Geometric bijections for regular matroids, zonotopes, and Ehrhart theory

Spencer Backman

Einstein Institute for Mathematics at the Hebrew University of Jerusalem

Joint work with Matt Baker and Chi Ho Yuen

September 25, 2018

Chip-firing

Figure: A chip-firing move

< 一型

3

The graph Laplacian and chip-firing

- The graph Laplacian is Q = D A where D is a diagonal matrix with $D_{i,i} = \deg(v_i)$ and A is the adjacency matrix.
- Alternately, Q = B * B^T, where B is the oriented incidence matrix of the graph. Thus Q is the boundary operator composed with the coboundary operator.
- If we represent a chip configuration by a vector \vec{x} , then firing v_i gives the new vector $\vec{x} Qe_i$.

Figure: Chip-firing and the Laplacian matrix

- We define $Pic^{d}(G)$ be the set of chips configurations with d chips modulo chip-firing.
- The Jacobian of G is $Jac(G) = Pic^{0}(G)$.
- Algebraically, this group is the torsion part of the Z-cokernel of the Laplacian.

By Kirchoff's matrix-tree theorem plus linear algebra,

|Jac(G)| = # of spanning trees.

Chip-firing was independently introduced in several different communities.

- Poset Theory: '72 Mosesian
- Discrete Probability: '75 Engel
- Statistical Physics: '87 Bak-Tang-Weisenfeld
- Coxeter Groups: '87 Mozes
- Arithmetic Geometry: '70 Raynaud
- Graph Theory: '91 Björner-Lovász-Shor

G-parking functions and spanning trees

- The *G*-parking functions (also known as reduced divisors, dual critical configurations, etc.) give distinguished representatives for the chip-firing equivalences classes.
- There exist several explicit bijections between the G-parking functions and spanning trees, e.g.
 - **()** A bijection due to Cori and LeBorgne maps # chips to external activity.
 - A bijection due to Perkinson, Yang, and Yu maps # chips to tree inversion number.

- Merino introduced the notion of a chip-firing group (*Jac*(*B*)) of a totally unimodular matrix, which generalizes the chip-firing group of a graph.
- Wagner showed that this group is a regular matroid invariant for M(B).
- |Jac(M)| = # of bases of M
- Our goal: We would like to produce a collection of bijections between the elements of the Jacobian of a regular matroids and the bases of the matroid.
- Nb: Any such bijection must avoid reference to vertices. Our approach is to instead work with orientations.

Orientations and chip configurations

 \bullet Given an orientation $\mathcal{O},$ we can associated a chip configuration

$$\mathcal{D}_{\mathcal{O}} = \sum_{v \in V(G)} \operatorname{indegree}_{\mathcal{O}}(v).$$

• There is an equivalence relation on orientations which captures chip-firing.

Cycle and cut reversals

Figure: A directed cycle reversal

Figure: A directed cut reversal

Spencer Backman (Hebrew University) Geometric bijections for regular matroids

Cut-cycle reversal classes

• Given two orientations \mathcal{O} and \mathcal{O}' , the associated chip configurations $D_{\mathcal{O}}$ and $D_{\mathcal{O}'}$ are related by chip-firing moves if and only if they are related by directed cut reversals and directed cycle reversals.

Theorem (Gioan, An-Baker-Kuperberg-Shokrieh)

Given D with |E(G)| chips, $D \sim D_{\mathcal{O}}$ for some orientation \mathcal{O} .

• This implies the important fact:

The set of orientations modulo directed cut reversals and cycle reversals is canonically in bijection with $Pic^{m}(G)$, where m = E(G).

Representatives for orientation classes

- Fix a total order on the edges and a reference orientation (<, $\mathcal{O}_{\textit{ref}}$).
- We will call an orientation *cycle-minimal* if the minimum edge in each directed cycle is oriented in agreement with the reference orientation. We define *cut-minimal* orientations similarly.

Theorem (folklore?)

Each orientation \mathcal{O} is equivalent by cut and cycle reversals to a unique cut-cycle minimal orientation.

Fundamental cuts and cycles

- Let T be a spanning tree and $e \in E(G)$.
 - If e ∈ T, we can associate a fundamental cut Cu(e, T), which is the unique cut in E(G) \ {T \ e}.
 - ② If $e \notin T$, we can associate a fundamental cycle Cy(e, T), which is the unique cycle in $T \cup e$.

Figure: A fundamental cut Cu(e, T)

Figure: A fundamental cycle Cy(e, T).

Map from spanning trees to orientations

- Fix a total order on the edges and a reference orientation (<, \mathcal{O}_{ref})
- Let T be a spanning tree and $e \in E(G)$.
 - If e ∈ T, orient e in agreement with the minimum edge in Cu(e, T).
 If e ∉ T, orient e in agreement with the minimum edge in Cy(e, T).
- We claim that this map is a bijection between spanning trees and cycle-cut minimal orientations.
- Remark: Our bijection works more generally if we replace the total order on the edges with a generic weight vector. Moreover, we can choose our data for cuts and cycles separately.

The Tutte polynomial and Ehrhart theory for Zonotopes

A *zonotope* is a Minkowski sum of line segments, i.e. a projection of a hypercube.

