Matroidal maximum term rank

Kristóf Bérczi joint work with András Frank

MTA-ELTE Egerváry Research Group Department of Operations Research, Eötvös Loránd University

Combinatorial Geometries, CIRM, September 2018

Background

Maximum term rank problem

Brualdi's theorem

Covering supermodular functions by bipartite graphs

Background

Network flow theory

• Degree constrained subgraph in a bipartite graph.

Matroid theory

• Cheapest rooted k-node-connected subgraph of a digraph.

Submodular flows

(Edmonds, Giles, '77)

Network flow theory

• Degree constrained subgraph in a bipartite graph.

Matroid theory

• Cheapest rooted k-node-connected subgraph of a digraph.

Submodular flows

(Edmonds, Giles, '77)

Network flow theory

• Degree constrained subgraph in a bipartite graph.

Matroid theory

• Cheapest rooted k-node-connected subgraph of a digraph.

Corresponding linear system is $TDI \Rightarrow$ weighted version is also tractable.

Submodular flows

(Edmonds, Giles, '77)

Network flow theory

• Degree constrained subgraph in a bipartite graph.

Matroid theory

• Cheapest rooted k-node-connected subgraph of a digraph.

Corresponding linear system is $TDI \Rightarrow$ weighted version is also tractable.

Problem

Find a degree-prescribed simple bipartite graph with matching number $\geq \ell.$

Ryser, *The term rank of a matrix*, Canadian Journal of Mathematics (1958).

Submodular flows

(Edmonds, Giles, '77)

Network flow theory

• Degree constrained subgraph in a bipartite graph.

Matroid theory

• Cheapest rooted k-node-connected subgraph of a digraph.

Corresponding linear system is TDI \Rightarrow weighted version is also tractable.

Problem

Find a degree-prescribed simple bipartite graph with matching number $\geq \ell.$

Ryser, *The term rank of a matrix*, Canadian Journal of Mathematics (1958).

Problem

Find a degree-prescribed simple bipartite graph of minimum cost with matching number $\geq \ell$.

Pálvölgyi, Partitioning to three matchings of given size is NP-complete for bipartite graphs, Acta Universitatis Sapientiae, Informatica (2014).

 \Rightarrow submodular flows cannot help!

Submodular flows

(Edmonds, Giles, '77)

Network flow theory

• Degree constrained subgraph in a bipartite graph.

Matroid theory

• Cheapest rooted k-node-connected subgraph of a digraph.

Corresponding linear system is TDI \Rightarrow weighted version is also tractable.

Covering bi-set functions

(Frank, Jordán, '95)

- Degree sequences of *k*-edge-connected and *k*-node-connected digraphs.
- Covering a vertically convex polyomino by a minimum number of rectangles (Győri, '85)
 - B. and Frank, Supermodularity in unweighted graph optimization I, II and III, Mathematics of Operations Research (2018).

Submodular flows

(Edmonds, Giles, '77)

Network flow theory

• Degree constrained subgraph in a bipartite graph.

Matroid theory

• Cheapest rooted k-node-connected subgraph of a digraph.

Corresponding linear system is TDI \Rightarrow weighted version is also tractable.

Covering bi-set functions

(Frank, Jordán, '95)

- Degree sequences of *k*-edge-connected and *k*-node-connected digraphs.
- Covering a vertically convex polyomino by a minimum number of rectangles (Győri, '85)
 - B. and Frank, *Supermodularity in unweighted graph optimization I, II* and III, Mathematics of Operations Research (2018).

Packing common bases

• Packing pairwise disjoint common bases of two matroids.

Submodular flows

(Edmonds, Giles, '77)

Network flow theory

• Degree constrained subgraph in a bipartite graph.

Matroid theory

• Cheapest rooted k-node-connected subgraph of a digraph.

Corresponding linear system is TDI \Rightarrow weighted version is also tractable.

Covering bi-set functions (Frank, Jordán, '95)

- Degree sequences of *k*-edge-connected and *k*-node-connected digraphs.
- Covering a vertically convex polyomino by a minimum number of rectangles (Győri, '85)
- B and Frank, Supermodularity in unweighted graph optimization I, II and III, Mathematics of Operations Research (2018).

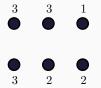
Packing common bases

• Packing pairwise disjoint common bases of two matroids.

Maximum term rank problem

Problem

Given a node set $V = S \cup T$ and a degree-specification $m_V = (m_S, m_T)$, find a simple bipartite graph G = (S, T; E) fitting m_V .



Problem

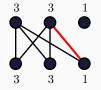
Given a node set $V = S \cup T$ and a degree-specification $m_V = (m_S, m_T)$, find a simple bipartite graph G = (S, T; E) fitting m_V .

Problem

Given a node set $V = S \cup T$ and a degree-specification $m_V = (m_S, m_T)$, find a simple bipartite graph G = (S, T; E) fitting m_V .

Problem

Given a node set $V = S \cup T$ and a degree-specification $m_V = (m_S, m_T)$, find a simple bipartite graph G = (S, T; E) fitting m_V .



