On the existence of algebraic approximations of compact Kähler manifolds

Hsueh-Yung Lin

December 17th, 2018

Univerität Bonn

Plan

- 1 The Kodaira problem
- 2 Compact Kähler threefolds
- 3 Fibrations in abelian varieties
- 4 Smooth isotrivial fibrations in K3 surfaces or tori
- 5 Uniruled threefolds
- 6 Open problems

Theorem (Kodaira '54)

Let X be a compact complex manifold. Equivalent statements :

Theorem (Kodaira '54)

Let X be a compact complex manifold. Equivalent statements :

• X is projective, namely a complex submanifold of a projective space.

Theorem (Kodaira '54)

Let X be a compact complex manifold. Equivalent statements :

- X is projective, namely a complex submanifold of a projective space.
- There exists a Kähler form ω on X such that $[\omega] \in H^2(X, \mathbb{Q})$.

Theorem (Kodaira '54)

Let X be a compact complex manifold. Equivalent statements :

- X is projective, namely a complex submanifold of a projective space.
- There exists a Kähler form ω on X such that $[\omega] \in H^2(X, \mathbb{Q})$.

Definition

A Kähler form on X is a real 2-form ω of type (1,1) which is closed and positive.

Theorem (Kodaira '54)

Let X be a compact complex manifold. Equivalent statements :

- X is projective, namely a complex submanifold of a projective space.
- There exists a Kähler form ω on X such that $[\omega] \in H^2(X, \mathbb{Q})$.

Definition

A Kähler form on X is a real 2-form ω of type (1,1) which is closed and positive. A Kähler manifold is a complex manifold with a Kähler form.

Small deformations:

Small deformations:

Kähler manifolds → Kähler.

Small deformations:

- Kähler manifolds → Kähler.
- Projectives varieties \rightsquigarrow NOT necessarily projective.

Small deformations:

- Kähler manifolds → Kähler.
- Projectives varieties → NOT necessarily projective.
 (e.g. deformations of algebraic complex tori, K3 surfaces, etc.)

Small deformations:

- Kähler manifolds → Kähler.
- Projectives varieties → NOT necessarily projective.
 (e.g. deformations of algebraic complex tori, K3 surfaces, etc.)

Definition (Algebraic approximations)

Let X be a compact Kähler manifold. An algebraic approximation of X is a deformation

$$\Pi: \mathcal{X} \to \Delta$$

of X such that the subset parameterizing projective fibers is dense in Δ .

Question (The Kodaira problem)

Does a compact Kähler manifold always have an algebraic approximation?

K. Kodaira: On compact analytic surfaces. II, III. Ann. of Math. (2) 77 (1963), 563-626; ibid., 78:1-40, 1963. N. Buchdahl: Algebraic deformations of compact Kähler surfaces II. Math. Z., 258:493-498, 2008.

C. Voisin: On the homotopy types of compact Kähler and complex projective manifolds. Invent. Math., 157:329–343, 2004.

Question (The Kodaira problem)

Does a compact Kähler manifold always have an algebraic approximation?

Known results:

• Curves: Yes (compact Kähler = projective).

K. Kodaira: On compact analytic surfaces. II, III. Ann. of Math. (2) 77 (1963), 563-626; ibid., 78:1-40, 1963. N. Buchdahl: Algebraic deformations of compact Kähler surfaces II. Math. Z., 258:493-498, 2008.

C. Voisin: On the homotopy types of compact Kähler and complex projective manifolds. Invent. Math., 157:329–343, 2004.

Question (The Kodaira problem)

Does a compact Kähler manifold always have an algebraic approximation?

Known results:

- Curves: Yes (compact Kähler = projective).
- Surfaces: Yes (Kodaira '63); (Buchdahl '08).

K. Kodaira: On compact analytic surfaces. II, III. Ann. of Math. (2) 77 (1963), 563-626; ibid., 78:1-40, 1963. N. Buchdahl: Algebraic deformations of compact Kähler surfaces II. Math. Z., 258:493-498, 2008.

C. Voisin: On the homotopy types of compact Kähler and complex projective manifolds. Invent. Math., 157:329–343, 2004.

Question (The Kodaira problem)

Does a compact Kähler manifold always have an algebraic approximation?

Known results:

- Curves: Yes (compact Kähler = projective).
- Surfaces: Yes (Kodaira '63); (Buchdahl '08).
- dim ≥ 4 : No (Voisin '04); (Oguiso '08)
 ∃ effective homotopical obstruction for being projective.

K. Kodaira: On compact analytic surfaces. II, III. Ann. of Math. (2) 77 (1963), 563-626; ibid., 78:1-40, 1963. N. Buchdahl: Algebraic deformations of compact Kähler surfaces II. Math. Z., 258:493-498, 2008.

C. Voisin: On the homotopy types of compact Kähler and complex projective manifolds. Invent. Math., 157:329-343, 2004.

Other positive results:

• Some conic bundles over a surface. (Schrack '11)

F. Schrack. Algebraic approximation of Kähler threefolds. Math. Nachr., 285(11-12):1486-1499, 2012.

J. Cao. On the approximation of Kähler manifolds by algebraic varieties. Math. Ann., 363(1-2):393-422, 2015.

B. Claudon: Smooth family of tori and linear Kähler groups. Annales de la Faculté des Sciences de Toulouse, 2016.

P. Graf: Algebraic approximation of Kähler threefolds of Kodaira dimension zero. Math. Annalen, 2017. L.: Algebraic approximations of compact Kähler threefolds, arXiv:1710.01083, 2018.

^{...} Algebraic approximations of compact Namer timeeroids, arXiv .1710.01003, 2010

Other positive results:

- Some conic bundles over a surface. (Schrack '11)
- Compact Kähler manifolds with some "semi-positive" conditions. (J. Cao '13)

F. Schrack, Algebraic approximation of Kähler threefolds, Math. Nachr., 285(11-12):1486-1499, 2012.

J. Cao. On the approximation of Kähler manifolds by algebraic varieties. Math. Ann., 363(1-2):393-422, 2015. B. Claudon: Smooth family of tori and linear Kähler groups. Annales de la Faculté des Sciences de Toulouse, 2016.

P. Graf: Algebraic approximation of Kähler threefolds of Kodaira dimension zero. Math. Annalen, 2017. L.: Algebraic approximations of compact Kähler threefolds, arXiv:1710.01083, 2018.

Other positive results:

- Some conic bundles over a surface. (Schrack '11)
- Compact Kähler manifolds with some "semi-positive" conditions. (J. Cao '13)
- Smooth fibrations in ab. var. over a projective manifold. (CCE, Claudon '16)

F. Schrack, Algebraic approximation of Kähler threefolds, Math. Nachr., 285(11-12):1486-1499, 2012.

J. Cao. On the approximation of Kähler manifolds by algebraic varieties. Math. Ann., 363(1-2):393-422, 2015. B. Claudon: Smooth family of tori and linear Kähler groups. Annales de la Faculté des Sciences de Toulouse, 2016.

P. Graf: Algebraic approximation of Kähler threefolds of Kodaira dimension zero. Math. Annalen, 2017. L.: Algebraic approximations of compact Kähler threefolds, arXiv:1710.01083, 2018.

Other positive results:

- Some conic bundles over a surface. (Schrack '11)
- Compact Kähler manifolds with some "semi-positive" conditions. (J. Cao '13)
- Smooth fibrations in ab. var. over a projective manifold. (CCE, Claudon '16)
- Minimal threefolds with $\kappa = 0$. (Graf '17)

F. Schrack, Algebraic approximation of Kähler threefolds, Math. Nachr., 285(11-12):1486-1499, 2012.

J. Cao. On the approximation of Kähler manifolds by algebraic varieties. Math. Ann., 363(1-2):393-422, 2015. B. Claudon: Smooth family of tori and linear Kähler groups. Annales de la Faculté des Sciences de Toulouse, 2016.

P. Graf: Algebraic approximation of Kähler threefolds of Kodaira dimension zero. Math. Annalen, 2017. L.: Algebraic approximations of compact Kähler threefolds, arXiv:1710.01083, 2018.

Other positive results:

- Some conic bundles over a surface. (Schrack '11)
- Compact Kähler manifolds with some "semi-positive" conditions. (J. Cao '13)
- Smooth fibrations in ab. var. over a projective manifold. (CCE, Claudon '16)
- Minimal threefolds with $\kappa = 0$. (Graf '17)

Conjectural positive result:

Every minimal compact Kähler variety. (Peternell)

F. Schrack, Algebraic approximation of Kähler threefolds, Math. Nachr., 285(11-12):1486-1499, 2012.

J. Cao. On the approximation of Kähler manifolds by algebraic varieties. Math. Ann., 363(1-2):393-422, 2015. B. Claudon: Smooth family of tori and linear Kähler groups. Annales de la Faculté des Sciences de Toulouse, 2016.

P. Graf: Algebraic approximation of Kähler threefolds of Kodaira dimension zero. Math. Annalen, 2017.

L.: Algebraic approximations of compact Kähler threefolds, arXiv:1710.01083, 2018.

Other positive results:

- Some conic bundles over a surface. (Schrack '11)
- Compact Kähler manifolds with some "semi-positive" conditions. (J. Cao '13)
- Smooth fibrations in ab. var. over a projective manifold. (CCE, Claudon '16)
- Minimal threefolds with $\kappa = 0$. (Graf '17)

Conjectural positive result:

Every minimal compact Kähler variety. (Peternell)

Theorem (- '18)

Every compact Kähler threefold has an algebraic approximation.

