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Why we love covectors

1 Matroids over the sign hyperfield S are oriented matroids, and
S-covector sets satisfy the Topological Representation
Theorem.

2 Matroids over a field F correspond to linear subspaces V of
FE , via:

Grassmann-Plücker function = Plücker coordinates
set C∗ of F -cocircuits = set of elements of V −{0} of minimal
support
set C of F -circuits = set of elements of V⊥ − {0} of minimal
support

So for matroids over general hyperfields, we hope for V and
V∗ with

V∗ = V
V = V⊥



We’ll define H-vectors and H-covectors for matroids over a
hyperfield H so that

1 when H = S we get the usual signed vectors and signed
covectors of an oriented matroid,

2 when H is a field, and thus an H-matroid corresponds to a
subspace V of HE , we get V∗ = V and V = V⊥.

This definition will capture the idea of an H-matroid being a
”linear subspace of HE”, in two senses:

1 a linear subspace of a vector space is the span of a set of
elements, and

2 a linear subspace of a vector space is the solution set to a
system of linear equations a · x = 0.



Linear algebra over hyperfields?

Naive linear algebra over hyperfields is a mess...
A linear combination of X1, . . . ,Xk ∈ HE is a set �k

i=1 aiXi ⊆ HE

with each ai ∈ H. The span 〈X1, . . . ,Xk〉 is the union of all linear
combinations of the Xi .

Nothing about this works well: for instance, we can have
Y ∈ 〈X1, . . . ,Xk〉 but 〈Y ,X1, . . . ,Xk〉 6= 〈X1, . . . ,Xk〉.

The inner product X · Y of two elements of HE is the hypersum

�e∈E X (e)Y (e). We say X ⊥ Y if 0 ∈ X (e) · Y (e).
This is also problematic: for instance, we can have X ,Y ⊥ Z but
X � Y 6⊥ Z .
In general, sets S⊥ and 〈S〉 don’t seem to have any nice
relationship to matroid theory.
However, H-matroids offer a less naive route to linear algebra over
hyperfields.
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Motivation: reduced row echelon forms

For a field F and rank r linear subspace V of F n, V = row(A) for
some r × n matrix A = (v1, . . . , vn) over F .
V has an underlying matroid M. The columns of A constitute a
vector arrangement realizing M in the usual sense.
A is well-defined up to left multiplication by GLr (i.e. up to change
of coordinates for the vector arrangement).

B = {b1, . . . , br} ⊆ {1, . . . , n} is a basis for M
⇔ there is a G ∈ GLr such that (GA)b1,...,br = I .

We call GA the reduced row-echelon form (RREF) for V with
respect to B.
The set of F -cocircuits of the F -matroid corresponding to V is
exactly the set of scalar multiples of rows appearing in RREFs.
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Now consider a hyperfield H and an H-matroid M.
For each basis B and each a ∈ B there is a unique fundamental
H-cocircuit Ca,B ∈ C∗, i.e. a unique H-cocircuit satisfying
Ca,B(a) = 1 and Ca,B(c) = 0 for all c ∈ B − {a}.

Definition

For each basis B define the RREF of M with respect to B to be
{Ca,B : a ∈ B}.

Equivalently, this is the unique set of elements of C∗ arising as the
rows of a matrix over H in RREF with respect to B.



Theorem

For an H-matroid M with H-circuit set C,

C⊥ =
⋂
B

〈Ca,B : a ∈ B〉

where the intersection is over all bases of M.

We define

V∗ = C⊥

= the set of elements of HE which lie in the span

of every RREF for M

and V = (C∗)⊥.



H-vector axioms

Given ∅ 6=W ⊆ HE , define a basis to be a minimal B ⊆ E such
that B ∩ supp(X ) 6= ∅ for each X ∈ W − {0}.
Then for every basis B there is a near-RREF in W corresponding
to B, i.e. a set {Da,B : a ∈ B} ⊆ W such that for every a, c ∈ B,
Da,B(c) = 0 iff a 6= c .

The Vector Axiom

W is the H-vector set of an H-matroid if and only if W is exactly
the intersection of the spans of all near-RREF’s in W.

Equivalently, W has a RREF with respect to every basis B, and W
is exactly the set of elements of HE that can be written as a linear
combination of each RREF in W.
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Theorem

This axiom is cryptomorphic to the other axiomatizations of strong
H-matroids, via

V∗ = C⊥

V = (C∗)⊥

C is the set of elements of V − {0} of minimal support, and

C∗ is the set of elements of V∗ − {0}) of minimal support.