Problem

Given a node set $V = S \cup T$ and a degree-specification $m_V = (m_S, m_T)$, find a simple bipartite graph G = (S, T; E) fitting m_V .

Theorem (Gale '57, Ryser '57)

There exists a simple bipartite graph fitting (m_S, m_T) if and only if

$$m_{\mathcal{S}}(X) + m_{\mathcal{T}}(Y) - |X||Y| \le \gamma$$

for every $X \subseteq S$, $Y \subseteq T$, where $\gamma = m_S(S) = m_T(T)$.

Problem

Given a node set $V = S \cup T$ and a degree-specification $m_V = (m_S, m_T)$, find a simple bipartite graph G = (S, T; E) fitting m_V .

Theorem (Gale '57, Ryser '57)

There exists a simple bipartite graph fitting (m_S, m_T) if and only if

$$m_{\mathcal{S}}(X) + m_{\mathcal{T}}(Y) - |X||Y| \le \gamma$$

for every $X \subseteq S$, $Y \subseteq T$, where $\gamma = m_S(S) = m_T(T)$.

Remarks

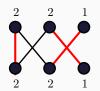
- upper and lower bounds on the degrees
- edges can be chosen from a given graph

Problem

Given a node set $V = S \cup T$, a degree-specification $m_V = (m_S, m_T)$ and $\ell \in \mathbb{Z}_+$, find a simple bipartite graph G = (S, T; E) fitting m_V with matching number $\nu(G) \ge \ell$.

Problem

Given a node set $V = S \cup T$, a degree-specification $m_V = (m_S, m_T)$ and $\ell \in \mathbb{Z}_+$, find a simple bipartite graph G = (S, T; E) fitting m_V with matching number $\nu(G) \ge \ell$.



Problem

Given a node set $V = S \cup T$, a degree-specification $m_V = (m_S, m_T)$ and $\ell \in \mathbb{Z}_+$, find a simple bipartite graph G = (S, T; E) fitting m_V with matching number $\nu(G) \ge \ell$.

Problem

Given a node set $V = S \cup T$, a degree-specification $m_V = (m_S, m_T)$ and $\ell \in \mathbb{Z}_+$, find a simple bipartite graph G = (S, T; E) fitting m_V with matching number $\nu(G) \ge \ell$.

Let $\ell = 3$:

Problem

Given a node set $V = S \cup T$, a degree-specification $m_V = (m_S, m_T)$ and $\ell \in \mathbb{Z}_+$, find a simple bipartite graph G = (S, T; E) fitting m_V with matching number $\nu(G) \ge \ell$.

Let $\ell = 3$:

Theorem (Ryser '58)

Assume that there exists a simple bipartite graph fitting (m_S, m_T) . There exists one with matching number $\nu(G) \ge \ell$ if and only if

$$m_S(X) + m_T(Y) - |X||Y| + (\ell - |X| - |Y|) \le \gamma$$

for every $X \subseteq S$, $Y \subseteq T$, where $\gamma = m_S(S) = m_T(T)$.

Problem

Given a node set $V = S \cup T$, a degree-specification $m_V = (m_S, m_T)$ and $\ell \in \mathbb{Z}_+$, find a simple bipartite graph G = (S, T; E) fitting m_V with matching number $\nu(G) \ge \ell$.

Theorem (Ryser '58)

Assume that there exists a simple bipartite graph fitting (m_5, m_T) . There exists one with matching number $\nu(G) \ge \ell$ if and only if

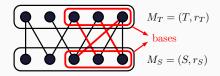
$$m_{S}(X) + m_{T}(Y) - |X||Y| + (\ell - |X| - |Y|) \le \gamma$$

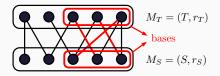
for every $X \subseteq S$, $Y \subseteq T$, where $\gamma = m_S(S) = m_T(T)$.

Brualdi's theorem

Matroidal matching

Matroidal matching





Theorem (Brualdi '70)

Let G = (S, T; E) be a bipartite graph with matroids $M_S = (S, r_S)$ and $M_T = (T, r_T)$ for which $r_S(S) = r_T(T) = \ell$. There is a matching covering a basis of M_S and a basis of M_T if and only if

$$r_S(X) + r_T(Y) \geq \ell$$

whenever $X \cup T$ hits every edge of G ($X \subseteq S$, $T \subseteq T$).

Matroidal matching

$$M_1 = (S, r_1)$$

$$M_2 = (S, r_2)$$

Theorem (Brualdi '70)

Let G = (S, T; E) be a bipartite graph with matroids $M_S = (S, r_S)$ and $M_T = (T, r_T)$ for which $r_S(S) = r_T(T) = \ell$. There is a matching covering a basis of M_S and a basis of M_T if and only if

 $r_S(X) + r_T(Y) \geq \ell$

whenever $X \cup T$ hits every edge of G ($X \subseteq S$, $T \subseteq T$).

Covering supermodular functions by bipartite graphs

Rephrasing the problems

Maximum term rank. Find a degree-prescribed simple bipartite graph *G* such that

 $|\Gamma_G(Y)| \ge |Y| - \ell$ for every $Y \subseteq T$.

