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Geometry and Combinatorics. Two visionary remarks.

Gelfand–Goresky–MacPherson–Serganova, 1987

R. C. Bose (quoted by Kelly–Rota, 1973)
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The one thing I want to say today:

Matroids are geometric.
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I will mostly talk about other people’s work.
If I have time, I’ll discuss some of my joint work with
Carly Klivans (06), Carolina Benedetti + Jeff Doker (10)
Marcelo Aguiar (08-17), Graham Denham + June Huh (17-18).
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Matroids

Goal: Capture the combinatorial essence of independence.

E= set of vectors spanning Rd .
B = collection of subsets of E which are bases of Rd .

Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

MOTIVATING EXAMPLES: 2. Linear Algebra.

Goal: Choose a minimal set of vectors that spans R3.

No 3 on a plane, no 2 on a line, no 1 at the origin.

 b   

 a   

 d   

 c   
 f   

 e   

Wednesday, October 2, 13

Solutions: {abc, abd , abe, acd , ace}
(The bases of the vector configuration.)

E = abcde
B = {abc,abd ,abe,acd ,ace}

Properties:
(B1) B 6= /0
(B2) If A,B ∈B and a ∈ A−B,
then there exists b ∈ B−A
such that (A−a)∪b ∈B.

Definition. (Nakasawa, Whitney, 35)
A set E and a collection B of subsets of E are a
matroid if they satisfies properties (B1) and (B2).



matroids model 1: matroid polytope model 2: Bergman fan model 3: conormal fan

Matroids

Goal: Capture the combinatorial essence of independence.

E= set of vectors spanning Rd .
B = collection of subsets of E which are bases of Rd .

Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

MOTIVATING EXAMPLES: 2. Linear Algebra.

Goal: Choose a minimal set of vectors that spans R3.

No 3 on a plane, no 2 on a line, no 1 at the origin.

 b   

 a   

 d   

 c   
 f   

 e   

Wednesday, October 2, 13

Solutions: {abc, abd , abe, acd , ace}
(The bases of the vector configuration.)

E = abcde
B = {abc,abd ,abe,acd ,ace}

Properties:
(B1) B 6= /0
(B2) If A,B ∈B and a ∈ A−B,
then there exists b ∈ B−A
such that (A−a)∪b ∈B.

Definition. (Nakasawa, Whitney, 35)
A set E and a collection B of subsets of E are a
matroid if they satisfies properties (B1) and (B2).



matroids model 1: matroid polytope model 2: Bergman fan model 3: conormal fan

Matroids

Goal: Capture the combinatorial essence of independence.

E= set of vectors spanning Rd .
B = collection of subsets of E which are bases of Rd .

Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

MOTIVATING EXAMPLES: 2. Linear Algebra.

Goal: Choose a minimal set of vectors that spans R3.

No 3 on a plane, no 2 on a line, no 1 at the origin.

 b   

 a   

 d   

 c   
 f   

 e   

Wednesday, October 2, 13

Solutions: {abc, abd , abe, acd , ace}
(The bases of the vector configuration.)

E = abcde
B = {abc,abd ,abe,acd ,ace}

Properties:
(B1) B 6= /0
(B2) If A,B ∈B and a ∈ A−B,
then there exists b ∈ B−A
such that (A−a)∪b ∈B.

Definition. (Nakasawa, Whitney, 35)
A set E and a collection B of subsets of E are a
matroid if they satisfies properties (B1) and (B2).



matroids model 1: matroid polytope model 2: Bergman fan model 3: conormal fan

Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

MOTIVATING EXAMPLES: 2. Linear Algebra.

Goal: Choose a minimal set of vectors that spans R3.

No 3 on a plane, no 2 on a line, no 1 at the origin.

 b   

 a   

 d   

 c   
 f   

 e   

Wednesday, October 2, 13

Solutions: {abc, abd , abe, acd , ace}
(The bases of the vector configuration.)
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MOTIVATING EXAMPLES: 1. Graph Theory.

Goal: Build internet connections that will connect the 4 cities.

To lower costs, build the minimum number of connections.

 a   

 b   

 c   

 f    e    d   

Wednesday, October 2, 13

Solutions: {abc, abd , abe, acd , ace}
(The spanning trees of the graph.)

Many points of view.

1. Bases
B = {abc,abd ,abe,acd ,ace}

2. Independent sets
I = {abc,abd ,abe,acd ,ace,
ab,ac,ad ,ae,bc,bd ,be,cd ,ce,
a,b,c,d ,e,
/0}

3. Circuits (minimal dependences.)
C = {de,bcd ,bce} BC = {d ,bc,bc}

4. Flats (spanned sets.)
F = {abcde
ab,ac,ade,bcde,
a,b,c,de,
/0}
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Many points of view.

