Vectors of matroids over hyperfields

Laura Anderson

Binghamton University

Why we love covectors

- Matroids over the sign hyperfield S are oriented matroids, and S-covector sets satisfy the Topological Representation Theorem.
- Matroids over a field F correspond to linear subspaces V of F^E, via:
 - Grassmann-Plücker function = Plücker coordinates
 - set C^* of *F*-cocircuits = set of elements of $V \{\mathbf{0}\}$ of minimal support
 - set C of F-circuits = set of elements of $V^{\perp} {\mathbf{0}}$ of minimal support

So for matroids over general hyperfields, we hope for ${\mathcal V}$ and ${\mathcal V}^*$ with

•
$$\mathcal{V}^* = V$$

• $\mathcal{V} = V^{\perp}$

We'll define H-vectors and H-covectors for matroids over a hyperfield H so that

- when H = S we get the usual signed vectors and signed covectors of an oriented matroid,
- when H is a field, and thus an H-matroid corresponds to a subspace V of H^E , we get $V^* = V$ and $V = V^⊥$.

This definition will capture the idea of an *H*-matroid being a "linear subspace of H^{E} ", in two senses:

- a linear subspace of a vector space is the span of a set of elements, and
- **2** a linear subspace of a vector space is the solution set to a system of linear equations $\mathbf{a} \cdot \mathbf{x} = 0$.

Naive linear algebra over hyperfields is a mess... A linear combination of $X_1, \ldots, X_k \in H^E$ is a set $\bigoplus_{i=1}^k a_i X_i \subseteq H^E$ with each $a_i \in H$. The span $\langle X_1, \ldots, X_k \rangle$ is the union of all linear combinations of the X_i .

Naive linear algebra over hyperfields is a mess...

A linear combination of $X_1, \ldots, X_k \in H^E$ is a set $\bigoplus_{i=1}^k a_i X_i \subseteq H^E$ with each $a_i \in H$. The span $\langle X_1, \ldots, X_k \rangle$ is the union of all linear combinations of the X_i .

Nothing about this works well: for instance, we can have $Y \in \langle X_1, \ldots, X_k \rangle$ but $\langle Y, X_1, \ldots, X_k \rangle \neq \langle X_1, \ldots, X_k \rangle$.

Naive linear algebra over hyperfields is a mess...

A linear combination of $X_1, \ldots, X_k \in H^E$ is a set $\bigoplus_{i=1}^k a_i X_i \subseteq H^E$ with each $a_i \in H$. The span $\langle X_1, \ldots, X_k \rangle$ is the union of all linear combinations of the X_i .

Nothing about this works well: for instance, we can have $Y \in \langle X_1, \ldots, X_k \rangle$ but $\langle Y, X_1, \ldots, X_k \rangle \neq \langle X_1, \ldots, X_k \rangle$.

The inner product $X \cdot Y$ of two elements of H^E is the hypersum $\bigoplus_{e \in E} X(e)Y(e)$. We say $X \perp Y$ if $0 \in X(e) \cdot Y(e)$.

Naive linear algebra over hyperfields is a mess...

A linear combination of $X_1, \ldots, X_k \in H^E$ is a set $\bigoplus_{i=1}^k a_i X_i \subseteq H^E$ with each $a_i \in H$. The span $\langle X_1, \ldots, X_k \rangle$ is the union of all linear combinations of the X_i .

Nothing about this works well: for instance, we can have $Y \in \langle X_1, \ldots, X_k \rangle$ but $\langle Y, X_1, \ldots, X_k \rangle \neq \langle X_1, \ldots, X_k \rangle$.

The inner product $X \cdot Y$ of two elements of H^E is the hypersum $\bigoplus_{e \in E} X(e)Y(e)$. We say $X \perp Y$ if $0 \in X(e) \cdot Y(e)$. This is also problematic: for instance, we can have $X, Y \perp Z$ but $X \boxplus Y \not\perp Z$. In general, sets S^{\perp} and $\langle S \rangle$ don't seem to have any nice

relationship to matroid theory.

