u, v} = (X − u) ∪ v .

When u ∈ Y − X ,

I if v = u, then X4{u, v} = X ∪ u,

I if v ∈ Y − (X ∪ u), then X4{u, v} = X ∪ {u, v},
I if v ∈ X − Y , then X4{u, v} = (X − v) ∪ u.



Background for our central example: quotients

For matroids Q and L on E , Q is a quotient of L, or L is a lift of
Q, if L = M\A and Q = M/A for some matroid M and A ⊆ E (M).

E.g., extend the uniform matroid U5,9 on {1, 2, . . . , 9} by three
elements using the modular cuts generated by

I {1, 2, 3} and {4, 5, 6},
I {1, 2, 3} and {7, 8, 9},
I {4, 5, 6} and {7, 8, 9},

and then contract the added elements to get the quotient

1, 2, 3 4, 5, 6 7, 8, 9



Background for our central example: Higgs lifts

For integers i with 0 ≤ i ≤ r(L)− r(Q), the function ri given by

ri (X ) = min{rQ(X ) + i , rL(X )},

for X ⊆ E , is the rank function of a matroid H i
Q,L on E , called the

i-th Higgs lift of Q toward L.
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Q,L = L = U5,9

H i
Q,L is the freest quotient

of L of rank r(Q) + i
having Q as a quotient.

Its bases are the sets of size r(Q) + i
that span (contain a basis of) Q and are
independent in (contained in a basis of) L.
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An example of a delta-matroid

For all X ,Y ∈ F and u ∈ X4Y , there is a v ∈ X4Y with
X4{u, v} ∈ F .
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Consider ({1, 2, . . . , 9},F) where F = B(Q) ∪ B(H1
Q,L) ∪ B(L).

For X = {1, 4}, Y = {2, 3, 7, 8, 9}, and u = 2, we must take either
v = 1, giving {2, 4}, or v = u, giving {1, 2, 4}.
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An example of a delta-matroid

For all X ,Y ∈ F and u ∈ X4Y , there is a v ∈ X4Y with
X4{u, v} ∈ F .
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Consider ({1, 2, . . . , 9},F) where F = B(Q) ∪ B(H1
Q,L) ∪ B(L).

For X = {1, 2, 4, 5, 6}, Y = {1, 4}, and u = 2, we must take either
v = 5, giving {1, 4, 6}, or v = 6, giving {1, 4, 5}.



Delta-matroids from Higgs lifts

Theorem (Bonin, Chun, Noble, 2017)

Fix a matroid L on E and a quotient Q of L. Set k = r(L)− r(Q).
Let K be a subset of {0, 1, 2, . . . , k} for which {0, 1, 2, . . . , k} − K
contains no two consecutive integers. Then (E ,F), where

F =
⋃
i∈K
B(H i

Q,L),

is a delta-matroid.

When K = {0, 1, 2, . . . , k}, we get the full Higgs lift delta-matroid
of the pair (Q, L).

Tardos studied that case, calling them generalized matroids
(1985); Dupont, Fink, and Moci call them saturated
delta-matroids (preprint).



Background for a concrete class of examples

Fix two lattice paths P and Q from (0, 0) to a point (m, r), where
P never rises above Q. Thus, P and Q bound a region R in R2.

P

Q

Let P be the set of lattice paths from (0, 0) to (m, r) that stay in
R. View paths as words in the alphabet {E ,N} (east, north).

For P ′ ∈ P, let b(P ′) be the set of positions in P ′ where N occurs.

Then {b(P ′) : P ′ ∈ P} is the set of bases of a transversal matroid.

Such matroids are lattice path matroids.
(Bonin, de Mier, Noy, 2003; orientations, Lawrence, 1984)
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Some properties of lattice path matroids

I Lattice path matroids form a minor-closed, dual-closed class,
that is not well-quasi-ordered by minors.

I We know the excluded minors: there are five infinite families
and four sporadic excluded minors.

I The Tutte polynomial of a lattice path matroid can be
computed in polynomial time.
This uses an interpretation of basis activities that has intrinsic
significance for lattice paths.