1. Bases (polytope)

2. Independents (simplicial complex)

3. (Broken) Circuits (monomial ideal)

4. Flats (lattice)

It is as if one were to condense all trends of
present day mathematics onto a single finite

structure, a feat that anyone would a priori
deem impossible, were it not for the fact that

matroids do exist.

Gian-Carlo Rota
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The characteristic polynomial

The characteristic polynomial of M is

χM(q) = ∑
A⊆E

(−1)|A|qr(E)−r(A)

Flats (lattices):

χM(q) = ∑
F flat

µ(F )qr(E)−r(F )

Independents (simplicial complexes):

χM(q)↔ f -vector of broken circuit complex BC<(M)

Circuits (monomial ideals):

Hilb(R[x1, . . . ,xn]/BC<(M)) =

(
t

t−1

)r

χM

(
t−1

t

)



matroids model 1: matroid polytope model 2: Bergman fan model 3: conormal fan

The characteristic polynomial

The characteristic polynomial of M is

χM(q) = ∑
A⊆E

(−1)|A|qr(E)−r(A)

Flats (lattices):

χM(q) = ∑
F flat

µ(F )qr(E)−r(F )

Independents (simplicial complexes):

χM(q)↔ f -vector of broken circuit complex BC<(M)

Circuits (monomial ideals):

Hilb(R[x1, . . . ,xn]/BC<(M)) =

(
t

t−1

)r

χM

(
t−1

t

)



matroids model 1: matroid polytope model 2: Bergman fan model 3: conormal fan

The characteristic polynomial

The characteristic polynomial of M is

χM(q) = ∑
A⊆E

(−1)|A|qr(E)−r(A)

Flats (lattices):

χM(q) = ∑
F flat

µ(F )qr(E)−r(F )

Independents (simplicial complexes):

χM(q)↔ f -vector of broken circuit complex BC<(M)

Circuits (monomial ideals):

Hilb(R[x1, . . . ,xn]/BC<(M)) =

(
t

t−1

)r

χM

(
t−1

t

)



matroids model 1: matroid polytope model 2: Bergman fan model 3: conormal fan

The characteristic polynomial

The characteristic polynomial of M is

χM(q) = ∑
A⊆E

(−1)|A|qr(E)−r(A)

Flats (lattices):

χM(q) = ∑
F flat

µ(F )qr(E)−r(F )

Independents (simplicial complexes):

χM(q)↔ f -vector of broken circuit complex BC<(M)

Circuits (monomial ideals):

Hilb(R[x1, . . . ,xn]/BC<(M)) =

(
t

t−1

)r

χM

(
t−1

t

)



matroids model 1: matroid polytope model 2: Bergman fan model 3: conormal fan

The characteristic polynomial

The characteristic polynomial of M is

χM(q) = ∑
A⊆E

(−1)|A|qr(E)−r(A)

For graphical matroids:

qχM(G)(q) = number of proper vertex q-colorings of G.

For linear matroids:
A = set of hyperplanes in Fn, V (A) = Fn−A.

• (F = R) V (A) consists of |χM(−1)| regions.
• (F = Fq) V (A) consists of χM(q) points.
• (F = C) V (A) has Betti numbers = coefficients of χM(q).



matroids model 1: matroid polytope model 2: Bergman fan model 3: conormal fan

The characteristic polynomial

The characteristic polynomial of M is

χM(q) = ∑
A⊆E

(−1)|A|qr(E)−r(A)

For graphical matroids:

qχM(G)(q) = number of proper vertex q-colorings of G.

For linear matroids:
A = set of hyperplanes in Fn, V (A) = Fn−A.

• (F = R) V (A) consists of |χM(−1)| regions.
• (F = Fq) V (A) consists of χM(q) points.
• (F = C) V (A) has Betti numbers = coefficients of χM(q).



matroids model 1: matroid polytope model 2: Bergman fan model 3: conormal fan

The characteristic polynomial

The characteristic polynomial of M is

χM(q) = ∑
A⊆E

(−1)|A|qr(E)−r(A)

For graphical matroids:

qχM(G)(q) = number of proper vertex q-colorings of G.

For linear matroids:
A = set of hyperplanes in Fn, V (A) = Fn−A.

• (F = R) V (A) consists of |χM(−1)| regions.
• (F = Fq) V (A) consists of χM(q) points.
• (F = C) V (A) has Betti numbers = coefficients of χM(q).



matroids model 1: matroid polytope model 2: Bergman fan model 3: conormal fan

The characteristic polynomial

The characteristic polynomial of M is

χM(q) = ∑
A⊆E

(−1)|A|qr(E)−r(A)

For graphical matroids:

qχM(G)(q) = number of proper vertex q-colorings of G.