However, *H*-matroids offer a less naive route to linear algebra over hyperfields.

Motivation: reduced row echelon forms

For a field F and rank r linear subspace V of F^n , V = row(A) for some $r \times n$ matrix $A = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ over F. V has an underlying matroid M. The columns of A constitute a vector arrangement realizing M in the usual sense. A is well-defined up to left multiplication by GL_r (i.e. up to change of coordinates for the vector arrangement).

Motivation: reduced row echelon forms

For a field F and rank r linear subspace V of F^n , V = row(A) for some $r \times n$ matrix $A = (\mathbf{v}_1, \dots, \mathbf{v}_n)$ over F. V has an underlying matroid M. The columns of A constitute a vector arrangement realizing M in the usual sense. A is well-defined up to left multiplication by GL_r (i.e. up to change of coordinates for the vector arrangement).

 $B = \{b_1, \dots, b_r\} \subseteq \{1, \dots, n\} \text{ is a basis for } M$ \Leftrightarrow there is a $G \in GL_r$ such that $(GA)_{b_1,\dots,b_r} = I$.

We call GA the **reduced row-echelon form** (RREF) for V with respect to B.

The set of F-cocircuits of the F-matroid corresponding to V is exactly the set of scalar multiples of rows appearing in RREFs.

Now consider a hyperfield H and an H-matroid M. For each basis B and each $a \in B$ there is a unique **fundamental** H-cocircuit $C_{a,B} \in C^*$, i.e. a unique H-cocircuit satisfying $C_{a,B}(a) = 1$ and $C_{a,B}(c) = 0$ for all $c \in B - \{a\}$.

Definition

For each basis B define the RREF of M with respect to B to be $\{C_{a,B} : a \in B\}$.

Equivalently, this is the unique set of elements of C^* arising as the rows of a matrix over H in RREF with respect to B.

Theorem

For an H-matroid M with H-circuit set C,

$$\mathcal{C}^{\perp} = igcap_{B} \langle \mathcal{C}_{\mathsf{a},B} : \mathsf{a} \in B
angle$$

where the intersection is over all bases of M.

We define

 $\mathcal{V}^* = \mathcal{C}^\perp$ = the set of elements of H^E which lie in the span of every RREF for M

and $\mathcal{V} = (\mathcal{C}^*)^{\perp}$.

H-vector axioms

Given $\emptyset \neq W \subseteq H^E$, define a **basis** to be a minimal $B \subseteq E$ such that $B \cap supp(X) \neq \emptyset$ for each $X \in W - \{\mathbf{0}\}$. Then for every basis B there is a **near-RREF** in W corresponding to B, i.e. a set $\{D_{a,B} : a \in B\} \subseteq W$ such that for every $a, c \in B$, $D_{a,B}(c) = 0$ iff $a \neq c$.

H-vector axioms

Given $\emptyset \neq W \subseteq H^E$, define a **basis** to be a minimal $B \subseteq E$ such that $B \cap supp(X) \neq \emptyset$ for each $X \in W - \{\mathbf{0}\}$. Then for every basis *B* there is a **near-RREF** in *W* corresponding to *B*, i.e. a set $\{D_{a,B} : a \in B\} \subseteq W$ such that for every $a, c \in B$, $D_{a,B}(c) = 0$ iff $a \neq c$.

The Vector Axiom

W is the H-vector set of an H-matroid if and only if *W* is exactly the intersection of the spans of all near-RREF's in *W*.

Equivalently, W has a RREF with respect to every basis B, and W is exactly the set of elements of H^E that can be written as a linear combination of each RREF in W.

Theorem

This axiom is cryptomorphic to the other axiomatizations of strong *H*-matroids, via

- $\mathcal{V}^* = \mathcal{C}^{\perp}$
- $\mathcal{V} = (\mathcal{C}^*)^{\perp}$
- $\bullet \ {\mathcal C}$ is the set of elements of ${\mathcal V}-\{0\}$ of minimal support, and
- \mathcal{C}^* is the set of elements of $\mathcal{V}^* \{0\}$) of minimal support.