Brualdi. Given a bipartite graph with matroids on its color classes, there exists a matching covering bases of the matroids if and only if

$$r_{\mathcal{S}}(\Gamma_{\mathcal{G}}(Y)) \ge t_{\mathcal{T}}(Y)$$
 for every $Y \subseteq T$,

where t_T denotes the co-rank function of M_T .

Abstract framework

Problem

Given $V = S \cup T$, a degree-specification $m_V = (m_S, m_T)$ and a (positively intersecting) supermodular function p_T on T, find a **simple** bipartite graph G = (S, T; E) fitting m_V that covers p_T , that is,

 $|\Gamma_G(Y)| \ge p_T(Y)$

for every $Y \subseteq T$.

Abstract framework

Problem

Given $V = S \cup T$, a degree-specification $m_V = (m_S, m_T)$ and a (positively intersecting) supermodular function p_T on T, find a **simple** bipartite graph G = (S, T; E) fitting m_V that covers p_T , that is,

 $|\Gamma_G(Y)| \ge p_T(Y)$

for every $Y \subseteq T$.

Problem⁺

Given a bipartite graph $H_0 = (S, T; F_0)$, a degree-specification $m_V = (m_S, m_T)$, a (positively intersecting) supermodular function p_T on Tand a matroid $M_S = (S, r_S)$, find a bipartite graph G = (S, T; E) fitting m_V so that $H_0 + G$ is **simple** and M_S -covers p_T , that is,

$$r_S(\Gamma_{H_0+G}(Y)) \ge p_T(Y)$$

for every $Y \subseteq T$.

Main result

Theorem (B. and Frank '18)

Given a bipartite graph $H_0 = (S, T; F_0)$, a degree-specification $m_V = (m_S, m_T)$, a positively intersecting supermodular function p_T on T and a matroid $M_S = (S, r_S)$. There exists a bipartite graph G = (S, T; E) fitting m_V for which $G^+ = G + H_0$ is simple and M_S -covers p_T if and only if

 $m_{\mathcal{S}}(X) + m_{\mathcal{T}}(Y) - d_{\overline{H_0}}(X,Y) + \sum_{i=1}^{q} [p_{\mathcal{T}}(T_i) - r_{\mathcal{S}}(X \cup \Gamma_{H_0}(T_i))] \leq \gamma$ whenever $Y \subseteq T$, $X \subseteq S$, and $\mathcal{T} = \{T_1, \ldots, T_q\}$ is a subpartition of T - Y.

Main result

Theorem (B. and Frank '18)

Given a bipartite graph $H_0 = (S, T; F_0)$, a degree-specification $m_V = (m_S, m_T)$, a positively intersecting supermodular function p_T on T and a matroid $M_S = (S, r_S)$. There exists a bipartite graph G = (S, T; E) fitting m_V for which $G^+ = G + H_0$ is simple and M_S -covers p_T if and only if

$$m_{\mathcal{S}}(X) + m_{\mathcal{T}}(Y) - d_{\overline{H_0}}(X, Y) + \sum_{i=1}^{q} [p_{\mathcal{T}}(T_i) - r_{\mathcal{S}}(X \cup \Gamma_{H_0}(T_i))] \leq \gamma$$

whenever $Y \subseteq T$, $X \subseteq S$, and $\mathcal{T} = \{T_1, \dots, T_q\}$ is a subpartition of $T - Y$

Remarks

- Proof uses the Frank-Jordán theorem on covering supermodular bi-set functions.
- Lower and upper bounds on the degrees are also tractable.
- In the intersecting case, efficient algorithm using a result of Frank and Tardos.

W

Theorem (B. and Frank '18)

Given a bipartite graph $H_0 = (S, T; F_0)$, a degree-specification $m_V = (m_S, m_T)$, matroids $M_S = (S, r_S)$ and $M_T = (T, r_T)$ with $r_S(S) = r_T(T) = \ell$. There exists a bipartite graph G = (S, T; E) fitting m_V for which $G^+ = G + H_0$ is simple and includes a matching covering a basis of M_S and a basis of M_T if and only if $\overline{H_0}$ has a subgraph fitting m_V and

$$\widetilde{m}_{\mathcal{S}}(X) + \widetilde{m}_{\mathcal{T}}(Y) - d_{\overline{H_0}}(X, Y) + \ell - r_{\mathcal{S}}(X') - r_{\mathcal{T}}(Y') \leq \gamma$$

henever $X \subseteq X' \subseteq S, \ Y \subseteq Y' \subseteq T$, and $X' \cup Y'$ hits all the edges of H_0 .

- If M_S, M_T are the ℓ -uniform matroids \Rightarrow Maximum term rank.
- If $H_0 = \emptyset$ and $m_S \equiv m_T \equiv 0 \Rightarrow$ Brualdi's theorem.

- Characterization of the degree sequences of wooded hypergraphs with prescribed edge sizes (and further constraints).
- Packing branchings of given sizes (and further constraints).
- Degree sequences of highly connected **simple** directed graphs.

• . . .