For linear matroids:
A = set of hyperplanes in Fn, V (A) = Fn−A.

• (F = R) V (A) consists of |χM(−1)| regions.

• (F = Fq) V (A) consists of χM(q) points.
• (F = C) V (A) has Betti numbers = coefficients of χM(q).



matroids model 1: matroid polytope model 2: Bergman fan model 3: conormal fan

The characteristic polynomial

The characteristic polynomial of M is

χM(q) = ∑
A⊆E

(−1)|A|qr(E)−r(A)

For graphical matroids:

qχM(G)(q) = number of proper vertex q-colorings of G.

For linear matroids:
A = set of hyperplanes in Fn, V (A) = Fn−A.

• (F = R) V (A) consists of |χM(−1)| regions.
• (F = Fq) V (A) consists of χM(q) points.

• (F = C) V (A) has Betti numbers = coefficients of χM(q).



matroids model 1: matroid polytope model 2: Bergman fan model 3: conormal fan

The characteristic polynomial

The characteristic polynomial of M is

χM(q) = ∑
A⊆E

(−1)|A|qr(E)−r(A)

For graphical matroids:

qχM(G)(q) = number of proper vertex q-colorings of G.

For linear matroids:
A = set of hyperplanes in Fn, V (A) = Fn−A.

• (F = R) V (A) consists of |χM(−1)| regions.
• (F = Fq) V (A) consists of χM(q) points.
• (F = C) V (A) has Betti numbers = coefficients of χM(q).



matroids model 1: matroid polytope model 2: Bergman fan model 3: conormal fan

The characteristic polynomial

Two enumerative invariants of matroids:

• f -vector: coefficients of χM(q)/q

• h-vector: coefficients of χM(q + 1)/(q + 1)

They have enum+alg+geom+top+prob interpretations.
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Are matroids geometric? Take 1.

(linear matroids) vs. (all matroids):

• Almost any matroid we think of is linear (geometric).
• (Nelson, 18) Almost all matroids are not linear.

• Is there a “missing axiom" for linear matroids?
No. (Mayhew, Newman, Whittle, 14)

• This is a feature, not a flaw!
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Are matroids geometric? Take 2.

My main point today.
Matroids are natural geometric objects.

Three manifestations:
1. the matroid polytope,
2. the Bergman fan,
3. the conormal fan.
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Model 1: Matroid polytopes

Def (Edmonds 70)
The matroid polytope of a matroid M on E is

PM = conv{eB : B is a basis of M} ⊂ RE

where eB is the 0−1 indicator vector of B.

Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

MOTIVATING EXAMPLES: 2. Linear Algebra.

Goal: Choose a minimal set of vectors that spans R3.

No 3 on a plane, no 2 on a line, no 1 at the origin.

 b   

 a   

 d   

 c   
 f   

 e   

Wednesday, October 2, 13

Solutions: {abc, abd , abe, acd , ace}
(The bases of the vector configuration.)

10110

10101

11010

11001 11100

E = abcde
B = {abc,abd ,abe,acd ,ace}
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Matroid polytopes in “nature":

1. Optimization. (Edmonds 70) For a cost function c : E → R, find the
bases {b1, . . . ,br} of minimal cost c(b1) + · · ·+ c(br ).

2. Algebraic geometry. (Gel’fand–Goresky–MacPherson–Serganova 87)
Understand torus orbits in the Grassmannian.
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A “Zome tool" characterization of matroids

Theorem. (GGMS 87) A collection B of r -subsets of [n] is a
matroid if and only if every edge of the polytope

PM = conv{eB : B ∈B} ⊂ Rn

is a translate of vectors ei −ej for some i , j .
Def. A matroid is a 0-1 polytope with edge directions ei −ej .

10110

10101

11010

11001 11100

12

21

23

32

31

13

34

24

42

43

14

41

ij : ei −ej

From this geometric viewpoint, all matroids are equally natural.
Matroids provide the correct level of generality!
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Applications.
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ij : ei −ej

1. (Lafforgue 03) If a matroid polytope cannot be cut into smaller ones, its
matroid has finitely many linear F-representations for any fixed F.

7−→ theory of matroid subdivisions (Derksen-Fink 10)

2. Deg(torus orbit in Grr ,n) = Vol(matroid polytope).

7−→ combinatorial formula (A.-Benedetti-Doker 10)

3. (Joni-Rota 78) Hopf algebra of matroids via ⊕, /, \.
7−→ antipode(M) = ∑

PN≤PM

(−1)dim(PN )N = ± Int(PM ) (Aguiar-A. 17)

4. {ei −ej} is the root system for the Lie algebra sln. Other types?