Further a morphism of hyperfields $H \rightarrow H'$ induces a map of H-vector sets and a map of H-covector sets from each H-matroid to the pushforward H'-matroid.

Compare to the usual oriented matroid axioms

$$\left. \begin{array}{l} \mathbf{0} \in \mathcal{V} \\ \mathsf{lf} \ X \in \mathcal{V} \ \mathsf{then} \ -X \in \mathcal{V} \end{array} \right\}$$

Composition Axiom Elimination Axiom

These say that \mathcal{V} is closed under scalar multiplication by elements of \mathbb{S} .(This clearly holds for all *H*-matroids.)

These say that if $X, Y \in \mathcal{V}$ then certain elements of $X \boxplus Y$ are in \mathcal{V} .(Not so clear for *H*-matroids.)

The only reason we know that our new S-vector axioms coincide with the usual signed vector axioms for oriented matroids is because both are known to give the cryptomorphism $\mathcal{V}^* = \mathcal{C}^{\perp}$. It would be good to have axioms (or even just results) similar to the Composition and Elimination Axioms for general *H*-matroids.

Composition Axioms

Definition

A composition operation on a hyperfield H is a hyperoperation $\circ: H^E \times H^E \to 2^{H^E} - \{\emptyset\}$ defined for all finite E such that for every X_1 and X_2 in H^E

- if $Y \in X_1 \circ X_2$ then $supp(Y) = supp(X_1) \cup supp(X_2)$, and
- if $X_1 \perp Z$ and $X_2 \perp Z$ then $X_1 \circ X_2 \perp Z$

One might also want to include the condition

• $X_1 \circ X_2 \subseteq X_1 \boxplus X_2$

If a hyperfield H admits a composition operation, then every H-vector set is closed under that composition.

Example

If $H = \mathbb{R}$ then we can define \circ by $X \circ Y = \{X + \epsilon Y : \epsilon < \min(|X(e)/Y(e)| : e \in supp(X) \cap supp(Y))\}$. This is a composition on \mathbb{R} -matroids that pushes forward to the usual composition on oriented matroids.

Example

If H is the tropical hyperfield, then we can define a single-valued composition \circ by

$$(X \circ Y) = egin{cases} X(e) & ext{ if } X(e) \geq Y(e) \ Y(e) & ext{ otherwise} \end{cases}$$

Example

Finite fields do not admit composition operations. Thus there is no axiomatization of H-covector sets over arbitrary H which includes a Composition Axiom.

Elimination Axioms?

Elimination Conjecture

Let \mathcal{V} be an H-vector set on elements E, $e \in E$, and $X, Y \in \mathcal{V}$. If $0 \in X(e) \boxplus Y(e)$ then there is a $Z \in (X \boxplus Y) \cap \mathcal{V}$ such that Z(e) = 0.

This conjecture is open.

Elimination Axioms?

Elimination Conjecture

Let \mathcal{V} be an H-vector set on elements E, $e \in E$, and $X, Y \in \mathcal{V}$. If $0 \in X(e) \boxplus Y(e)$ then there is a $Z \in (X \boxplus Y) \cap \mathcal{V}$ such that Z(e) = 0.

This conjecture is open.

Additive Continuum Conjecture

Let \mathcal{V} be an H-vector set on elements $E, e \in E$, and $X, Y \in \mathcal{V}$. If $\alpha \in X(e) \boxplus Y(e)$ then there is a $Z \in (X \boxplus Y) \cap \mathcal{V}$ such that $Z(e) = \alpha$.

A counterexample to this has been found by Chris Eppolito.

Elimination Axioms?