I Other aspects that have been studied include: matroid base
polytopes, h-vectors, toric ideals, Bergman complexes, the
Rayleigh property, negative correlation, fast mixing,
connections with decompositions of Grassmannians, the
Merino-Welsh conjecture holds for these matroids, . . .



Generalize the diagram to get delta-matroids

Fix lattice paths P, from sP to tP , and Q, from sQ to tQ , where

I each has n steps,
I the line L through sP and sQ has slope −1,
I tQ is on or to the right of the vertical line through sP ,
I tP is on or above the horizontal line through sQ ,
I and P never rises above Q.

tP = t0
t1

t2
t3

tQ = t4

sP = s0
s1

s2
sQ = s3

P

Q
L

Paths P and Q, the line L, and the line through tP and tQ bound
a region R in R2.



Generalize the diagram to get delta-matroids

tP = t0
t1

t2
t3

tQ = t4

sP = s0
s1

s2
sQ = s3

P

Q

1 2 3 4 5 6 7

7

8

11

12

L

Label each north step in R by its distance from L, so the set of
labels is E = {1, 2, . . . , n}.

Let P be the set of lattice paths from an si to a tj that stay in R.

For a path P ′ ∈ P, let b(P ′) be the set of labels on its north steps.



Identify the extremes as lattice path matroids

tP = t0
t1

t2
t3

tQ = t4

sP = s0
s1

s2
sQ = s3

P

Q

tQ

sP

sP

tP
sQ

The set {b(P ′) : P ′ ∈ P from sQ to tP} is the set of bases of a
lattice path matroid, M(Rmin), on E .

Likewise, {b(P ′) : P ′ ∈ P from sP to tQ} is the set of bases of a
lattice path matroid, M(Rmax), on E .



Delta-matroids from lattice paths

Theorem (Bonin, Chun, Noble, 2017)

1. M(Rmin) is a quotient of M(Rmax), and

2. the map P ′ 7→ b(P ′) is a surjection from P onto the set of
feasible sets of the full Higgs lift delta-matroid of the pair
(M(Rmin),M(Rmax)).

The resulting class of lattice path delta-matroids is minor-closed
and dual-closed (to be defined soon).

Corollary

Let j = r(M(Rmin)) and k = r(M(Rmax)). Fix a subset K of
{j , j + 1, . . . , k} for which {j , j + 1, . . . , k} − K contains no two
consecutive integers. Then {b(P) : P ∈ P and |b(P)| ∈ K} is the
set of feasible sets of a delta-matroid.



The relation of full Higgs lift delta-matroids to delta-matroids in general

Theorem (Bouchet)

For any delta-matroid D,

I the maximal-sized feasible sets are the bases of a matroid,
denoted Dmax,

I the minimal-sized feasible sets are the bases of a matroid,
denoted Dmin,

I Dmin is a quotient of Dmax, and

I each feasible set contains a basis of Dmin and is contained in a
basis of Dmax.

Corollary

Each feasible set in a delta-matroid D is feasible in the full Higgs
lift delta-matroid of the pair (Dmin,Dmax).



Which feasible sets can be removed from Higgs lift delta-matroids?

Next goal: an excluded-minor characterization of delta-matroids
within the broader structure of set systems.

An element in a proper set system S = (E ,F) is a loop if it is in
no sets in F ; it is a coloop if it is in all sets in F .

When e is not a loop, the contraction of e, written S/e, is

S/e = (E − e, {F − e : e ∈ F ∈ F}).

When e is not a coloop, the deletion of e, written S\e, is

S\e = (E − e, {F ⊆ E − e : F ∈ F}).

For loops or coloops, we set S/e = S\e (one is already defined).

Sequences of deletions and contractions yields the minors of S .

The order of operations can matter. Minors are proper set systems.
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Another element: twists

For A ⊆ E , the twist of S on A, denoted S ∗ A, is given by

S ∗ A = (E , {F4A : F ∈ F}).

For U2,4 on {1, 2, 3, 4},
bases of U2,4 {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
U2,4 ∗ {1, 2} ∅ {2, 3} {2, 4} {1, 3} {1, 4} {1, 2, 3, 4}

Minors and twists of delta-matroids are delta-matroids.