F. Schrack, Algebraic approximation of Kähler threefolds, Math. Nachr., 285(11-12):1486-1499, 2012.

J. Cao. On the approximation of Kähler manifolds by algebraic varieties. Math. Ann., 363(1-2):393-422, 2015. B. Claudon: Smooth family of tori and linear Kähler groups. Annales de la Faculté des Sciences de Toulouse, 2016.

P. Graf: Algebraic approximation of Kähler threefolds of Kodaira dimension zero. Math. Annalen, 2017.

L.: Algebraic approximations of compact Kähler threefolds, arXiv:1710.01083, 2018.

X: compact complex manifold.

Definition (Algebraic dimension)

The algebraic dimension a(X) of X is defined by

$$a(X) = \operatorname{trdeg}(\mathcal{M}(X)).$$

A compact complex manifold X is Moishezon if $a(X) = \dim X$.

X: compact complex manifold.

Definition (Algebraic dimension)

The algebraic dimension a(X) of X is defined by

$$a(X) = \operatorname{trdeg}(\mathcal{M}(X)).$$

A compact complex manifold X is Moishezon if $a(X) = \dim X$.

Theorem (Moishezon '66)

X is projective $\iff X$ is Kähler and Moishezon.

X: compact complex manifold.

Definition (Algebraic dimension)

The algebraic dimension a(X) of X is defined by

$$a(X) = \operatorname{trdeg}(\mathcal{M}(X)).$$

A compact complex manifold X is Moishezon if $a(X) = \dim X$.

Theorem (Moishezon '66)

X is projective \iff X is Kähler and Moishezon.

For non-projective compact Kähler manifolds, $a(X) \leq \dim X - 1$.

Theorem (- '18)

Every compact Kähler manifold X with $a(X) = \dim X - 1$ has an algebraic approximation.

L.: Algebraic approximations of compact Kähler manifolds of algebraic codimension 1. arXiv:1809.03344, 2018. B. Claudon, A. Höring, L.: The fundamental group of compact Kähler threefolds. arXiv:1612.04224, 2018.

Theorem (- '18)

Every compact Kähler manifold X with $a(X) = \dim X - 1$ has an algebraic approximation.

Theorem (Variant)

Every compact Kähler manifold bimeromorphic to the total space of an elliptic fibration $f: X' \to B$ over a projective variety has an algebraic approximation.

L.: Algebraic approximations of compact Kähler manifolds of algebraic codimension 1. arXiv:1809.03344, 2018.
 B. Claudon, A. Höring, L.: The fundamental group of compact Kähler threefolds. arXiv:1612.04224, 2018.

Theorem (- '18)

Every compact Kähler manifold X with $a(X) = \dim X - 1$ has an algebraic approximation.

Theorem (Variant)

Every compact Kähler manifold bimeromorphic to the total space of an elliptic fibration $f: X' \to B$ over a projective variety has an algebraic approximation.

Claudon, Höring, L. ('18): Bimeromorphic version.

L.: Algebraic approximations of compact Kähler manifolds of algebraic codimension 1. arXiv:1809.03344, 2018.
 B. Claudon, A. Höring, L.: The fundamental group of compact Kähler threefolds. arXiv:1612.04224, 2018.

Corollary

Let X be a compact complex variety with at worst rational singularities and bimeromorphic to a compact Kähler manifold. If $\dim X = 3$ or $a(X) = \dim X - 1$, then X has an algebraic approximation.

L.: Algebraic approximations of compact Kähler threefolds, arXiv:1710.01083, 2018.

Z. Ran. Stability of certain holomorphic maps. J. Differential Geom., 34(1):37–47, 1991.

B. Claudon, A. Höring, L.: The fundamental group of compact Kähler threefolds. arXiv:1612.04224, 2018.

Corollary

Let X be a compact complex variety with at worst rational singularities and bimeromorphic to a compact Kähler manifold. If $\dim X = 3$ or $a(X) = \dim X - 1$, then X has an algebraic approximation.

Proof : $f: \tilde{X} \to X$ bimeromorphic morphism with \tilde{X} compact Kähler manifold.

L.: Algebraic approximations of compact Kähler threefolds, arXiv:1710.01083, 2018.

Z. Ran. Stability of certain holomorphic maps. J. Differential Geom., 34(1):37–47, 1991.

B. Claudon, A. Höring, L.: The fundamental group of compact Kähler threefolds. arXiv:1612.04224, 2018.

Corollary

Let X be a compact complex variety with at worst rational singularities and bimeromorphic to a compact Kähler manifold. If $\dim X = 3$ or $a(X) = \dim X - 1$, then X has an algebraic approximation.

Proof : $f: \tilde{X} \to X$ bimeromorphic morphism with \tilde{X} compact Kähler manifold.

$$f_*\mathcal{O}_{ ilde{X}}=\mathcal{O}_X$$
 and $R^1f_*\mathcal{O}_{ ilde{X}}=0,$

so deformations of $\tilde{X} \rightsquigarrow \text{deformations of } f$. (Ran)

L.: Algebraic approximations of compact Kähler threefolds, arXiv:1710.01083, 2018

Z. Ran. Stability of certain holomorphic maps. J. Differential Geom., 34(1):37-47, 1991. B. Claudon, A. Höring, L.: The fundamental group of compact Kähler threefolds. arXiv:1612.04224, 2018.

Corollary

Let X be a compact complex variety with at worst rational singularities and bimeromorphic to a compact Kähler manifold. If $\dim X = 3$ or $a(X) = \dim X - 1$, then X has an algebraic approximation.

Proof : $f: \tilde{X} \to X$ bimeromorphic morphism with \tilde{X} compact Kähler manifold.

$$f_*\mathcal{O}_{ ilde{X}}=\mathcal{O}_X$$
 and $R^1f_*\mathcal{O}_{ ilde{X}}=0,$

so deformations of $\tilde{X} \leadsto$ deformations of f. (Ran)

Corollary (Fundamental groups : Claudon, Höring, L. ('18))

Invariants of X that are preserved under small deformations (e.g. the fundamental group and the Hodge diamond) can be realized by some projective manifold.

L.: Algebraic approximations of compact Kähler threefolds, arXiv: 1710.01083, 2018.
 Z. Ran. Stability of certain holomorphic maps. J. Differential Geom., 34(1):37-47, 1991.

B. Claudon, A. Höring, L.: The fundamental group of compact Kähler threefolds. arXiv:1612.04224, 2018.

X: compact Kähler manifold.

X: compact Kähler manifold. Find

- lacktriangledown a bimeromorphic model $X \leftarrow --- \rightarrow X'$,
- 2 an alg. app. of X' which induces a deformation of $X \leftarrow \cdots \rightarrow X'$.

 $X: \mathsf{compact}\ \mathsf{K\"{a}hler}\ \mathsf{manifold}.\ X \ {\mbox{\leftarrow}---\mbox{\rightarrow}}\ X' \ \mathsf{bimeromorphic}\ \mathsf{model}.$

X: compact Kähler manifold. $X \leftarrow --- \rightarrow X'$ bimeromorphic model.

When is a deformation of X' induces a deformation of X?

X: compact Kähler manifold. $X \leftarrow \cdots \rightarrow X'$ bimeromorphic model.

When is a deformation of X' induces a deformation of X?

Resolution : $X \leftarrow \tilde{X} \xrightarrow{\nu} X'$ with \tilde{X} smooth.

X: compact Kähler manifold. $X \leftarrow --- \rightarrow X'$ bimeromorphic model.

When is a deformation of X' induces a deformation of X?

Resolution : $X \leftarrow \tilde{X} \xrightarrow{\nu} X'$ with \tilde{X} smooth.

Let $Y\subset X'$ such that $\nu_{|X'\setminus Y|}^{-1}$ is isomorphic onto its image.

X: compact Kähler manifold. $X \leftarrow \cdots \rightarrow X'$ bimeromorphic model.

When is a deformation of X' induces a deformation of X?

Resolution : $X \leftarrow \tilde{X} \xrightarrow{\nu} X'$ with \tilde{X} smooth.

Let $Y\subset X'$ such that $\nu_{|X'\setminus Y}^{-1}$ is isomorphic onto its image.

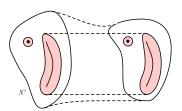
X: compact Kähler manifold. $X \leftarrow --- \rightarrow X'$ bimeromorphic model.

When is a deformation of X' induces a deformation of X?

Resolution : $X \leftarrow \tilde{X} \xrightarrow{\nu} X'$ with \tilde{X} smooth.

Let $Y \subset X'$ such that $\nu_{|X' \setminus Y|}^{-1}$ is isomorphic onto its image.

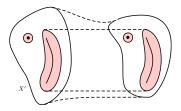
A deformation of X' in which a neighborhood of Y deforms trivially



induces a deformation of \tilde{X} , therefore (Ran) a deformation of X.

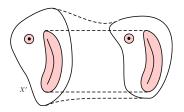
Definition (Locally trivial deformations)

Let $Y \subset X$ be a subvariety. A deformation $\Pi: \mathcal{X} \to \Delta$ of X is Y-locally trivial if a neighborhood of Y deforms trivially in Π along Δ .