Elimination Conjecture

Let \mathcal{V} be an H-vector set on elements E, $e \in E$, and $X, Y \in \mathcal{V}$. If $0 \in X(e) \boxplus Y(e)$ then there is a $Z \in (X \boxplus Y) \cap \mathcal{V}$ such that Z(e) = 0.

This conjecture is open.

Additive Continuum Conjecture

Let \mathcal{V} be an H-vector set on elements E, $e \in E$, and $X, Y \in \mathcal{V}$. If $\alpha \in X(e) \boxplus Y(e)$ then there is a $Z \in (X \boxplus Y) \cap \mathcal{V}$ such that $Z(e) = \alpha$.

A counterexample to this has been found by Chris Eppolito.

Mortifying Conjecture

Let \mathcal{V} be an H-vector set and $X, Y \in \mathcal{V}$. Then $(X \boxplus Y) \cap \mathcal{V} \neq \emptyset$.

Surprises

$\ \, {\cal V}^*\supseteq {\cal V}^\perp \ \, \mbox{but this is not always an equality.}$

Surprises

- $\label{eq:V*} {\bf 0} \ {\cal V}^* \supseteq {\cal V}^\perp \mbox{ but this is not always an equality.}$
- ② $\mathcal{V}^*(M/A) \supseteq \{V \setminus A : X \in \mathcal{V}^*(M), X(A) = 0\}$ but this is not always an equality.
- $\mathcal{V}^*(M \setminus A) \supseteq \{ V \setminus A : X \in \mathcal{V}^*(M) \}$ but this is not always an equality.

Surprises

- $\label{eq:V*} {\bf 0} \ {\cal V}^* \supseteq {\cal V}^\perp \mbox{ but this is not always an equality.}$
- $\mathcal{V}^*(M \setminus A) \supseteq \{V \setminus A : X \in \mathcal{V}^*(M)\}$ but this is not always an equality.

We call a hyperfield *H* perfect if $\mathcal{V}^* = \mathcal{V}^{\perp}$ for all *H*-matroids. Matt Baker and Nathan Bowler showed that all doubly distributive hyperfields are perfect.

Ting Su showed that for matroids over perfect hyperfields, $\mathcal{V}^*(M/A) = \{V \setminus A : X \in \mathcal{V}^*(M), X(A) = 0\}$ (and thus also $\mathcal{V}(M \setminus A) = \{V \setminus A : X \in \mathcal{V}(M), X(A) = 0\}$)

Conjecture

For matroids over perfect hyperfields, $\mathcal{V}^*(M \setminus A) = \{ V \setminus A : X \in \mathcal{V}^*(M) \}$

Topological Representation Theorems?

If a hyperfield H has a topology then this topology is inherited by every H-vector set $\mathcal{V} \subseteq H^E$.

Example

 \mathbb{S} has the topology with open sets \emptyset , $\{+\}$, $\{-\}$, $\{0, +, -\}$. A theorem of McCord tells us that the induced topology on the set $\mathcal{V}^* - \{\mathbf{0}\}$ of nonzero covectors of a rank *r* oriented matroid has the weak homotopy type of the order complex of $\mathcal{V}^* - \{\mathbf{0}\}$. Hence a weak version of the Topological Representation is: the finite space $\mathcal{V}^* - \{\mathbf{0}\}$ has the weak homotopy type of S^{r-1} .

- For every hyperfield H, the H-covector set of a rank r H-matroid on r elements is isomorphic to H^r.
- If *M* and *M**A* have the same rank then we have a map $\mathcal{V}^*(M) \{\mathbf{0}\} \rightarrow \mathcal{V}^*(M \setminus A) \{\mathbf{0}\}.$

Can we characterize the topological hyperfields H for which this map is a homotopy equivalence (and hence each $\mathcal{V}^*(M) - \{\mathbf{0}\}$ has the homotopy type of $H^r - \{0\}$?

Can we characterize the hyperfield morphisms which (like $\mathbb{R} \to \mathbb{S}$) induce weak homotopy equivalences of the nonzero covector sets of matroids over these hyperfields?