Note that S/e = (S ∗ e)\e and (S ∗ A) ∗ A = S .

The dual S∗ of S is S ∗ E .
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The excluded minors for delta-matroids, within set systems

Let Si = ({1, 2, . . . , i}, {∅, {1, 2, . . . , i}}). Let S be the set of all
twists of S3,S4, . . . .
Let T1,T2,T3,T4, on {a, b, c}, and T5,T6,T7,T8, on {a, b, c , d},
be given by:

T1 ∅ {a, b} {a, b, c}

T2 ∅ {a, b} {a, b, c}{a, c}
T3 ∅ {a} {a, b} {a, b, c}

T4 ∅ {a} {a, b} {a, b, c}{a, c}

T5 ∅ {a, b} {a, b, c , d}

T6 ∅ {a, b} {a, b, c , d}{a, c}
{a, b}

T7 ∅ {a, c} {a, b, c , d}
{a, d}
{a, b}

T8 ∅ {a} {a, c} {a, b, c , d}
{a, d}

Let T be the set of all 51 twists of T1,T2, . . . ,T8.

No Ti is a delta-matroid since a is in all feasible sets except ∅.



Excluded-minor results

Theorem (Bonin, Chun, Noble, 2017)

A proper set system is a delta-matroid if and only if it has no
minor in S ∪ T .

A matroid is a delta-matroid in which all feasible sets have the
same size, so:

Corollary

A proper set system S = (E ,F) is a matroid if and only if all sets
in F have the same size, and S has no minor in

{T5 ∗ {a, c}, T6 ∗ {a, d}} ∪ {S2k ∗ {1, 2, . . . , k} : k ≥ 2}.

T5 ∗ {a, c}: {a, c}, {b, c}, {b, d}
T6 ∗ {a, d}: {a, d}, {b, c}, {b, d}, {c , d}
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More excluded-minor results

Given a set system (E ,F), set fmin = min{|X | : X ∈ F},
fmax = max{|X | : X ∈ F}, and Fi = {X ∈ F : |X | = i} for
fmin ≤ i ≤ fmax.

Apart from Dmin and Dmax, (E ,Fi ) does not have to be a matroid.

A set system or delta-matroid (E ,F) is sparse paving if each proper
set system (E ,Fi ) with fmin ≤ i ≤ fmax is a sparse paving matroid.

Corollary

A sparse paving set system is a sparse paving delta-matroid if and
only if it has no minor in

{Si : i ≥ 3} ∪ {T2, T ∗2 , T3 ∗ b, T4 ∗ b, T4 ∗ {a, c}}.



More excluded-minor results

Paving set systems and delta-matroids are defined similarly.

Corollary

A paving set system is a paving delta-matroid if and only if it has
none of the following minors:

Si for i ≥ 3,

T1 ∗ {b, c}, T ∗1 ,

T2, T2 ∗ {a, b}, T2 ∗ {b, c}, T ∗2 ,

T3 ∗ b, T3 ∗ {b, c},
T4, T4 ∗ b, T4 ∗ {a, c}, T4 ∗ {b, c},
T6 ∗ {b, c , d},
T7, T7 ∗ b, T7 ∗ {b, c , d},
T8, T8 ∗ {b, c , d}.



More excluded-minor results

A set system or delta-matroid (E ,F) is a quotient stack if for each
i with fmin ≤ i < fmax, the set system (E ,Fi ) is a matroid and is a
quotient of (E ,Fi+1).

Corollary

A quotient stack set system is a quotient stack delta-matroid if
and only if it does not have a minor in either {Si : i ≥ 3} or

{T1, T
∗
1 , T2, T

∗
2 , T3, T4, T

∗
4 , T5, T6, T7, T

∗
7 , T8, T

∗
8 }.



More excluded-minor results

Theorem (Bonin, Chun, Noble, 2017)

A delta-matroid is a full Higgs lift delta-matroid if and only if it
has neither of the following as minors:

({a, b}, {∅, a, {a, b}}), ({a, b}, {∅, {a, b}}).

What are the excluded minors for lattice path delta-matroids?

Thank you for listening.
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