Bootstrap percolation and Kinetically constrained models: critical time scales

Cristina Toninelli

Laboratoire de Probabilités, Statistiques et Modèlisation

Collaborators: Laure Marêché, Fabio Martinelli, Rob Morris

イロト イロト イヨト イヨト 三日

C.TONINELLI

Bootstrap percolation

First example: 2-neighbour bootstrap on \mathbb{Z}^2

- At time t = 0 sites are i.i.d., empty with probability q, occupied with probability 1 q
- At time t = 1
 - each empty site remains empty
 - each occupied site is emptied iff it has at least 2 empty n.n.

▲日▼ ▲母▼ ▲日▼ ▲日▼ ヨー シタク

• Iterate

- \Rightarrow deterministic monotone dynamics
- $\Rightarrow \exists$ blocked clusters

C.TONINELLI

Critical density and Infection time

- Will the whole lattice become empty?
- $q_c := \inf\{q \in [0,1] : \mu_q(\text{origin is emptied eventually}) = 1\}$
- How many steps are needed to empty the origin?
- $\tau^{\text{BP}}(q) := \mu_q$ (first time at which origin is empty)

Critical density and Infection time

• Will the whole lattice become empty?

 \rightarrow Yes (Van Enter '87)

- $q_c := \inf\{q \in [0,1] : \mu_q(\text{origin is emptied eventually}) = 1\}$ $\rightarrow q_c = 0$
- How many steps are needed to empty the origin?
- $\tau^{\text{\tiny BP}}(q) := \mu_q$ (first time at which origin is empty)

$$\rightarrow \tau^{\text{BP}}(q) \sim \exp\left(\frac{\pi^2}{18q}(1+o(1))\right) \quad \text{for} \quad q \rightarrow 0$$

[Aizenmann-Lebowitz '88, Holroyd '02, ...]

The general framework: \mathcal{U} -bootstrap percolation

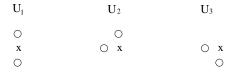
- Choose the update family, a finite collection
 U = {U₁,...,U_m} of local neighbourhoods of the origin,
 i.e. U_i ⊂ Z² \ 0, |U_i| < ∞
- At time t = 1 site x is emptied iff at least one of the translated neighborhoods $U_i + x$ is completely empty
- Iterate

Example: 2-neighbour bootstrap percolation

 $\mathcal{U}=$ collection of the sets containing 2 nearest neighb. of origin

Some other examples

- r-neighbour bootstrap percolation: $\mathcal{U} =$ all the sets containing r nearest neighb. of origin
- East model $\mathcal{U} = \{U_1, U_2\}$ with $U_1 = (0, -1), U_2 = (-1, 0)$
- North-East model $\mathcal{U} = \{U_1\}$ with $U_1 = \{(0, 1), (1, 0)\}$
- Duarte model $\mathcal{U} = \{U_1, U_2, U_3\}$



Universality classes

• q_c ?

• Scaling of $\tau^{\text{BP}}(q)$ for $q \downarrow q_c$?

Of course, answers depend on the choice of the rule ${\mathcal U}$

Three universality classes

- Supercritical models: $q_c = 0$, $\tau^{\text{BP}}(q) = 1/q^{\Theta(1)}$
- Critical models: $q_c = 0$, $\tau^{\text{BP}}(q) = \exp(1/q^{\Theta(1)})$
- Subcritical models: $q_c > 0$

[Bollobas, Smith, Uzzell '15, Balister, Bollobas, Przykucki, Smith '16]

Kinetically Constrained Models, a.k.a. KCM

Configurations : $\eta \in \{0,1\}^{\mathbb{Z}^2}$

Dynamics: continuous time Markov process of Glauber type, i.e. birth / death of particles

Fix an update family \mathcal{U} and $q \in [0, 1]$.

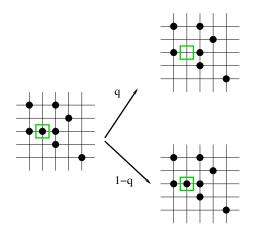
Each site for which the \mathcal{U} bootstrap constraint is satisfied is updated to empty at rate q and to occupied at rate 1-q.

