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Chip-firing
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Figure: A chip-firing move
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The graph Laplacian and chip-firing

The graph Laplacian is Q = D − A where D is a diagonal matrix with
Di ,i = deg(vi ) and A is the adjacency matrix.

Alternately, Q = B ∗ BT , where B is the oriented incidence matrix of
the graph. Thus Q is the boundary operator composed with the
coboundary operator.

If we represent a chip configuration by a vector ~x , then firing vi gives
the new vector ~x − Qei .
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Figure: Chip-firing and the Laplacian matrix
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The Jacobian of G

We define Picd(G ) be the set of chips configurations with d chips
modulo chip-firing.

The Jacobian of G is Jac(G ) = Pic0(G ).

Algebraically, this group is the torsion part of the Z-cokernel of the
Laplacian.

By Kirchoff’s matrix-tree theorem plus linear algebra,

|Jac(G )| = # of spanning trees.

Spencer Backman (Hebrew University) Geometric bijections for regular matroids September 25, 2018 5 / 31



History

Chip-firing was independently introduced in several different communities.

Poset Theory: ’72 Mosesian

Discrete Probability: ’75 Engel

Statistical Physics: ’87 Bak-Tang-Weisenfeld

Coxeter Groups: ’87 Mozes

Arithmetic Geometry: ’70 Raynaud

Graph Theory: ’91 Björner-Lovász-Shor
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G-parking functions and spanning trees

The G -parking functions (also known as reduced divisors, dual critical
configurations, etc.) give distinguished representatives for the
chip-firing equivalences classes.

There exist several explicit bijections between the G-parking functions
and spanning trees, e.g.

1 A bijection due to Cori and LeBorgne maps # chips to external activity.
2 A bijection due to Perkinson, Yang, and Yu maps # chips to tree

inversion number.
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Regular Matroids

Merino introduced the notion of a chip-firing group (Jac(B)) of a
totally unimodular matrix, which generalizes the chip-firing group of a
graph.

Wagner showed that this group is a regular matroid invariant for
M(B).

|Jac(M)| = # of bases of M

Our goal: We would like to produce a collection of bijections between
the elements of the Jacobian of a regular matroids and the bases of
the matroid.

Nb: Any such bijection must avoid reference to vertices. Our
approach is to instead work with orientations.
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Orientations and chip configurations

Given an orientation O, we can associated a chip configuration

DO =
∑

v∈V (G)

indegreeO(v).

There is an equivalence relation on orientations which captures
chip-firing.
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Cycle and cut reversals

1" 1"

1" 1" 1" 1"

Figure: A directed cycle reversal

2" 0"

0" 1" 1" 2"

Figure: A directed cut reversal
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Cut-cycle reversal classes

Given two orientations O and O′, the associated chip configurations
DO and DO′ are related by chip-firing moves if and only if they are
related by directed cut reversals and directed cycle reversals.

Theorem (Gioan, An-Baker-Kuperberg-Shokrieh)

Given D with |E (G )| chips, D ∼ DO for some orientation O.

This implies the important fact:
The set of orientations modulo directed cut reversals and cycle
reversals is canonically in bijection with Picm(G ), where m = E (G ).
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Representatives for orientation classes

Fix a total order on the edges and a reference orientation (<,Oref ).

We will call an orientation cycle-minimal if the minimum edge in each
directed cycle is oriented in agreement with the reference orientation.
We define cut-minimal orientations similarly.

Theorem (folklore?)

Each orientation O is equivalent by cut and cycle reversals to a unique
cut-cycle minimal orientation.
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Fundamental cuts and cycles

Let T be a spanning tree and e ∈ E (G ).

1 If e ∈ T , we can associate a fundamental cut Cu(e,T ), which is the
unique cut in E (G ) \ {T \ e}.

2 If e /∈ T , we can associate a fundamental cycle Cy(e,T ), which is the
unique cycle in T ∪ e.
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Figure: A fundamental cut Cu(e,T )

Figure: A fundamental cycle Cy(e,T ).
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Our bijection

Map from spanning trees to orientations

Fix a total order on the edges and a reference orientation (<,Oref )

Let T be a spanning tree and e ∈ E (G ).

1 If e ∈ T , orient e in agreement with the minimum edge in Cu(e,T ).
2 If e /∈ T , orient e in agreement with the minimum edge in Cy(e,T ).

We claim that this map is a bijection between spanning trees and
cycle-cut minimal orientations.