Definition (Locally trivial deformations)

Let $Y \subset X$ be a subvariety. A deformation $\Pi: \mathcal{X} \to \Delta$ of X is Y-locally trivial if a neighborhood of Y deforms trivially in Π along Δ .



X: compact Kähler manifold. $X \leftarrow \cdots \rightarrow X'$ bimeromorphic model.

Lemma

If X' is normal and has a Y-locally trivial algebraic approximation for every subvariety $Y \subset X'$ with $\dim Y \leq \dim X - 2$, then X has an algebraic approximation.

X: compact Kähler manifold. $\nu: X \dashrightarrow X'$ a bimeromorphic model.

J. Bingener: On the existence of analytic contractions. Invent.Math., 64(1):25-67, 1981.

X: compact Kähler manifold. $\nu: X \longrightarrow X'$ a bimeromorphic model.

 $Y\subset X'$: a subvariety such that $u_{|X'\setminus Y|}^{-1}$ is an isomorphism onto its image.

J. Bingener: On the existence of analytic contractions. Invent.Math., 64(1):25-67, 1981.

X: compact Kähler manifold. $\nu: X \dashrightarrow X'$ a bimeromorphic model.

 $Y\subset X'$: a subvariety such that $u^{-1}_{|X'\setminus Y|}$ is an isomorphism onto its image.

Proposition

If X' has an algebraic approximation $\Pi: \mathcal{X}' \to \Delta$ such that the formal completion \hat{Y} of X' along Y deforms trivially in Π , then X has an algebraic approximation.

J. Bingener: On the existence of analytic contractions. Invent.Math., 64(1):25-67, 1981.

X: compact Kähler manifold. $\nu: X \dashrightarrow X'$ a bimeromorphic model.

 $Y\subset X'$: a subvariety such that $u_{|X'\setminus Y|}^{-1}$ is an isomorphism onto its image.

Proposition

If X' has an algebraic approximation $\Pi: \mathcal{X}' \to \Delta$ such that the formal completion \hat{Y} of X' along Y deforms trivially in Π , then X has an algebraic approximation.

Proof based on Ancona-Tomassini-Bingener's work on formal modifications.

J. Bingener: On the existence of analytic contractions. Invent.Math., 64(1):25-67, 1981.

Main results reduced to the following:

X: compact Kähler manifold.

Main results reduced to the following:

X: compact Kähler manifold.

• When $\dim X = 3$ and $\kappa(X) \leq 1$:

Main results reduced to the following:

X: compact Kähler manifold.

• When $\dim X = 3$ and $\kappa(X) < 1$:

Find $\nu: X \longleftrightarrow X'$ such that X' is normal

and X' has a Y-locally trivial alg. approx. $\forall Y \subset X'$ with dim $Y \leq 1$.

Main results reduced to the following:

X: compact Kähler manifold.

• When $\dim X = 3$ and $\kappa(X) \leq 1$:

Find $\nu: X \longleftrightarrow X'$ such that X' is normal

and X' has a Y-locally trivial alg. approx. $\forall Y \subset X'$ with $\dim Y \leq 1$.

ightharpoonup When $a(X) = \dim X - 1$:

Main results reduced to the following:

X: compact Kähler manifold.

• When $\dim X = 3$ and $\kappa(X) < 1$:

Find $\nu: X \longleftrightarrow X'$ such that X' is normal

and X' has a Y-locally trivial alg. approx. $\forall Y \subset X'$ with dim $Y \leq 1$.

• When $a(X) = \dim X - 1$:

Find $\nu: X \longleftrightarrow X'$ and an alg. approx. $\Pi: \mathcal{X}' \to \Delta$ of X' such that \hat{Y} deforms trivially in Π for some subvariety $Y \subset X'$ such that $\nu_{|X' \setminus Y|}^{-1}$ is an isomorphism onto its image.

Plan

- 1 The Kodaira problem
- 2 Compact Kähler threefolds
- 3 Fibrations in abelian varieties
- 4 Smooth isotrivial fibrations in K3 surfaces or tori
- Uniruled threefolds
- 6 Open problems

X: compact Kähler threefold.

The MMP is known for threefolds.

(Projective: Kollár, Mori et al. 8/90s; Kähler: Campana, Höring, Peternell '15.)

J. Kollár and S. Mori: Birational geometry of algebraic varieties, volume 134 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1998.
A. Höring and T. Peternell: Bimeromorphic geometry of Kähler threefolds. arxiv:1701.01653, 2017. To appear in "Proceedings of 2015 Summer Institute on Algebraic Geometry".

X: compact Kähler threefold.

The MMP is known for threefolds.

(Projective: Kollár, Mori et al. 8/90s; Kähler: Campana, Höring, Peternell '15.)

 $\kappa(X) = -\infty \Leftrightarrow X$ is uniruled.

J. Kollár and S. Mori: Birational geometry of algebraic varieties, volume 134 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1998.
A. Höring and T. Peternell: Bimeromorphic geometry of Kähler threefolds. arxiv:1701.01653, 2017. To appear in "Proceedings of 2015 Summer Institute on Algebraic Geometry".

X: compact Kähler threefold.

The MMP is known for threefolds.

(Projective: Kollár, Mori et al. 8/90s; Kähler: Campana, Höring, Peternell '15.)

- $\kappa(X) = -\infty \Leftrightarrow X$ is uniruled.
- $\kappa(X) \geq 0: X \leftarrow X_{\min} \text{ minimal model of } X.$

J. Kollár and S. Mori: Birational geometry of algebraic varieties, volume 134 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1998.
A. Höring and T. Peternell: Bimeromorphic geometry of Kähler threefolds. arxiv:1701.01653, 2017. To appear in "Proceedings of 2015 Summer Institute on Algebraic Geometry".

X: compact Kähler threefold.

The MMP is known for threefolds.

(Projective : Kollár, Mori et al. 8/90s; Kähler : Campana, Höring, Peternell '15.)

- $\kappa(X) = -\infty \Leftrightarrow X$ is uniruled.
- $\kappa(X) \geq 0: X \leftarrow X_{\min} \text{ minimal model of } X.$
- \bullet X_{\min} has only isolated singularities. (Better, terminal singularities)

J. Kollár and S. Mori: Birational geometry of algebraic varieties, volume 134 of Cambridge Tracts in Mathematics. Cambridge University Press. Cambridge, 1998.
A. Höring and T. Peternell: Bimeromorphic geometry of Kähler threefolds. arxiv:1701.01653, 2017. To appear in "Proceedings of 2015 Summer Institute on Algebraic Geometry".

X: compact Kähler threefold.

The MMP is known for threefolds.

(Projective : Kollár, Mori et al. 8/90s; Kähler : Campana, Höring, Peternell '15.)

- $\kappa(X) = -\infty \Leftrightarrow X$ is uniruled.
- $\kappa(X) \geq 0: X \leftarrow X_{\min} \text{ minimal model of } X.$
- \bullet X_{\min} has only isolated singularities. (Better, terminal singularities)
- $\bullet \Phi_m: X_{\min} \xrightarrow{|mK_{X_{\min}}|} X_{\operatorname{can}} \subset \mathbf{P}^N$ is well-defined when $m \gg 0$.

J. Kollár and S. Mori: Birational geometry of algebraic varieties, volume 134 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1998.
A. Höring and T. Peternell: Bimeromorphic geometry of Kähler threefolds. arxiv:1701.01653, 2017. To appear in "Proceedings of 2015 Summer Institute on Algebraic Geometry".

X: compact Kähler threefold.

The MMP is known for threefolds.

(Projective : Kollár, Mori et al. 8/90s; Kähler : Campana, Höring, Peternell '15.)

- $\kappa(X) = -\infty \Leftrightarrow X$ is uniruled.
- $\kappa(X) \geq 0: X \leftarrow X_{\min} \text{ minimal model of } X.$
- \bullet X_{\min} has only isolated singularities. (Better, terminal singularities)
- $\bullet \Phi_m: X_{\min} \xrightarrow{|mK_{X_{\min}}|} X_{\operatorname{can}} \subset \mathbf{P}^N$ is well-defined when $m \gg 0$.
- General fiber F: connected (for $m \gg 0$) and $c_1(K_F)$ is torsion.

J. Kollár and S. Mori: Birational geometry of algebraic varieties, volume 134 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1998.

A. Höring and T. Peternell: Bimeromorphic geometry of Kähler threefolds. arxiv:1701.01653, 2017. To appear in "Proceedings of 2015 Summer Institute on Algebraic Geometry".

$$\kappa = 1$$

$$\kappa = 1$$

X: non-algebraic compact Kähler threefold (so $\kappa(X) \neq 3$).

$$\kappa = 1$$

X: non-algebraic compact Kähler threefold (so $\kappa(X) \neq 3$).

• $\kappa(X) = 2 \Rightarrow \alpha(X) = 2 \Rightarrow X$ is bimeromorphic to an elliptic fibration.

$$\kappa = 1$$

X: non-algebraic compact Kähler threefold (so $\kappa(X) \neq 3$).

- $\kappa(X) = 2 \Rightarrow \alpha(X) = 2 \Rightarrow X$ is bimeromorphic to an elliptic fibration.
- $\kappa(X) = 1$:

F : general fiber of $\Phi_m: X_{\min} \xrightarrow{|mK_X|} X_{\operatorname{can}}$.

$$\kappa = 1$$

X: non-algebraic compact Kähler threefold (so $\kappa(X) \neq 3$).

