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Why we love covectors

© Matroids over the sign hyperfield S are oriented matroids, and
S-covector sets satisfy the Topological Representation
Theorem.

@ Matroids over a field F correspond to linear subspaces V of
FE, via:
e Grassmann-Pliicker function = Pliicker coordinates
o set C* of F-cocircuits = set of elements of V — {0} of minimal
support
o set C of F-circuits = set of elements of V- — {0} of minimal
support

So for matroids over general hyperfields, we hope for V and
V* with

o V=V

o V=Vt



We'll define H-vectors and H-covectors for matroids over a
hyperfield H so that

@ when H =S we get the usual signed vectors and signed
covectors of an oriented matroid,

@ when H is a field, and thus an H-matroid corresponds to a
subspace V of HE, we get V* =V and V = V*.
This definition will capture the idea of an H-matroid being a
"linear subspace of HE" in two senses:

@ a linear subspace of a vector space is the span of a set of
elements, and

@ a linear subspace of a vector space is the solution set to a
system of linear equations a-x = 0.



Linear algebra over hyperfields?

Naive linear algebra over hyperfields is a mess...

A linear combination of Xi,..., Xk € HE is a set [, a;X; C HE
with each a; € H. The span (Xi,..., Xk) is the union of all linear
combinations of the X;.
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Linear algebra over hyperfields?

Naive linear algebra over hyperfields is a mess...

A linear combination of X1, ..., Xy € HE is a set (A%, a;X; C HE
with each a; € H. The span (Xi,..., Xk) is the union of all linear
combinations of the X;.

Nothing about this works well: for instance, we can have

Y € <X1,...,Xk> but <Y,X1,...,Xk> #* <X1,...,Xk>.

The inner product X - Y of two elements of HE is the hypersum
Hece X(e)Y(e). Wesay X L Y if 0. € X(e)- Y(e).

This is also problematic: for instance, we can have X, Y | Z but
XBY [ Z

In general, sets S* and (S) don't seem to have any nice
relationship to matroid theory.

However, H-matroids offer a less naive route to linear algebra over
hyperfields.
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some r x n matrix A= (vi,...,v,) over F.
V has an underlying matroid M. The columns of A constitute a

vector arrangement realizing M in the usual sense.
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For a field F and rank r linear subspace V of F", V = row(A) for
some r x n matrix A= (vi,...,v,) over F.

V has an underlying matroid M. The columns of A constitute a
vector arrangement realizing M in the usual sense.

A is well-defined up to left multiplication by GL, (i.e. up to change
of coordinates for the vector arrangement).

B={bi,...,b} C{1,...,n} is a basis for M
& there is a G € GL, such that (GA)p,,.. b, = 1.

We call GA the reduced row-echelon form (RREF) for V' with
respect to B.

The set of F-cocircuits of the F-matroid corresponding to V' is
exactly the set of scalar multiples of rows appearing in RREFs.



Now consider a hyperfield H and an H-matroid M.

For each basis B and each a € B there is a unique fundamental
H-cocircuit C, g € C*, i.e. a unique H-cocircuit satisfying
C,g(a) =1and C,5(c) =0 for all c € B—{a}.

Definition

For each basis B define the RREF of M with respect to B to be
{Ca,B rac B}

Equivalently, this is the unique set of elements of C* arising as the
rows of a matrix over H in RREF with respect to B.



Theorem
For an H-matroid M with H-circuit set C,

ct=(\(Cap:a€B)
B

where the intersection is over all bases of M.

We define

Veo= ¢t
= the set of elements of HE which lie in the span
of every RREF for M

and V = (C*)*.




H-vector axioms

Given () £ W C HE, define a basis to be a minimal B C E such
that B N supp(X) # 0 for each X € W — {0}.

Then for every basis B there is a near-RREF in VW corresponding
to B, i.e. aset {D,p:a¢€ B} CW such that for every a,c € B,
D, g(c) =0 iff a# c.
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that B N supp(X) # 0 for each X € W — {0}.

Then for every basis B there is a near-RREF in VW corresponding
to B, i.e. aset {D,p:a¢€ B} CW such that for every a,c € B,
D, g(c) =0 iff a# c.

The Vector Axiom

W is the H-vector set of an H-matroid if and only if Wis exactly
the intersection of the spans of all near-RREF’s in W.

Equivalently, W has a RREF with respect to every basis B, and W
is exactly the set of elements of HE that can be written as a linear
combination of each RREF in W.