Remark: Our bijection works more generally if we replace the total
order on the edges with a generic weight vector. Moreover, we can
choose our data for cuts and cycles separately.
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The Tutte polynomial and Ehrhart theory for Zonotopes

A zonotope is a Minkowski sum of line segments, i.e. a projection of a
hypercube.

The graphical zonotope is

ZG =
∑

(i ,j)∈E(G)

[ei , ej ]

.

+" +" ="

Z"K"[e1,e2]""" [e1,e3]"+" +" [e2,e3]" ="
3"
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The Ehrhart polynomial

The Ehrhart polynomial of a graphical zonotope

Given an integer polytope P, the Ehrhart polynomial is such that
EP(q) = # lattice points in qP.

Given a graph (more generally a matroid) the Tutte polynomial is a
bivariate universal deletion contraction invariant.

Theorem (Stanley)

EZG
(q) = qn−1TG (1 +

1

q
, 1)

Proof sketch: Look at a tiling of the zonotope by parallelepipeds and take
a half open decomposition.
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New derivation of the Ehrhart polynomial of ZG

1 The lattice points of qZG ↔ indegree sequences of orientations of qG .

2 Indegree sequences of orientations of qG ↔ cycle reversal classes of
orientations of qG .

3 Cycle reversal classes of orientations of qG ↔ Cycle minimal
orientations of qG .

4 Cycle minimal orientations of qG ↔ a class of q−weighted partial
orientations introduced and enumerated by Sam Hopkins and myself.
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Fourientation expansion of the Tutte polynomial
[B.-Hopkins-Traldi 2015]

There exists a 2|E(G)|-to-1 surjection ϕ : O4(G )→ S(G ), such that

(k1 + m)n−κ(k2 + l)gTG

(
k1x + k2w + mx̂ + l ŵ

k1 + m
,
k2y + k1z + l ŷ + mẑ

k2 + l

)
=∑

O∈O4(G)
k
|Oo∩ϕ(O)|
1 k

|Oo\ϕ(O)|
2 l|O
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∣∣∣Ob
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New derivation of Ehrhart polynomial of ZG

The cycle-minimal orientations of qG are in enumerated by a single
variable specialization of the previous formula.

(k1, k2, l ,m,w , ŵ , x , x̂ , y , ŷ , z , ẑ) = (1, 1, 0, q, 1, 1, 1, 1, 1, 1, 0, 0).

Side remark on Ehrhart reciprocity: The interior lattice points in qZG

correspond strongly connected cycle-minimal orientations of qG .
Similarly, this is another single variable specialization of the previous
formula.

(k1, k2, l ,m,w , ŵ , x , x̂ , y , ŷ , z , ẑ) = (1, 1, 0, q, 0, 1, 0, 1, 1, 1, 0, 0).

Therefore # interior lattice points in qZG = qn−1TG (1− 1
q , 1).

This gives a direct verification of Ehrhart reciprocity.
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Z"K"[e1,e2]""" [e1,e3]"+" +" [e2,e3]" ="
3"
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(0,1,2)'(2,1,0)'

(2,0,1)' (1,0,2)'
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(1,1,1)'

Figure: Cycle reversal classes and lattice points in ZK3
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Figure: Cycle-minimal orientations and lattice points in ZK3
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Figure: Cycle-minimal orientations and lattice points in 2ZK3
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Figure: Cycle-minimal orientations and lattice points in 2ZK3 .
The bioriented edges are labeled red.
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Figure: The limit of cycle minimal orientations of qK3 as q →∞.
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Figure: The limit of cycle minimal orientations of qK3 as q →∞.

The edges in the complement of each spanning tree are oriented precisely
as in our bijection!
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Figure: The other half of our bijection comes from a shifting map!
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Torsors

The set of orientation classes is not a group.

Let G be a group acting on X . If G acts freely and transitively on X
we say X is a torsor for G .

Theorem

[B.] (for graphs) and [B. Baker, Yuen] (for regular matroids)
This set of orientation classes is canonically a torsor for the Jacobian,
which acts via edge reversals.

By fixing an orientation we obtain a bijection between the Jacobian
and the orientation classes and, by composition with our bijection,
the spanning trees of G .
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Summary

We have four different equinumerous sets of objects counted by TM(1, 1):

1 Bases

2 Circuit-cocircuit minimal orientations

3 Circuit-cocircuit reversal classes

4 Jacobian

We give a bijection between bases and circuit-cocircuit minimal
orientations

The cut-cycle minimal orientations give distinguished representatives
for the circuit-cocircuit reversal classes.

The circuit-cocircuit reversal classes are a canonical torsor for the
Jacobian.

Thus we obtain a bijection between the bases and the Jacobian.
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Merci!
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