- $\kappa(X) = 2 \Rightarrow \alpha(X) = 2 \Rightarrow X$ is bimeromorphic to an elliptic fibration.
- $\kappa(X) = 1$:

F : general fiber of $\Phi_m: X_{\min} \xrightarrow{|mK_X|} X_{\operatorname{can}}.$

- lacktriangledown If F is algebraic, then F is either an abelian surface or a bielliptic surface.
- ② If F is non-algebraic, then F is either a K3 surface or a 2-torus.

$$\kappa = 1$$

X: non-algebraic compact Kähler threefold (so $\kappa(X) \neq 3$).

- $\kappa(X) = 2 \Rightarrow \alpha(X) = 2 \Rightarrow X$ is bimeromorphic to an elliptic fibration.
- $\kappa(X) = 1$:

F : general fiber of $\Phi_m: X_{\min} \xrightarrow{|mK_X|} X_{\operatorname{can}}.$

- lacktriangledown If F is algebraic, then F is either an abelian surface or a bielliptic surface.
- ② If F is non-algebraic, then F is either a K3 surface or a 2-torus.

Lemma

In case 1, $X \longleftrightarrow \tilde{X}/G$ where G is a finite group and $\tilde{f}: \tilde{X} \to \tilde{B}$ is a G-equivariant fibration whose general fiber is an abelian surface.

$\kappa=1$ (continuation)

Case where F is non-algebraic :

$\kappa=1$ (continuation)

Case where F is non-algebraic :

Theorem (Campana '06)

Let $f: X \to B$ be a fibration whose total space X is a compact Kähler manifold and whose general fiber F is a non-algebraic K-trivial surface. Then f is isotrivial.

$\kappa = 1$ (continuation)

Case where F is non-algebraic :

Theorem (Campana '06)

Let $f: X \to B$ be a fibration whose total space X is a compact Kähler manifold and whose general fiber F is a non-algebraic K-trivial surface. Then f is isotrivial.

Proposition

In Case 2, $X \leftarrow --- \rightarrow \tilde{X}/G$ where G is a finite group and $\tilde{f}: \tilde{X} \rightarrow \tilde{B}$ is a G-equivariant smooth isotrivial fibration in K3 surfaces or 2-tori.

$$\kappa = 0$$

$$\kappa(X) = 0 :$$

A. Beauville: Variétés kählériennes dont la première classe de Chern est nulle. J.Diff.Geom., 18:755-782,1983. P. Graf: Algebraic approximation of Kähler threefolds of Kodaira dimension zero. Math. Annalen, 2017.

$$\kappa = 0$$

$$\kappa(X) = 0 :$$

Abundance conjecture $\Rightarrow X_{\min} = \tilde{X}/G$ with $K_{\tilde{X}} = 0$.

A. Beauville : Variétés kählériennes dont la première classe de Chern est nulle. J.Diff.Geom., 18 :755-782,1983. P. Graf : Algebraic approximation of Kähler threefolds of Kodaira dimension zero. Math. Annalen, 2017.

$$\kappa = 0$$

$$-\kappa(X)=0$$
:

Abundance conjecture $\Rightarrow X_{\min} = ilde{X}/G$ with $K_{ ilde{X}} = 0$.

Graf ('17) : \tilde{X} non-algebraic $\Rightarrow \tilde{X}$ is smooth.

$$\kappa = 0$$

$$\kappa(X) = 0$$
:

Abundance conjecture $\Rightarrow X_{\min} = \tilde{X}/G$ with $K_{\tilde{X}} = 0$.

 $\mathsf{Graf}\ ('17): \tilde{X}\ \mathsf{non-algebraic} \Rightarrow \tilde{X}\ \mathsf{is}\ \mathsf{smooth}.$

Beauville-Bogomolov decomposition theorem ('83) \Rightarrow

Proposition

If $\kappa(X)=0$, then $X \longleftrightarrow \tilde{X}/G$ for some finite group G where \tilde{X} is one of the following :

- The product of a K3 surface and an elliptic curve.
- A 3-torus.

A. Beauville: Variétés kählériennes dont la première classe de Chern est nulle. J.Diff.Geom., 18:755-782,1983. P. Graf: Algebraic approximation of Kähler threefolds of Kodaira dimension zero. Math. Annalen, 2017.

$$\kappa = -\infty$$

•
$$\kappa(X) = -\infty \Leftrightarrow X \text{ uniruled}$$
:

V. G. Sarkisov. On conic bundle structures. Izv. Akad. Nauk SSSR Ser.Mat., 46(2):371-408, 432,1982
M. Miyanishi. Algebraic methods in the theory of algebraic threefolds. Vol. 1 of Adv. Stud. Pure Math., pages 69–99, 1983.

$$\kappa = -\infty$$

$$\kappa(X) = -\infty \Leftrightarrow X \text{ uniruled}$$
:

X' non-algebraic $\Rightarrow S$ is a non-algebraic surface.

$$\kappa = -\infty$$

$$\kappa(X) = -\infty \Leftrightarrow X \text{ uniruled}$$
:

X' non-algebraic $\Rightarrow S$ is a non-algebraic surface.

Theorem (Sarkisov '82)

Every \mathbf{P}^1 -fibration is bimeromorphic to a standard conic bundle.

V. G. Sarkisov. On conic bundle structures. Izv. Akad. Nauk SSSR Ser.Mat., 46(2):371-408, 432,1982 M. Miyanishi. Algebraic methods in the theory of algebraic threefolds. Vol. 1 of Adv. Stud. Pure Math., pages 69–99, 1983.

$$\kappa = -\infty$$

$$\kappa(X) = -\infty \Leftrightarrow X \text{ uniruled}$$
:

X' non-algebraic $\Rightarrow S$ is a non-algebraic surface.

Theorem (Sarkisov '82)

Every \mathbf{P}^1 -fibration is bimeromorphic to a standard conic bundle.

$$\bullet$$
 $a(S) = 0$:

 \exists only finitely many curves in S, the union of which is a tree of rat. curves.

$$\kappa = -\infty$$

$$\kappa(X) = -\infty \Leftrightarrow X \text{ uniruled}$$
:

X' non-algebraic $\Rightarrow S$ is a non-algebraic surface.

Theorem (Sarkisov '82)

Every \mathbf{P}^1 -fibration is bimeromorphic to a standard conic bundle.

$$\bullet$$
 $a(S) = 0$:

 \exists only finitely many curves in S, the union of which is a tree of rat. curves.

If
$$C\simeq {f P}^1\subset \Delta$$
 (= discriminant), then $|C\cap \overline{\Delta\backslash C}|\geq 2$. (Miyanishi '83)

V. G. Sarkisov. On conic bundle structures. Izv. Akad. Nauk SSSR Ser.Mat., 46(2):371-408, 432,1982
 M. Miyanishi. Algebraic methods in the theory of algebraic threefolds. Vol. 1 of Adv. Stud. Pure Math., pages 69–99, 1983.

$$\kappa = -\infty$$

$$\kappa(X) = -\infty \Leftrightarrow X \text{ uniruled}$$
:

X' non-algebraic $\Rightarrow S$ is a non-algebraic surface.

Theorem (Sarkisov '82)

Every \mathbf{P}^1 -fibration is bimeromorphic to a standard conic bundle.

$$\bullet$$
 $a(S) = 0$:

 \exists only finitely many curves in S, the union of which is a tree of rat. curves.

If
$$C\simeq {\bf P}^1\subset \Delta$$
 (= discriminant), then $|C\cap \overline{\Delta\backslash C}|\geq 2$. (Miyanishi '83)

Corollary

A standard conic bundle f:X o S over a surface with a(S)=0 is a ${f P}^1$ -bundle.

V. G. Sarkisov. On conic bundle structures. Izv. Akad. Nauk SSSR Ser.Mat., 46(2):371-408, 432,1982
 M. Miyanishi. Algebraic methods in the theory of algebraic threefolds. Vol. 1 of Adv. Stud. Pure Math., pages 69–99, 1983.

$$\kappa = -\infty$$

$$\kappa(X) = -\infty \Leftrightarrow X \text{ uniruled}$$
:

X' non-algebraic $\Rightarrow S$ is a non-algebraic surface.

Theorem (Sarkisov '82)

Every \mathbf{P}^1 -fibration is bimeromorphic to a standard conic bundle.

$$\bullet$$
 $a(S) = 0$:

 \exists only finitely many curves in S, the union of which is a tree of rat. curves.

If
$$C\simeq {f P}^1\subset \Delta$$
 (= discriminant), then $|C\cap \overline{\Delta\backslash C}|\geq 2$. (Miyanishi '83)

Corollary

A standard conic bundle f:X o S over a surface with a(S)=0 is a ${f P}^1$ -bundle.

•
$$a(S) = 1 \Rightarrow S$$
 is an elliptic surface.

V. G. Sarkisov. On conic bundle structures. Izv. Akad. Nauk SSSR Ser.Mat., 46(2):371-408, 432,1982
 M. Miyanishi. Algebraic methods in the theory of algebraic threefolds. Vol. 1 of Adv. Stud. Pure Math., pages 69–99, 1983.

Theorem (Ueno et al., '75)

Let X be a compact Kähler manifold. If $a(X) = \dim X - 1$, then

① X is bimeromorphic to an elliptic fibration over a projective manifold.