Kinetically Constrained Models, a.k.a. KCM

KCM are a stochastic version version of BP:

- \Rightarrow non monotone dynamics ;
- \Rightarrow reversible w.r.t. product measure at density 1 q;
- \Rightarrow blocked clusters for BP \leftrightarrow blocked clusters for KCM;
- \Rightarrow empty sites needed to update \rightarrow slowing down when $q\downarrow 0$

2-neighbour KCM



Origins of KCM

KCM introduced by physicists in the '80's to model the liquid/glass transition

- understanding this transition is a major open problem in condensed matter physics;
- sharp divergence of timescales;
- no significant structural changes.

KCM:

 \Rightarrow constraints mimic <u>cage effect</u>:

if temperature is lowered free volume shrinks, $q \leftrightarrow e^{-1/T}$

⇒ trivial equilibrium, sharp divergence of timescales when $q \downarrow 0$, glassy dynamics (aging, heterogeneities, ...)

Why are KCM mathematically challenging?

- KCM dynamics is not attractive: more empty sites can have unpredictable consequences
- Coupling arguments and censoring arguments fail
- ∃ blocked clusters → relaxation not uniform on initial condition → worst case analysis is too rough
- Coercive inequalities (e.g. Log-Sobolev) anomalous
- $\rightarrow\,$ new tools are needed

KCM: time scales

 $\tau^{\text{\tiny KCM}}(q) := \mathbb{E}_{\mu_q}($ first time at which origin is emptied)

- How does τ^{KCM} diverge when $q \downarrow q_c$?
- How does it compare with τ^{BP} , the infection time of the corresponding bootstrap process?

An (easy) lower bound

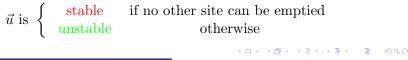
 $\tau^{\rm KCM} \ge c \, \tau^{\rm BP}$

General, but it does not always capture the correct behavior

How can you identify the universality class of \mathcal{U} ?

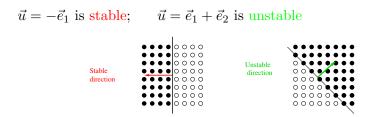
We need the notion of stable and unstable directions

- Fix a direction \vec{u}
- Start from a configuration which is
 - completely empty on the half plane perpendicular to \vec{u} in the negative direction (H_u)
 - filled otherwise
- Run the bootstrap dynamics



Stable and unstable directions: examples

Of course, the stability of a direction depends on \mathcal{U} Ex. East model:



Instead :

• both directions are unstable for 1-neighbour bootstrap

• both directions are stable for North East

Supercritical universality class

 ${\cal U}$ is supercritical iff there exists an open semicircle ${\cal C}$ which does not contain stable directions

 $\Rightarrow \text{ exists a finite empty droplet} \\ \text{from which we can empty the} \\ \text{line bisecting } \mathcal{C}$

$$\Rightarrow q_c = 0$$

[Bollobas, Smith, Uzzell '15]

Supercritical universality class

 ${\cal U}$ is supercritical iff there exists an open semicircle ${\cal C}$ which does not contain stable directions

 $\Rightarrow \text{ exists a finite empty droplet} \\ \text{from which we can empty the} \\ \text{line bisecting } \mathcal{C}$

$$\Rightarrow q_c = 0$$

[Bollobas, Smith, Uzzell '15]

Supercritical universality class

 ${\cal U}$ is supercritical iff there exists an open semicircle ${\cal C}$ which does not contain stable directions

 $\Rightarrow \text{ exists a finite empty droplet} \\ \text{from which we can empty the} \\ \text{line bisecting } \mathcal{C}$

$$\Rightarrow q_c = 0$$

 $\Rightarrow \tau^{\rm BP} \sim \text{distance of origin from empty droplet} \sim 1/q^{\Theta(1)}$

[Bollobas, Smith, Uzzell '15]

Examples of supercritical rules

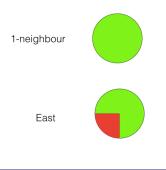
For East and 1-neighbour: droplet = single empty site

イロト イポト イヨト イヨト 三日

Supercritical KCM: a refined classification

We say that supercritical model is

- rooted if it has at least 2 non opposite stable directions
 unrooted otherwise
- Examples { East model is rooted 1-neighbour model is unrooted



Supercritical KCM : results

Theorem 1. [Martinelli, Morris, C.T. '17]

(i) for all supercritical unrooted models $\tau^{\text{KCM}} = 1/q^{\Theta(1)}$ (ii) for all supercritical rooted models $\tau^{\text{KCM}} = 1/q^{\Theta(\log(1/q))}$