7−→ theory of Coxeter matroids (Gel’fand-Serganova 87)
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Model 2: Bergman fan

Def/Theorem. (A.-Klivans 06)
The Bergman fan ΣM of M is the polyhedral complex with
• rays: eF := ef1 + · · ·+ efk for each flat F = {f1, . . . , fk}
• faces: cone{eF : F ∈F} for each flag F = { /0(F1 ( · · ·(Fl (E}.

Motivation Matroids Tutte polynomials Hyperplane arrangements Computing Tutte polynomials

MOTIVATING EXAMPLES: 2. Linear Algebra.

Goal: Choose a minimal set of vectors that spans R3.

No 3 on a plane, no 2 on a line, no 1 at the origin.

 b   

 a   

 d   

 c   
 f   

 e   

Wednesday, October 2, 13

Solutions: {abc, abd , abe, acd , ace}
(The bases of the vector configuration.)
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Bergman fans in “nature": Tropical geometry.
algebraic variety V 7→ Trop(V ) polyhedral complex

Trop(V ) still knows information about V , and can be studied combinatorially.

Question. (Sturmfels 02) Describe Trop(linear space).

Theorem. (A.-Klivans 06)
The tropicalization of a linear space V ⊆ Rn is the Bergman fan ΣM(V ).
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A tropical characterization of matroids

A tropical variety is a polyhedral complex “with zero-tension".
It has a tropical degree, and AlgDeg(V) = TropDeg(Trop V).

Theorem. (Fink 13) A tropical variety has degree 1 if and only if it
is the Bergman fan of a matroid.
Definition. A matroid is a tropical variety of degree 1.
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ab

From this geometric viewpoint, all matroids are equally natural.
Again, matroids provide the correct level of generality!
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Applications.

1. A tropical manifold is a tropical variety that looks locally like a (Bergman
fan of a) matroid.
7−→ theory of tropical manifolds (Mikhalkin, Rau, Shaw, ...)

de

c

b

a

bcde

ade

ac

ab

2. (Adiprasito-Huh-Katz 18) A combinatorial Chow ring of ΣM behaves like
the cohomology ring of a smooth projective variety. (!!!) This gives that the
coefficients of the characteristic polynomial

χG(q) = wv−1qv−1−wv−2qv−2 + · · ·±w1

are unimodal and log-concave:

w1 ≤ ·· ·wk−1 ≤ wk ≥ wk+1 ≥ ·· · ≥ wv−1

wi−1wi+1 ≤ w2
i for i = 1, . . . ,v −2.

This was conjectured by Read (68) and Hoggar (74).
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Model 3: conormal fan
Definition. (A.-Denham-Huh 17)
A biflag of M consists of a flag F = {F1 ⊆ ·· · ⊆ Fl} of flats and a
flag G = {G1 ⊇ ·· · ⊇Gl} of coflats (flats of M⊥) such that

l⋂
i=1

(Fi ∪Gi) = E ,
l⋃

i=1

(Fi ∩Gi) 6= E .

Question: Have you run into this before?!

All maximal biflags have length n−2 and we define:

Definition. (A.-Denham-Huh 17)
The conormal fan ΣM,M⊥ is the polyhedral complex in REtE with
• rays eF + fG for each flat F and coflat G with F ∪G = E
• cone(F,G) := cone{eFi + fGi : 1≤ i ≤ l} for each biflag (F,G).
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Applications.

1. The conormal fan seems to be a Lagrangian analog of the Bergman fan.

Expectations:
• Conormal fans are the tropical Lagrangian linear spaces.
• They’re the building blocks for tropical Lagrangian submanifolds Mikhalkin’18
• Again, (Lagrangian?) matroids provide the correct level of generality.

2. (A.-Denham-Huh 18) The combinatorial Chow ring of ΣM,M⊥ also behaves
like the cohomology ring of a smooth projective variety. (!!!) This gives that the
coefficients of the shifted characteristic polynomial

χG(q + 1) = hv−1qv−1−hv−2qv−2 + · · ·±h1

are unimodal, log-concave, and flawless:

h1 ≤ ·· ·hk−1 ≤ hk ≥ hk+1 ≥ ·· · ≥ hv−1

hi−1hi+1 ≤ h2
i for i = 1, . . . ,v −2.

hi ≤ hs−i for the nonzero entries.

This was conjectured by Brylawski (82), Dawson (83) and Swartz (03).
It strengthens Adiprasito-Huh-Katz 18, and requires additional machinery.
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merci beaucoup
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