Theorem (Ueno et al., '75)

Let X be a compact Kähler manifold. If $a(X) = \dim X - 1$, then

Y is bimeromorphic to an elliptic fibration over a projective manifold.

X: non-algebraic compact Kähler threefold.

Theorem (Ueno et al., '75)

Let X be a compact Kähler manifold. If $a(X) = \dim X - 1$, then

• X is bimeromorphic to an elliptic fibration over a projective manifold.

X: non-algebraic compact Kähler threefold.

Proposition ($\kappa = 0$ or 1)

If $\kappa(X)=0$ or 1, then $X \leftarrow --- \rightarrow \tilde{X}/G$ where G is a finite group and \tilde{X} a smooth compact Kähler threefold which is one of the following :

Theorem (Ueno et al., '75)

Let X be a compact Kähler manifold. If $a(X) = \dim X - 1$, then

• X is bimeromorphic to an elliptic fibration over a projective manifold.

X: non-algebraic compact Kähler threefold.

Proposition ($\kappa = 0$ or 1)

If $\kappa(X)=0$ or 1, then $X \longleftrightarrow \tilde{X}/G$ where G is a finite group and \tilde{X} a smooth compact Kähler threefold which is one of the following :

 $oldsymbol{Q}$ A G-equivariant fibration $ilde{f}: ilde{X} o ilde{B}$ whose general fiber is an abelian surface.

Theorem (Ueno et al., '75)

Let X be a compact Kähler manifold. If $a(X) = \dim X - 1$, then

• X is bimeromorphic to an elliptic fibration over a projective manifold.

X: non-algebraic compact Kähler threefold.

Proposition ($\kappa = 0$ or 1)

If $\kappa(X)=0$ or 1, then $X \longleftrightarrow \tilde{X}/G$ where G is a finite group and \tilde{X} a smooth compact Kähler threefold which is one of the following :

- **2** A G-equivariant fibration $ilde{f}: ilde{X} o ilde{B}$ whose general fiber is an abelian surface.
- **3** A G-equivariant smooth isotrivial fibration $\tilde{f}: \tilde{X} \to \tilde{B}$ in K3 surfaces or tori.

Theorem (Ueno et al., '75)

Let X be a compact Kähler manifold. If $a(X) = \dim X - 1$, then

• X is bimeromorphic to an elliptic fibration over a projective manifold.

X: non-algebraic compact Kähler threefold.

Proposition ($\kappa = 0$ or 1)

If $\kappa(X)=0$ or 1, then $X \longleftrightarrow \tilde{X}/G$ where G is a finite group and \tilde{X} a smooth compact Kähler threefold which is one of the following :

- **2** A G-equivariant fibration $\tilde{f}: \tilde{X} \to \tilde{B}$ whose general fiber is an abelian surface.
- **3** A G-equivariant smooth isotrivial fibration $\tilde{f}: \tilde{X} \to \tilde{B}$ in K3 surfaces or tori.

Proposition ($\kappa = -\infty$)

If $\kappa(X) = -\infty$, then X is bimeromorphic to one of the following :

Theorem (Ueno et al., '75)

Let X be a compact Kähler manifold. If $a(X) = \dim X - 1$, then

• X is bimeromorphic to an elliptic fibration over a projective manifold.

X: non-algebraic compact Kähler threefold.

Proposition ($\kappa = 0$ or 1)

If $\kappa(X)=0$ or 1, then $X \longleftrightarrow \tilde{X}/G$ where G is a finite group and \tilde{X} a smooth compact Kähler threefold which is one of the following :

- **2** A G-equivariant fibration $ilde{f}: ilde{X} o ilde{B}$ whose general fiber is an abelian surface.
- **3** A G-equivariant smooth isotrivial fibration $\tilde{f}: \tilde{X} \to \tilde{B}$ in K3 surfaces or tori.

Proposition ($\kappa = -\infty$)

If $\kappa(X) = -\infty$, then X is bimeromorphic to one of the following:

• A \mathbf{P}^1 -bundle over a surface S with $\alpha(S) = 0$.

Theorem (Ueno et al., '75)

Let X be a compact Kähler manifold. If $a(X) = \dim X - 1$, then

• X is bimeromorphic to an elliptic fibration over a projective manifold.

X: non-algebraic compact Kähler threefold.

Proposition ($\kappa = 0$ or 1)

If $\kappa(X)=0$ or 1, then $X \leftarrow \cdots \rightarrow \tilde{X}/G$ where G is a finite group and \tilde{X} a smooth compact Kähler threefold which is one of the following :

- **2** A G-equivariant fibration $ilde{f}: ilde{X} o ilde{B}$ whose general fiber is an abelian surface.
- **3** A G-equivariant smooth isotrivial fibration $\tilde{f}: \tilde{X} \to \tilde{B}$ in K3 surfaces or tori.

Proposition ($\kappa = -\infty$)

If $\kappa(X) = -\infty$, then X is bimeromorphic to one of the following :

- A \mathbf{P}^1 -bundle over a surface S with $\alpha(S) = 0$.
- **5** A **P**¹-fibration over a non-algebraic elliptic surface.

Plan

- 1 The Kodaira problem
- 2 Compact Kähler threefolds
- 3 Fibrations in abelian varieties
- 4 Smooth isotrivial fibrations in K3 surfaces or tori
- Uniruled threefolds
- 6 Open problems

Theorem (Ueno et al., '75)

Let X be a compact Kähler manifold. If $a(X) = \dim X - 1$, then

• X is bimeromorphic to an elliptic fibration over a projective manifold.

X: non-algebraic compact Kähler threefold.

Proposition ($\kappa = 0$ or 1)

If $\kappa(X) = 0$ or 1, then $X \leftarrow \cdots \rightarrow \tilde{X}/G$ where G is a finite group and \tilde{X} a smooth compact Kähler threefold which is one of the following :

- **2** A G-equivariant fibration $\hat{f}: \hat{X} \to \hat{B}$ whose general fiber is an abelian surface.
- $oldsymbol{\circ}$ A G-equivariant smooth isotrivial fibration f:X o B in K3 surfaces or tori

Proposition ($\kappa = -\infty$

If $\kappa(X) = -\infty$, then X is bimeromorphic to one of the following

- **4** A ${\bf P}^1$ -bundle over a surface S with a(S)=0
- **A P**¹-fibration over an elliptic surface

X: compact complex manifold

X : compact complex manifold

Definition

X is called algebraically connected if \forall general $x,y \in X$, \exists a connected compact algebraic curve $C \subset X$ such that $x,y \in C$.

 $X: \mathsf{compact}\ \mathsf{complex}\ \mathsf{manifold}$

Definition

X is called algebraically connected if \forall general $x,y \in X$, \exists a connected compact algebraic curve $C \subset X$ such that $x,y \in C$.

Theorem (Campana '81)

Suppose that X is Kähler. Then

 $X: \mathsf{compact}\ \mathsf{complex}\ \mathsf{manifold}$

Definition

X is called algebraically connected if \forall general $x,y \in X$, \exists a connected compact algebraic curve $C \subset X$ such that $x,y \in C$.

Theorem (Campana '81)

Suppose that X is Kähler. Then

X is Moishezon \iff X is algebraically connected.

X: compact complex manifold

Definition

X is called algebraically connected if \forall general $x,y\in X$, \exists a connected compact algebraic curve $C\subset X$ such that $x,y\in C$.

Theorem (Campana '81)

Suppose that X is Kähler. Then

X is Moishezon \iff X is algebraically connected.

Corollary

X is projective \iff X is Kähler and algebraically connected.

F. Campana: Coréduction algébrique d'un espace analytique faiblement kählérien compact. Invent. Math., 63(2) (1981).187-223.

 $f: X \rightarrow B$: smooth torus fibration of relative dimension g, B compact.

```
f: X \rightarrow B: smooth torus fibration of relative dimension g, B compact.
```

 $J \rightarrow B$: the associated Jacobian fibration.

 ${\mathcal J}$: sheaf of germs of holomorphic sections of J o B.

 $f: X \to B$: smooth torus fibration of relative dimension g, B compact.

 $J \rightarrow B$: the associated Jacobian fibration.

 ${\mathcal J}$: sheaf of germs of holomorphic sections of J o B.

Exact sequence:

$$0 \longrightarrow \mathbf{H} \longrightarrow \mathcal{E} \xrightarrow{\exp} \mathcal{J} \longrightarrow 0$$

$$\mathbf{H}:=R^{2g-1}f_*\mathbf{Z}, \hspace{0.5cm} \mathcal{E}:=R^gf_*\Omega^{g-1}_{X/B}.$$

B. Claudon: Smooth family of tori and linear Kähler groups. Annales de la Faculté des Sciences de Toulouse, 2016.

 $f: X \to B$ is a J-torsor.

 $f: X \rightarrow B$ is a J-torsor.