Thus for rooted models: $\tau^{\text{KCM}}(q) \gg \tau^{\text{BP}}(q)$. Why? ...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへの

Heuristic for supercritical unrooted KCM

Unrooted KCM:

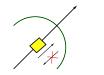
• empty droplet, D, can move back and forth

- \bullet D behaves roughly as a random walk of rate $q^{|D|}$
- \bullet distance of origin to first empty droplet $\sim 1/q^{|D|}$

$$\implies \tau^{\rm KCM} \sim 1/q^c$$

Heuristic for supercritical rooted KCM

Rooted KCM:



- empty droplet moves only in one direction
- \rightarrow logarithmic energy barriers (L.Marêché '17):

to create new droplet at distance $n \sim 1/q^c$ we

have to go through a configuration with $\log n$ empty sites

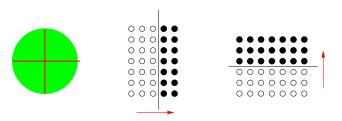
$$\Longrightarrow \tau^{\text{KCM}} \sim 1/q^{c|\log q|}$$

<u>Critical</u> universality class

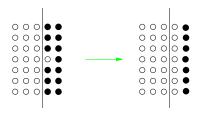
A KCM is critical if

- it is not supercritical
 and there exist an open semicircle C with only a finite number of stable directions

Example 2-neighbour model



2-neighbour model



- 1 site is sufficient to unblock *e*₁
 → *e*₁ is stable with *difficulty* 1
- A column of size $1/q \log(1/q)$ is a *droplet*: if it is empty it can (typically) empty the next column

\mathcal{U} -bootstrap: the general critical case

• Difficulty of direction \vec{u} :

 $d(\vec{u}) =$ minimal number of empty sites to unstabilize \vec{u}

- Difficulty of a model : $\alpha = \min_{\mathcal{C}} \max_{\vec{u} \in \mathcal{C}} d(\vec{u})$
- $\Rightarrow\,$ the size of the minimal empty droplet is $\sim 1/q^{\alpha}$

 $\Rightarrow \tau^{\rm BP}(q) \sim e^{1/q^{\alpha} \log(1/q)^{\Theta(1)}} = \text{mean distance from origin to}$ nearest empty droplet

$$\Rightarrow q_c = 0$$

Critical KCM

We introduce a new key quantity the *bilateral difficulty* :

$$\beta = \min_{\mathcal{C}} \max_{\vec{u} \in \mathcal{C}} \max\{d(\vec{u}), d(-\vec{u})\}$$

Theorem 2. [Martinelli, Morris, C.T. '18]

Let $\gamma = \min(2\alpha, \beta)$. Then

 $\tau^{\mathrm{KCM}}(q) \le e^{1/q^{\gamma} |\log q|^{\Theta(1)}}$

C.TONINELLI

Critical KCM

$$\beta = \min_{\mathcal{C}} \max_{\vec{u} \in \mathcal{C}} \max\{d(\vec{u}), d(-\vec{u})\}$$

Theorem 2. [Martinelli, Morris, C.T. '18]

Let $\gamma = \min(2\alpha, \beta)$. Then

$$\tau^{\mathrm{KCM}}(q) \le e^{1/q^{\gamma} |\log q|^{\Theta(1)}}$$

Conjecture

The upper bound is tight.

Conjecture proven for

- $\alpha = \beta$, just use general bound $\tau^{\text{KCM}} \ge c \tau^{\text{BP}}$
- Duarte model (hard!) [L.Marêché, F.Martinelli, C.T '18]

• work in progress for general cases ...

The case of the Duarte model

- Constraint: at least 2 empty among S, W, and N neighb.
- $\vec{e}_1, \pm \vec{e}_2$ have difficulty = 1;
- all other stable directions have difficulty $= \infty$

$$\rightarrow \alpha = 1 \text{ and } \beta = \infty$$

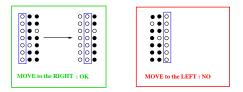
$$\rightarrow \gamma = \min(2\alpha, \beta) = 2$$

Theorem 3. [Marêché, Martinelli, C.T. '18] For Duarte model it holds $\tau^{\text{KCM}} = \exp\left(\frac{c|\log q|^4}{q^2}\right)$

Thus
$$\tau^{\text{KCM}} \gg \exp \frac{c|\log q|^2}{q} = \tau^{\text{BP}}$$
. Why? ...