Further a morphism of hyperfields H → H ′ induces a map of
H-vector sets and a map of H-covector sets from each H-matroid
to the pushforward H ′-matroid.



Compare to the usual oriented matroid axioms

0 ∈ V
If X ∈ V then −X ∈ V

} These say that V is closed un-
der scalar multiplication by el-
ements of S.(This clearly holds
for all H-matroids.)

Composition Axiom
Elimination Axiom

} These say that if X ,Y ∈ V then
certain elements of X �Y are in
V.(Not so clear for H-matroids.)

The only reason we know that our new S-vector axioms coincide
with the usual signed vector axioms for oriented matroids is
because both are known to give the cryptomorphism V∗ = C⊥.
It would be good to have axioms (or even just results) similar to
the Composition and Elimination Axioms for general H-matroids.



Composition Axioms

Definition

A composition operation on a hyperfield H is a hyperoperation
◦ : HE × HE → 2H

E − {∅} defined for all finite E such that for
every X1 and X2 in HE

if Y ∈ X1 ◦ X2 then supp(Y ) = supp(X1) ∪ supp(X2), and

if X1 ⊥ Z and X2 ⊥ Z then X1 ◦ X2 ⊥ Z

One might also want to include the condition

X1 ◦ X2 ⊆ X1 � X2

If a hyperfield H admits a composition operation, then every
H-vector set is closed under that composition.



Example

If H = R then we can define ◦ by X ◦ Y = {X + εY : ε <
min(|X (e)/Y (e)| : e ∈ supp(X ) ∩ supp(Y ))}. This is a
composition on R-matroids that pushes forward to the usual
composition on oriented matroids.

Example

If H is the tropical hyperfield, then we can define a single-valued
composition ◦ by

(X ◦ Y ) =

{
X (e) if X (e) ≥ Y (e)

Y (e) otherwise

Example

Finite fields do not admit composition operations. Thus there is no
axiomatization of H-covector sets over arbitrary H which includes
a Composition Axiom.



Elimination Axioms?

Elimination Conjecture

Let V be an H-vector set on elements E , e ∈ E , and X ,Y ∈ V. If
0 ∈ X (e) � Y (e) then there is a Z ∈ (X � Y ) ∩ V such that
Z (e) = 0.

This conjecture is open.

Additive Continuum Conjecture

Let V be an H-vector set on elements E , e ∈ E , and X ,Y ∈ V. If
α ∈ X (e) � Y (e) then there is a Z ∈ (X � Y ) ∩ V such that
Z (e) = α.

A counterexample to this has been found by Chris Eppolito.

Mortifying Conjecture

Let V be an H-vector set and X ,Y ∈ V. Then (X � Y ) ∩ V 6= ∅.
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Surprises

1 V∗ ⊇ V⊥ but this is not always an equality.

2 V∗(M/A) ⊇ {V \A : X ∈ V∗(M),X (A) = 0} but this is not
always an equality.

3 V∗(M\A) ⊇ {V \A : X ∈ V∗(M)} but this is not always an
equality.

We call a hyperfield H perfect if V∗ = V⊥ for all H-matroids.
Matt Baker and Nathan Bowler showed that all doubly distributive
hyperfields are perfect.
Ting Su showed that for matroids over perfect hyperfields,
V∗(M/A) = {V \A : X ∈ V∗(M),X (A) = 0} (and thus also
V(M\A) = {V \A : X ∈ V(M),X (A) = 0})

Conjecture

For matroids over perfect hyperfields,
V∗(M\A) = {V \A : X ∈ V∗(M)}
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Topological Representation Theorems?

If a hyperfield H has a topology then this topology is inherited by
every H-vector set V ⊆ HE .

Example

S has the topology with open sets ∅, {+}, {−}, {0,+,−}.
A theorem of McCord tells us that the induced topology on the set
V∗ −{0} of nonzero covectors of a rank r oriented matroid has the
weak homotopy type of the order complex of V∗ − {0}. Hence a
weak version of the Topological Representation is: the finite space
V∗ − {0} has the weak homotopy type of S r−1.



1 For every hyperfield H, the H-covector set of a rank r
H-matroid on r elements is isomorphic to H r .

2 If M and M\A have the same rank then we have a map
V∗(M)− {0} → V ∗(M\A)− {0}.

Can we characterize the topological hyperfields H for which this
map is a homotopy equivalence (and hence each V∗(M)− {0} has
the homotopy type of H r − {0})?

Can we characterize the hyperfield morphisms which (like R→ S)
induce weak homotopy equivalences of the nonzero covector sets of
matroids over these hyperfields?