 $f: X \rightarrow B$ is a J-torsor.

$$\begin{array}{ccc} \{J\text{-torsors}\}\ni f & & \stackrel{1:1}{\longleftrightarrow} & \eta(f)\in H^1(B,\mathcal{J}) \\ & & & \cup & & \cup \\ \{J\text{-torsors with a multi-section}\} & \stackrel{1:1}{\longleftrightarrow} & H^1(B,\mathcal{J})_{\mathrm{tors}} \end{array}$$

 $f: X \rightarrow B$ is a J-torsor.

$$\begin{split} \{ \textbf{\textit{J}-torsors} \} \ni f & \overset{1:1}{\longleftrightarrow} & \eta(f) \in H^1(B,\mathcal{J}) \\ & \cup & & \cup \\ \{ \textbf{\textit{J}-torsors with a multi-section} \} & \overset{1:1}{\longleftrightarrow} & H^1(B,\mathcal{J})_{\mathrm{tors}} \\ & \exp: V := H^1(B,\mathcal{E}) \to H^1(B,\mathcal{J}) \end{split}$$

 $f: X \to B$ is a J-torsor.

$$\begin{array}{ccc} \{J\text{-torsors}\}\ni f & & \stackrel{1:1}{\longleftrightarrow} & \eta(f)\in H^1(B,\mathcal{J}) \\ & & \cup & & \cup \\ \{J\text{-torsors with a multi-section}\} & \stackrel{1:1}{\longleftrightarrow} & H^1(B,\mathcal{J})_{\mathrm{tors}} \end{array}$$

$$\exp: V := H^1(B,\mathcal{E}) \to H^1(B,\mathcal{J})$$

There exists a family of J-torsors

$$\Pi: \mathcal{X} \xrightarrow{q} \mathbf{B} \times \mathbf{V} \to \mathbf{V}$$

such that $t \in V$ parameterizes the J-torsor which corresponds to

$$\eta(f) + \exp(t) \in H^1(B, \mathcal{J}).$$

B. Claudon: Smooth family of tori and linear Kähler groups. Annales de la Faculté des Sciences de Toulouse, 2016.

 $f: X \rightarrow B$ is a J-torsor.

$$\begin{array}{ccc} \{J\text{-torsors}\}\ni f & & \stackrel{1:1}{\longleftrightarrow} & \eta(f)\in H^1(B,\mathcal{J}) \\ & & \cup & & \cup \\ \{J\text{-torsors with a multi-section}\} & \stackrel{1:1}{\longleftrightarrow} & H^1(B,\mathcal{J})_{\mathrm{tors}} \end{array}$$

$$\exp: V := H^1(B, \mathcal{E}) \to H^1(B, \mathcal{J})$$

There exists a family of J-torsors

$$\Pi: \mathcal{X} \xrightarrow{q} \mathbf{B} \times \mathbf{V} \to \mathbf{V}$$

such that $t \in V$ parameterizes the J-torsor which corresponds to

$$\eta(f) + \exp(t) \in H^1(B, \mathcal{J}).$$

The family Π is called the tautological family associated to f.

B. Claudon: Smooth family of tori and linear Kähler groups. Annales de la Faculté des Sciences de Toulouse. 2016.

Theorem (Claudon 16')

Let $f: X \to B$ be a smooth fibration in abelian varieties. $X: compact \ K\"{a}hler \ manifold. \ B: projective \ manifold. \ Then$

$$\Pi: \mathcal{X} \xrightarrow{q} B \times V \rightarrow V$$

is an algebraic approximation of f which is locally trivial over B.

Sketch of the proof of alg. app. :

Theorem (Claudon 16')

Let $f: X \to B$ be a smooth fibration in abelian varieties. X: compact Kähler manifold. B: projective manifold. Then

$$\Pi: \mathcal{X} \xrightarrow{q} B \times V \rightarrow V$$

is an algebraic approximation of f which is locally trivial over B.

Sketch of the proof of alg. app. : Campana's criterion

 \Rightarrow It suffices to show that J-torsors with a multi-section are dense in V.

B. Claudon: Smooth family of tori and linear Kähler groups. Annales de la Faculté des Sciences de Toulouse, 2016.

Theorem (Claudon 16')

Let $f: X \to B$ be a smooth fibration in abelian varieties. X: compact Kähler manifold. B: projective manifold. Then

$$\Pi: \mathcal{X} \xrightarrow{q} \mathbf{B} \times \mathbf{V} \to \mathbf{V}$$

is an algebraic approximation of f which is locally trivial over B.

Sketch of the proof of alg. app. : Campana's criterion

 \Rightarrow It suffices to show that *J*-torsors with a multi-section are dense in *V*.

$$\cdots o H^1(B,\mathbf{H}) \xrightarrow{\phi} H^1(B,\mathcal{E}) \xrightarrow{\exp} H^1(B,\mathcal{J}) \xrightarrow{c} H^2(B,\mathbf{H}) o \cdots$$

Theorem (Claudon 16')

Let $f: X \to B$ be a smooth fibration in abelian varieties. $X: compact \ K\"{a}hler \ manifold. \ B: projective \ manifold. \ Then$

$$\Pi: \mathcal{X} \xrightarrow{q} B \times V \to V$$

is an algebraic approximation of f which is locally trivial over B.

Sketch of the proof of alg. app. : Campana's criterion

 \Rightarrow It suffices to show that *J*-torsors with a multi-section are dense in *V*.

$$\cdots \to H^1(B,\mathbf{H}) \xrightarrow{\phi} H^1(B,\mathcal{E}) \xrightarrow{\exp} H^1(B,\mathcal{J}) \xrightarrow{c} H^2(B,\mathbf{H}) \to \cdots$$

• ϕ is the projection of a HS of weight 2 to its (0,2)-part (Deligne). $\Rightarrow H^1(B, \mathbf{H}) \otimes \mathbf{Q} \to H^1(B, \mathcal{E})$ has dense image.

B. Claudon: Smooth family of tori and linear Kähler groups. Annales de la Faculté des Sciences de Toulouse, 2016.

Theorem (Claudon 16')

Let $f: X \to B$ be a smooth fibration in abelian varieties. X: compact Kähler manifold. B: projective manifold. Then

$$\Pi: \mathcal{X} \xrightarrow{q} B \times V \rightarrow V$$

is an algebraic approximation of f which is locally trivial over B.

Sketch of the proof of alg. app. : Campana's criterion

 \Rightarrow It suffices to show that *J*-torsors with a multi-section are dense in *V*.

$$\cdots \to H^1(B,\mathbf{H}) \stackrel{\phi}{\to} H^1(B,\mathcal{E}) \stackrel{\exp}{\longrightarrow} H^1(B,\mathcal{J}) \stackrel{c}{\to} H^2(B,\mathbf{H}) \to \cdots$$

- ϕ is the projection of a HS of weight 2 to its (0,2)-part (Deligne). $\Rightarrow H^1(B, \mathbf{H}) \otimes \mathbf{Q} \to H^1(B, \mathcal{E})$ has dense image.
- X Kähler $\Rightarrow c(\eta(f)) \in H^2(B, \mathbf{H})_{tors}$.

B. Claudon : Smooth family of tori and linear Kähler groups. Annales de la Faculté des Sciences de Toulouse, 2016.

Smooth torus fibrations (after Claudon)

Theorem (Claudon 16')

Let $f: X \to B$ be a smooth fibration in abelian varieties. X: compact Kähler manifold. B: projective manifold. Then

$$\Pi: \mathcal{X} \xrightarrow{q} B \times V \rightarrow V$$

is an algebraic approximation of f which is locally trivial over B.

Sketch of the proof of alg. app. : Campana's criterion

 \Rightarrow It suffices to show that J-torsors with a multi-section are dense in V.

$$\cdots \to H^1(B,\mathbf{H}) \stackrel{\phi}{\to} H^1(B,\mathcal{E}) \stackrel{\exp}{\longrightarrow} H^1(B,\mathcal{J}) \stackrel{c}{\to} H^2(B,\mathbf{H}) \to \cdots$$

- ϕ is the projection of a HS of weight 2 to its (0,2)-part (Deligne). $\Rightarrow H^1(B, \mathbf{H}) \otimes \mathbf{Q} \to H^1(B, \mathcal{E})$ has dense image.
- X Kähler $\Rightarrow c(\eta(f)) \in H^2(B, \mathbf{H})_{tors}$.
- Subset of $t \in V$ such that $\eta(f) + \exp(t) \in H^1(B, \mathcal{J})_{\text{tors}}$ is dense.

B. Claudon : Smooth family of tori and linear Kähler groups. Annales de la Faculté des Sciences de Toulouse, 2016.

Definition (Locally trivial deformations over the base)

A deformation

$$\Pi: \mathcal{X} \xrightarrow{q} B \times V \to V$$

of a fibration $f:X\to B$ (preserving the base B) is called locally trivial over B if there exists an open cover $\{U_i\}$ of B such that

$$q^{-1}(U_i imes V) \simeq f^{-1}(U_i) imes V$$

over $U_i \times V$.

 Π is locally trivial over B

 $\Rightarrow \Pi$ is C-locally trivial for every C contained in a finite union of fibers of f.

 $f: X \rightarrow B: G$ -equivariant fibration in ab. varieties (not necessarily smooth).

S. Zucker: Hodge theory with degenerating coefficients. L^2 cohomology in the Poincaré metric. Ann. of Math.(2), 109(3):415–476, 1979. Topics in transcendental algebraic geometry, volume 106 of Annals of Mathematics Studies, 1984.

 $f: X \rightarrow B: G$ -equivariant fibration in ab. varieties (not necessarily smooth).

X : compact Kähler manifold.

B: smooth projective curve.

 $f: X \to B: G$ -equivariant fibration in ab. varieties (not necessarily smooth).

X : compact Kähler manifold.

B: smooth projective curve.

Assumption : f has local sections at every point of B

 $f: X \rightarrow B: G$ -equivariant fibration in ab. varieties (not necessarily smooth).

X: compact Kähler manifold.