• The graphical zonotope is

$$Z_G = \sum_{(i,j)\in E(G)} [e_i, e_j]$$

The Ehrhart polynomial of a graphical zonotope

- Given an integer polytope P, the Ehrhart polynomial is such that $E_P(q) = \#$ lattice points in qP.
- Given a graph (more generally a matroid) the Tutte polynomial is a bivariate universal deletion contraction invariant.

Theorem (Stanley)

$$E_{Z_G}(q) = q^{n-1}T_G(1+\frac{1}{q},1)$$

Proof sketch: Look at a tiling of the zonotope by parallelepipeds and take a half open decomposition.

New derivation of the Ehrhart polynomial of Z_G

- **1** The lattice points of $qZ_G \leftrightarrow$ indegree sequences of orientations of qG.
- Indegree sequences of orientations of *qG* ↔ cycle reversal classes of orientations of *qG*.
- Ocycle reversal classes of orientations of *qG* ↔ Cycle minimal orientations of *qG*.
- Cycle minimal orientations of $qG \leftrightarrow$ a class of q-weighted partial orientations introduced and enumerated by Sam Hopkins and myself.

Fourientation expansion of the Tutte polynomial [B.-Hopkins-Traldi 2015]

There exists a $2^{|E(G)|}$ -to-1 surjection $\varphi \colon \mathcal{O}^4(G) \to \mathcal{S}(G)$, such that

$$(k_1+m)^{n-\kappa}(k_2+l)^g T_G\left(\frac{k_1x+k_2w+m\hat{x}+l\hat{w}}{k_1+m},\frac{k_2y+k_1z+l\hat{y}+m\hat{z}}{k_2+l}\right)$$

 $=_{\sum_{O \in \mathcal{O}^{4}(G)} k_{1}^{|O^{\circ} \cap \varphi(O)|} k_{2}^{|O^{\circ} \setminus \varphi(O)|} ||O^{u}|_{m} |O^{b}|_{x}^{|I^{+}(O)|} w^{|I^{-}(O)|}_{\hat{x}}^{|I^{b}(O)|} w^{|I^{u}(O)|}_{y}^{|L^{+}(O)|}_{y}^{|L^{+}(O)|}_{\hat{y}^{|L^{u}(O)|}_{\hat{x}}^{|L^{u}(O)|}_{\hat{x}}^{|L^{b}$

Spencer Backman (Hebrew University)

New derivation of Ehrhart polynomial of Z_G

• The cycle-minimal orientations of *qG* are in enumerated by a single variable specialization of the previous formula.

 $(k_1, k_2, l, m, w, \hat{w}, x, \hat{x}, y, \hat{y}, z, \hat{z}) = (1, 1, 0, q, 1, 1, 1, 1, 1, 1, 0, 0).$

Side remark on Ehrhart reciprocity: The interior lattice points in qZ_G correspond strongly connected cycle-minimal orientations of qG. Similarly, this is another single variable specialization of the previous formula.

 $(k_1, k_2, l, m, w, \hat{w}, x, \hat{x}, y, \hat{y}, z, \hat{z}) = (1, 1, 0, q, 0, 1, 0, 1, 1, 1, 0, 0).$

Therefore # interior lattice points in $qZ_G = q^{n-1}T_G(1-\frac{1}{q},1)$. This gives a direct verification of Ehrhart reciprocity.

3

Figure: Cycle reversal classes and lattice points in Z_{K_3}

Figure: Cycle-minimal orientations and lattice points in Z_{K_3}

Figure: Cycle-minimal orientations and lattice points in $2Z_{K_3}$

September 25, 2018 24 / 31

э

Figure: Cycle-minimal orientations and lattice points in $2Z_{K_3}$. The bioriented edges are labeled red.

Figure: The limit of cycle minimal orientations of qK_3 as $q \to \infty$.

э

Figure: The limit of cycle minimal orientations of qK_3 as $q \to \infty$.

The edges in the complement of each spanning tree are oriented precisely as in our bijection!

September 25, 2018

27 / 31

Figure: The other half of our bijection comes from a shifting map!

Torsors

- The set of orientation classes is not a group.
- Let G be a group acting on X. If G acts freely and transitively on X we say X is a torsor for G.

Theorem

[B.] (for graphs) and [B. Baker, Yuen] (for regular matroids) This set of orientation classes is canonically a torsor for the Jacobian, which acts via edge reversals.

• By fixing an orientation we obtain a bijection between the Jacobian and the orientation classes and, by composition with our bijection, the spanning trees of *G*.

Summary

We have four different equinumerous sets of objects counted by $T_M(1,1)$:

- Bases
- ② Circuit-cocircuit minimal orientations
- Orcuit-cocircuit reversal classes
- Jacobian
 - We give a bijection between bases and circuit-cocircuit minimal orientations
 - The cut-cycle minimal orientations give distinguished representatives for the circuit-cocircuit reversal classes.
 - The circuit-cocircuit reversal classes are a canonical torsor for the Jacobian.
 - Thus we obtain a bijection between the bases and the Jacobian.

Merci!

- ∢ ≣ →

2