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Degree sequences of simple bipartite graphs

Remarks

® upper and lower bounds on the degrees

® edges can be chosen from a given graph
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Theorem (Brualdi "70)

Let G = (S, T; E) be a bipartite graph with matroids Ms = (S, rs) and
My = (T, rr) for which rs(S) = rr(T) = ¢. There is a matching covering a
basis of Ms and a basis of Mt if and only if

rs(X) +rr(Y) > ¢

whenever X U T hits every edge of G (X CS, TC T).
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Theorem (Brualdi '70)

Let G = (S, T; E) be a bipartite graph with matroids Ms = (S, rs) and
My = (T, rr) for which rs(S) = rr(T) = £. There is a matching covering a
basis of Ms and a basis of Mt if and only if

rs(X)+ I‘T(Y) >/

whenever X U T hits every edge of G (X CS, TC T).
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Common generalization?

Rephrasing the problems
Maximum term rank. Find a degree-prescribed simple bipartite graph G

such that
Fe(Y)| >|Y|—¢ for every Y C T.

Brualdi. Given a bipartite graph with matroids on its color classes, there
exists a matching covering bases of the matroids if and only if

rs(F6(Y)) = tr(Y) for every Y C T,

where t1 denotes the co-rank function of M+.
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Abstract framework

Problem
Given V = SU T, a degree-specification my = (ms, mr) and a

on T, find a simple bipartite graph
G = (S, T; E) fitting my that , that is,

IFe(Y)l = pr(Y)
for every Y C T.

Problem™

Given a bipartite graph , a degree-specification

my = (ms, m7), a (positively intersecting) supermodular function pr on T
and a matroid , find a bipartite graph G = (S, T; E) fitting my
so that Hy + G is simple and , that is,

rs(Tho+6(Y)) = pr(Y)

for every Y C T.



Main result

Theorem (B. and Frank '18)
Given a bipartite graph Ho = (S, T; Fo), a degree-specification my = (ms, mt), a
positively intersecting supermodular function pr on T and a matroid Ms = (S, rs).

There exists a bipartite graph G = (S, T; E) fitting my for which Gt = G + Ho is
simple and Ms-covers pr if and only if

ms(X) + mr(Y) — dgo (X, Y) + 2, [pr(Ti) — rs(X U T o (TH))] <

whenever Y C T, X C S, and T ={Ty,..., Tq} is a subpartition of T — Y.
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Main result
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Given a bipartite graph Ho = (S, T; Fo), a degree-specification my = (ms, mt), a
positively intersecting supermodular function pr on T and a matroid Ms = (S, rs).
There exists a bipartite graph G = (S, T; E) fitting my for which Gt = G + Ho is
simple and Ms-covers pr if and only if

ms(X) + mr(Y) — dgo (X, Y) + 2, [pr(Ti) — rs(X U T o (TH))] <
whenever Y C T, X C S, and T ={Ty,..., Tq} is a subpartition of T — Y.

Remarks
® Proof uses the Frank-Jordan theorem on covering supermodular bi-set
functions.
® Lower and upper bounds on the degrees are also tractable.

® |n the intersecting case, efficient algorithm using a result of Frank and
Tardos.
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Consequence

Theorem (B. and Frank '18)
Given a bipartite graph Ho = (S, T; Fo), a degree-specification my = (ms, mr),
matroids Ms = (S, rs) and My = (T, rr) with rs(S) = rr(T) = £. There exists a
bipartite graph G = (S, T; E) fitting my for which Gt = G + Hy is simple and
includes a matching covering a basis of Ms and a basis of Mt if and only if Hp has a
subgraph fitting my and
ms(X) + mr(Y) = dgo (X, Y) + £ —rs(X) = rr(Y') <
whenever X C X' C S, Y CY' C T, and X" U Y’ hits all the edges of Ho.

e |f Ms, Mt are the {-uniform matroids = Maximum term rank.

e |If Hy =0 and ms = m7 = 0 = Brualdi’s theorem.
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Further results

® Characterization of the degree sequences of wooded hypergraphs with
prescribed edge sizes (and further constraints).

Packing branchings of given sizes (and further constraints).

® Degree sequences of highly connected simple directed graphs.
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