Theorem
This axiom is cryptomorphic to the other axiomatizations of strong
H-matroids, via

o V*=Ct

o V= (C"*

e C is the set of elements of V — {0} of minimal support, and

e C* is the set of elements of V* — {0}) of minimal support.

Further a morphism of hyperfields H — H’ induces a map of
H-vector sets and a map of H-covector sets from each H-matroid
to the pushforward H’-matroid.




Compare to the usual oriented matroid axioms

These say that V is closed un-
0cV } der scalar multiplication by el-
If X €V then —X €V ements of S.(This clearly holds

for all H-matroids.)

These say that if X, Y € V then
} certain elements of XHY are in
V.(Not so clear for H-matroids.)

Composition Axiom
Elimination Axiom

The only reason we know that our new S-vector axioms coincide
with the usual signed vector axioms for oriented matroids is
because both are known to give the cryptomorphism V* = Ct.

It would be good to have axioms (or even just results) similar to
the Composition and Elimination Axioms for general H-matroids.



Composition Axioms

Definition

A composition operation on a hyperfield H is a hyperoperation
o: HE x HE — 2H" _ {0} defined for all finite E such that for
every X1 and X, in HE

e ifY € X1 0 Xy then supp(Y) = supp(X1) Usupp(Xz), and
e if X1 L Zand Xo L Z then X10Xy L Z

One might also want to include the condition
0 X10Xo CXgHX,

If a hyperfield H admits a composition operation, then every
H-vector set is closed under that composition.



Example

If H=TR then we can define o by Xo Y = {X +€Y :e<
min(|X(e)/Y(e)| : e € supp(X) Nsupp(Y))}. Thisis a
composition on R-matroids that pushes forward to the usual
composition on oriented matroids.

Example

If H is the tropical hyperfield, then we can define a single-valued
composition o by

X(e) if X(e) > Y(e)
Y(e) otherwise

(XoY):{

Example

Finite fields do not admit composition operations. Thus there is no
axiomatization of H-covector sets over arbitrary H which includes
a Composition Axiom.




Elimination Axioms?

Elimination Conjecture

Let V be an H-vector set on elements E, e € E, and X, Y € V. If
0 € X(e)B Y(e) then thereisa Z € (XB Y)NV such that

Z(e) =0.

This conjecture is open.
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Elimination Conjecture

Let V be an H-vector set on elements E, e € E, and X, Y € V. If
0 € X(e)B Y(e) then thereisa Z € (XB Y)NV such that

Z(e) =0.

This conjecture is open.

Additive Continuum Conjecture

Let V be an H-vector set on elements E, e € E, and X, Y € V. If
a € X(e)B Y(e) then thereisa Z € (XHB Y) NV such that
Z(e) = a.

A counterexample to this has been found by Chris Eppolito.

Mortifying Conjecture
Let V be an H-vector set and X,Y € V. Then (XBY)NV # 0. J
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@ V¥*(M/A) D {V\A: X € V*(M),X(A) =0} but this is not
always an equality.

Q@ V'(M\A) D {V\A: X € V*(M)} but this is not always an
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We call a hyperfield H perfect if V* = V- for all H-matroids.
Matt Baker and Nathan Bowler showed that all doubly distributive
hyperfields are perfect.

Ting Su showed that for matroids over perfect hyperfields,
V*(M/A) = {V\A: X € V*(M), X(A) =0} (and thus also
V(M\A) = {V\A: X € V(M), X(A) =0})

Conjecture

For matroids over perfect hyperfields,
V*(M\A) = {V\A: X € V*(M)}




Topological Representation Theorems?

If a hyperfield H has a topology then this topology is inherited by
every H-vector set V C HE.

Example

S has the topology with open sets (), {+}, {—}, {0,+,—}.

A theorem of McCord tells us that the induced topology on the set
V* — {0} of nonzero covectors of a rank r oriented matroid has the
weak homotopy type of the order complex of V* — {0}. Hence a
weak version of the Topological Representation is: the finite space
V* — {0} has the weak homotopy type of S"1.




@ For every hyperfield H, the H-covector set of a rank r
H-matroid on r elements is isomorphic to H".

@ If M and M\ A have the same rank then we have a map
V(M) - {0} — V*(M\A) —{0}.

Can we characterize the topological hyperfields H for which this
map is a homotopy equivalence (and hence each V*(M) — {0} has
the homotopy type of H" — {0})?

Can we characterize the hyperfield morphisms which (like R — S)
induce weak homotopy equivalences of the nonzero covector sets of
matroids over these hyperfields?