 \boldsymbol{B} : smooth projective curve.

Assumption : f has local sections at every point of B

Theorem

There exists a G-equivariant tautological family

$$\Pi: \mathcal{X} \to B \times V \to V$$

associated to f, which is an algebraic approximation of f and is G-equivariantly locally trivial over B.

S. Zucker: Hodge theory with degenerating coefficients. L^2 cohomology in the Poincaré metric. Ann. of Math.(2), 109(3):415–476, 1979. Topics in transcendental algebraic geometry, volume 106 of Annals of Mathematics Studies, 1984.

 $f: X \to B: G$ -equivariant fibration in ab. varieties (not necessarily smooth).

X: compact Kähler manifold.

 \boldsymbol{B} : smooth projective curve.

Assumption : f has local sections at every point of B

Theorem

There exists a G-equivariant tautological family

$$\Pi: \mathcal{X} \to B \times V \to V$$

associated to f, which is an algebraic approximation of f and is G-equivariantly locally trivial over B.

Hodge-theoretic ingredients:

- Zucker's theory on the VHS over a curve. (Zucker)
- Theory of generalized intermediate Jacobians (Deligne, El Zein, Zucker).

S. Zucker: Hodge theory with degenerating coefficients. L^2 cohomology in the Poincaré metric. Ann. of Math.(2), 109(3):415–476, 1979. Topics in transcendental algebraic geometry, volume 106 of Annals of Mathematics Studies, 1984.

Corollary

The quotient

$$(\Pi/G): \mathcal{X}/G \to (B/G) \times V \to V$$

of Π is an algebraic approximation of $X/G \to B/G$ which is locally trivial over B/G. In particular, it is C-locally trivial for every C contained in a finite union of fibers of $X/G \to B/G$.

Corollary

The quotient

$$(\Pi/G): \mathcal{X}/G \to (B/G) \times V \to V$$

of Π is an algebraic approximation of $X/G \to B/G$ which is locally trivial over B/G. In particular, it is C-locally trivial for every C contained in a finite union of fibers of $X/G \to B/G$.

Campana's criterion \Rightarrow if X/G is non-algebraic,

then a curve of X/G is contained in a finite union of fibers of $X/G \to B/G$.

Corollary

The quotient

$$(\Pi/G): \mathcal{X}/G \to (B/G) \times V \to V$$

of Π is an algebraic approximation of $X/G \to B/G$ which is locally trivial over B/G. In particular, it is C-locally trivial for every C contained in a finite union of fibers of $X/G \to B/G$.

Campana's criterion \Rightarrow if X/G is non-algebraic,

then a curve of X/G is contained in a finite union of fibers of $X/G \to B/G$.

Corollary

The quotient $(\Pi/G): \mathcal{X}/G \to V$ is an algebraic approximation of X/G which is C-locally trivial for every $C \subset X/G$ with $\dim C \leq 1$.

Corollary \Rightarrow Case 2.

 $f: X \rightarrow B: G$ -equivariant elliptic fibration.

```
f: X \rightarrow B: G-equivariant elliptic fibration.
```

X : compact Kähler manifold.

 $\Delta \subset B$: the discriminant locus of f.

 (B, Δ) : log-smooth projective variety.

```
f: X \rightarrow B: G-equivariant elliptic fibration.
```

X : compact Kähler manifold.

 $\Delta \subset B$: the discriminant locus of f.

 (B,Δ) : log-smooth projective variety.

Assumptions:

- \bullet f has local meromorphic sections at every point of B.
- ullet The local monodromies of $\mathbf{H}=(R^1f_*\mathbf{Z})_{|B\setminus\Delta}$ around Δ are unipotent.

Theorem (First part : Claudon-Höring-L.)

Up to replacing f:X o B by a bimeromorphic model of it, there exists a G-equivariant tautological family

$$\Pi: \mathcal{X} \to \mathbf{B} \times \mathbf{V} \to \mathbf{V}$$

associated to f, which is an algebraic approximation of f. Furthermore, if $Y \to Z$ is a fibration contained in f which has a multi-section, then the tautological family Π contains a subfamily which is an algebraic approximation of f preserving $\hat{Y} \to \hat{Z}$.

N. Nakayama: On Weierstrass models. In Algebraic geometry and commutative algebra, Vol.II, pages 405-431. Kinokuniya, Tokyo, 1988. N. Nakayama: Local structure of an elliptic fibration. In Higher dimensional birational geometry (Kyoto,1997), volume 35 of Adv. Stud. Pure Math., pages 185-295. Math. Soc. Japan, Tokyo, 2002.

Theorem (First part : Claudon-Höring-L.)

Up to replacing f:X o B by a bimeromorphic model of it, there exists a G-equivariant tautological family

$$\Pi: \mathcal{X} \to \mathbf{B} \times \mathbf{V} \to \mathbf{V}$$

associated to f, which is an algebraic approximation of f. Furthermore, if $Y \to Z$ is a fibration contained in f which has a multi-section, then the tautological family Π contains a subfamily which is an algebraic approximation of f preserving $\hat{Y} \to \hat{Z}$.

Main ingredient : N. Nakayama's work on elliptic fibrations.

Theorem $+ \varepsilon \Rightarrow \mathsf{Case} \ 1$.

Hsueh-Yung Lin (December 17th, 2018)

N. Nakayama: On Weierstrass models. In Algebraic geometry and commutative algebra, Vol.II, pages 405-431. Kinokuniya, Tokyo, 1988. Nakayama: Local structure of an elliptic fibration. In Higher dimensional birational geometry (Kyoto,1997), volume 35 of Adv. Stud. Pure Math., pages 185-295. Math. Soc. Japan, Tokyo, 2002.
N. Nakayama: Global structure of an elliptic fibration. Publ. Res. Inst. Math. Sci.. 38(3):451-649.2002.

Plan

- 1 The Kodaira problem
- 2 Compact Kähler threefolds
- 3 Fibrations in abelian varieties
- Smooth isotrivial fibrations in K3 surfaces or tori
- Uniruled threefolds
- 6 Open problems

Theorem (Ueno et al., '75)

Let X be a compact Kähler manifold. If $a(X) = \dim X - 1$, then

1 X is bimeromorphic to an elliptic fibration over a projective variety

X: non-algebraic compact Kähler threefold.

Proposition ($\kappa = 0$ or 1)

If $\kappa(X)=0$ or 1, then X is bimeromorphic to \tilde{X}/G where G is a finite group and \tilde{X} a smooth compact Kähler threefold which is one of the following :

- ② A G-equivariant fibration f:X o B whose general fiber is an abelian surface
- **3** A G-equivariant smooth isotrivial fibration $\tilde{f}: \tilde{X} \to \tilde{B}$ in K3 surfaces or tori.

Proposition ($\kappa = -\infty$)

If $\kappa(X) = -\infty$, then X is bimeromorphic to one of the following .

- $oldsymbol{\Phi}$ A ${f P}^1$ -bundle over a surface S with lpha(S)=0
- **5** $A \mathbf{P}^1$ -fibration over an elliptic surface.

 $f: X \to B: G$ -equivariant smooth isotrivial fibrations in K3 surfaces or tori.

 $f: X \to B: G$ -equivariant smooth isotrivial fibrations in K3 surfaces or tori.

X: compact Kähler manifold.

B: smooth projective curve.

 $f: X \to B: G$ -equivariant smooth isotrivial fibrations in K3 surfaces or tori.

X: compact Kähler manifold.

B: smooth projective curve.

lacktriangle Case where f is a fibration in a 2-torus T:

Lemma

 $f: X \to B$ has an algebraic approximation, which is G-equivariant and C-locally trivial for every $C \subset X$ with $\dim C \le 1$.

 $f: X \to B: G$ -equivariant smooth isotrivial fibrations in K3 surfaces or tori.

X: compact Kähler manifold.

B: smooth projective curve.

lacktriangle Case where f is a fibration in a 2-torus T:

Lemma

 $f: X \to B$ has an algebraic approximation, which is G-equivariant and C-locally trivial for every $C \subset X$ with $\dim C \leq 1$.

Algebraic approximation of f realized by the family of tautological families associated to $\{f_t: X_t \to B\}_{t \in \Delta}$ where

- ullet $\mathcal{T}
 ightarrow \Delta$ is an algebraic approximation of T
- f_t is a smooth isotrivial fibration in \mathcal{T}_t .

ullet Case where f:X o B is a G-equivariant fibration in a K3 surfaces S:

- ullet Case where f:X o B is a G-equivariant fibration in a K3 surfaces S:
- As $\operatorname{Aut}^0(S) = \{\operatorname{Id}\}$, \exists monodromy action $\pi_1(B) \curvearrowright S$.

- lacktriangle Case where f:X o B is a G-equivariant fibration in a $\mathsf{K3}$ surfaces S:
- As $\operatorname{Aut}^0(S) = \{\operatorname{Id}\}, \ \exists \ \operatorname{monodromy action} \ \pi_1(B) \curvearrowright S.$
- A Kähler class of X restricted to S is a $\pi_1(B)$ -invariant Kähler class, so $\pi_1(B)$ acts as a finite group on S. (Lieberman, Fujiki)

- lacktriangle Case where f:X o B is a G-equivariant fibration in a K3 surfaces S :
- As $\operatorname{Aut}^0(S) = \{\operatorname{Id}\}, \exists \text{ monodromy action } \pi_1(B) \curvearrowright S.$
- A Kähler class of X restricted to S is a $\pi_1(B)$ -invariant Kähler class, so $\pi_1(B)$ acts as a finite group on S. (Lieberman, Fujiki)
- Finite Galois base change \rightsquigarrow we can assume that f is a trivial fibration.

- ullet Case where f:X o B is a G-equivariant fibration in a K3 surfaces S:
- As $\operatorname{Aut}^0(S) = \{\operatorname{Id}\}, \exists \text{ monodromy action } \pi_1(B) \curvearrowright S$.
- A Kähler class of X restricted to S is a $\pi_1(B)$ -invariant Kähler class, so $\pi_1(B)$ acts as a finite group on S. (Lieberman, Fujiki)
- Finite Galois base change \rightsquigarrow we can assume that f is a trivial fibration.

Lemma

The threefold $X = S \times B$ has an algebraic approximation, which is G-equivariant and C-locally trivial for every $C \subset X$ with $\dim C \leq 1$.

- lacktriangle Case where f:X o B is a G-equivariant fibration in a K3 surfaces S:
- As $\operatorname{Aut}^0(S) = \{\operatorname{Id}\}, \exists \operatorname{monodromy action} \pi_1(B) \curvearrowright S$.
- A Kähler class of X restricted to S is a $\pi_1(B)$ -invariant Kähler class, so $\pi_1(B)$ acts as a finite group on S. (Lieberman, Fujiki)
- Finite Galois base change \rightsquigarrow we can assume that f is a trivial fibration.

Lemma

The threefold $X = S \times B$ has an algebraic approximation, which is G-equivariant and C-locally trivial for every $C \subset X$ with $\dim C \leq 1$.

Lemma follows from:

Lemma

Let S be a K3 surface and $G \cap S$ a finite group. Then S has a G-equivariant algebraic approximation which is C-locally trivial for every subvariety $C \subseteq S$.

Plan

- 1 The Kodaira problem
- 2 Compact Kähler threefolds
- 3 Fibrations in abelian varieties
- 4 Smooth isotrivial fibrations in K3 surfaces or tori
- Uniruled threefolds
- 6 Open problems

Theorem (Ueno et al., '75)

Let X be a compact Kähler manifold. If $a(X) = \dim X - 1$, then

① X is bimeromorphic to an elliptic fibration over a projective variety

X: non-algebraic compact Kähler threefold

Proposition ($\kappa = 0$ or 1)

If $\kappa(X)=0$ or 1, then X is bimeromorphic to \tilde{X}/G where G is a finite group and \tilde{X} a smooth compact Kähler threefold which is one of the following :

- $m{ ilde{artheta}}$ A G-equivariant fibration $ilde{f}: ilde{X} o ilde{B}$ whose general fiber is an abelian surface
- $oldsymbol{3}$ A G-equivariant smooth isotrivial fibration $ilde{f}: ilde{X} o ilde{B}$ in K3 surfaces or tori.

Proposition ($\kappa = -\infty$)

If $\kappa(X) = -\infty$, then X is bimeromorphic to one of the following :

- A \mathbf{P}^1 -bundle over a surface S with $\alpha(S) = 0$.
- **⑤** A **P**¹-fibration over a non-algebraic elliptic surface.

• $f:X o S:\mathbf{P}^1 ext{-bundle}$ over a surface S with a(S)=0

• $f: X \to S: \mathbf{P}^1$ -bundle over a surface S with a(S) = 0Then $X = \mathbf{P}(E)$ for some twisted vector bundle E over S.

 $m{r}: X o S: \mathbf{P^1}$ -bundle over a surface S with a(S) = 0Then $X = \mathbf{P}(E)$ for some twisted vector bundle E over S.

Theorem (\Rightarrow Case 4)

There exists an algebraic approximation of S which lifts to a deformation of (S,E), such that the induced deformation of X is $f^{-1}(C)$ -locally trivial for every $C \subset S$ with $\dim C < 1$.

 $m{r}: X o S: \mathbf{P}^1$ -bundle over a surface S with a(S) = 0Then $X = \mathbf{P}(E)$ for some twisted vector bundle E over S.

Theorem (\Rightarrow Case 4)

There exists an algebraic approximation of S which lifts to a deformation of (S,E), such that the induced deformation of X is $f^{-1}(C)$ -locally trivial for every $C \subset S$ with $\dim C \leq 1$.

Idea of the proof:

If E has a subsheaf of rank 1, then $E \simeq$ untwisted vector bundle.

 $m{r}: X o S: \mathbf{P}^1$ -bundle over a surface S with a(S) = 0Then $X = \mathbf{P}(E)$ for some twisted vector bundle E over S.

Theorem (\Rightarrow Case 4)

There exists an algebraic approximation of S which lifts to a deformation of (S,E), such that the induced deformation of X is $f^{-1}(C)$ -locally trivial for every $C \subset S$ with $\dim C \leq 1$.

Idea of the proof:

If E has a subsheaf of rank 1, then $E \simeq$ untwisted vector bundle.

(S,E) has an algebraic approximation. (Schrack)

Check local triviality.

If E does not have any sub-sheaf of rank 1, then we show that $\operatorname{tr}:\operatorname{Ext}^2(E,E)\to H^2(S,\mathcal{O}_S)$ is injective.

If E does not have any sub-sheaf of rank 1, then we show that $\operatorname{tr}:\operatorname{Ext}^2(E,E)\to H^2(S,\mathcal{O}_S)$ is injective.

Theorem

Assume that tr is injective. Let $\mathcal{S} \to \Delta$ be a deformation of S. If $\operatorname{tr}(\operatorname{At}(E)) \in H^1(S,\Omega^1_S)$ remains of type (1,1) along Δ , then $S \to \Delta$ lifts to a deformation of (S,E).

If E does not have any sub-sheaf of rank 1, then we show that $\operatorname{tr}:\operatorname{Ext}^2(E,E)\to H^2(S,\mathcal{O}_S)$ is injective.

Theorem

Assume that tr is injective. Let $\mathcal{S} \to \Delta$ be a deformation of S. If $\operatorname{tr}(\operatorname{At}(E)) \in H^1(S,\Omega^1_S)$ remains of type (1,1) along Δ , then $\mathcal{S} \to \Delta$ lifts to a deformation of (S,E).

Lemma

There exists an algebraic approximation of S which preserves NS(S).

If E does not have any sub-sheaf of rank 1, then we show that $\operatorname{tr}:\operatorname{Ext}^2(E,E)\to H^2(S,\mathcal{O}_S)$ is injective.

Theorem

Assume that tr is injective. Let $\mathcal{S} \to \Delta$ be a deformation of S. If $\operatorname{tr}(\operatorname{At}(E)) \in H^1(S,\Omega^1_S)$ remains of type (1,1) along Δ , then $\mathcal{S} \to \Delta$ lifts to a deformation of (S,E).

Lemma

There exists an algebraic approximation of S which preserves NS(S).

• $f: X \to S: \mathbf{P}^1$ -fibration over an elliptic surface $S \to B$.

If E does not have any sub-sheaf of rank 1, then we show that $\operatorname{tr}:\operatorname{Ext}^2(E,E)\to H^2(S,\mathcal{O}_S)$ is injective.

Theorem

Assume that tr is injective. Let $\mathcal{S} \to \Delta$ be a deformation of S. If $\operatorname{tr}(\operatorname{At}(E)) \in H^1(S,\Omega^1_S)$ remains of type (1,1) along Δ , then $S \to \Delta$ lifts to a deformation of (S,E).

Lemma

There exists an algebraic approximation of S which preserves NS(S).

• $f: X \to S: \mathbf{P}^1$ -fibration over an elliptic surface $S \to B$.

Theorem (\Rightarrow Case 5)

The tautological family associated to S, which is an algebraic approximation of S, lifts to a deformation of f which is locally trivial over B.

Plan

- 1 The Kodaira problem
- Compact Kähler threefolds
- 3 Fibrations in abelian varieties
- 4 Smooth isotrivial fibrations in K3 surfaces or tori
- Uniruled threefolds
- **6** Open problems

Known examples \boldsymbol{X} answering negatively the Kodaira problem all satisfy

$$a(X) \leq \dim X - 4$$
.

Known examples \boldsymbol{X} answering negatively the Kodaira problem all satisfy

$$a(X) \leq \dim X - 4$$
.

Question

Does there exist a compact Kähler manifold X of algebraic dimension

$$\dim X - 1 > a(X) \ge \dim X - 3$$

which does not have any algebraic approximation?

Known examples \boldsymbol{X} answering negatively the Kodaira problem all satisfy

$$a(X) \leq \dim X - 4$$
.

Question

Does there exist a compact Kähler manifold X of algebraic dimension

$$\dim X - 1 > a(X) \ge \dim X - 3$$

which does not have any algebraic approximation?

(Vosin's example) $\times \mathbf{P}^1$ cannot have algebraic approximations.

Known examples X answering negatively the Kodaira problem all satisfy

$$a(X) \leq \dim X - 4$$
.

Question

Does there exist a compact Kähler manifold X of algebraic dimension

$$\dim X - 1 > a(X) \ge \dim X - 3$$

which does not have any algebraic approximation?

(Vosin's example) $\times \mathbf{P}^1$ cannot have algebraic approximations.

Question

Does there exist a compact Kähler uniruled fourfold which does not have any algebraic approximation?

END

-END-