C.TONINELLI

Duarte model: heuristic



- Droplet: empty column of size $\ell = \frac{|\log q|}{q}$
- Droplets evolve East-like: we can tipically create/destroy a droplet to the right of an existing droplet
- Density of droplets is $q_{eff} = q^{\ell} = \exp{-\frac{|\log(q)|^2}{q}}$
- Droplets also occasionally move up (or down) if they find an empty site above (resp. below) the next column

Heuristic for Duarte model: KCM vs BP

 $L{=}$ distance from the origin to the nearest droplet on the left

- L is typically $1/q_{eff}$
- due to the East like dynamics of droplets we must overcome a logarithmic energy barrier to empty the origin, i.e. create log₂ L simultaneous droplets

$$\Longrightarrow \tau^{\text{KCM}} \sim \frac{1}{q_{eff}^{c|\log_2 q_{eff}|}} = \exp \frac{c|\log q|^4}{q^2}$$

 $\tau^{\text{\tiny BP}} = \text{number of moves in the shortest path} \sim \exp \frac{c |\log q|^2}{q}$

$$\implies \tau^{\rm KCM} \gg \tau^{\rm BP}$$

C.TONINELLI

Turning heuristics into a proof: the key difficulties

- the droplets evolve only if the environment is "good"
- the environment evolves
- no monotonicity, no coupling arguments
- the droplet is not a "rigid" object
- how can we get the lower bound on τ^{KCM} ? couldn't there be a relaxation mechanism faster than the East-like motion of droplets?

Summary

- KCM are the stochastic counterpart of bootstrap percolation;
- times for KCM may diverge very differently from those of bootstrap due to the occurrence of *energy barriers*;
- a refined classification of update rules needed to capture the universality classes of KCM

Thanks for your attention

many thanks to the organisers

and very happy birthday Anton!

イロト イロト イヨト イヨト 三日

Subcritical universality class

Two equivalent definitions

 ${\mathcal U}$ is subcritical iff it is neather supercritical nor critical

or

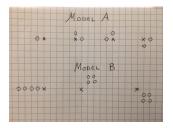
 ${\mathcal U}$ is subcritical iff each open semicircle contains infinite stable directions

 $\Rightarrow q_c > 0$: blocked clusters percolate at $q < q_c$

Example: North East model

Given a KCM, how can we guess its scaling?

- If I give you a rule, can you guess its scaling?
- Sharp divergence: numerics often cannot give clear cut answer



Try to guess:

C.TONINELLI

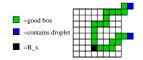
2-neighbour KCM: more on the proof

• First step: upper bound infection time with relaxation time

$$\tau \leq \frac{T_{rel}}{q} = \frac{1}{q} \inf \left(\lambda : \operatorname{Var}(f) \leq \lambda \sum_{x} \mu_q(c_x \operatorname{Var}_x(f)) \ \forall f \right)$$

 $c_x = 1_x$ has at least 2 empty neighbours

- Second step: an auxiliary long range block dynamics
 - blocks are $\ell \times \ell$ boxes, $\ell = 1/q \log(1/q)$
 - put equilibrium on box B_x at rate 1 iff it belongs to a good cluster with two droplets at distance at most $L = \exp(1/q \log(1/q)^2)$



2-neighbour KCM: more on the proof

- Third step : we establish a new long range Poincaré inequality that yields $T_{rel}^{aux} = O(1)$
- Fourth step : canonical path techniques for reversible Markov chains
 - We construct an allowed path to bring the droplets near B_x
 - We move the droplets inside B_x near any site y ∈ B_x: flip at y is now allowed → we "reconstruct" the update of block B_x via allowed elementary moves

C.TONINELLI

 $\to \tau^{\text{2-neighb. KCM}} \leq \text{ length of path} \times \text{congestion} = \exp\left(c/q(\log 1/q)^2\right)$

k-neighbour model on \mathbb{Z}^d , $k \in [2, d]$

 $q_c = 0$, blocked clusters do not percolate [Schonmann '90] $\exists \lambda(d,k) > 0 \text{ s.t. } \tau^{\text{BP}} = \exp_{k-1}\left(\frac{\lambda(d,k) + o(1)}{q^{1/(d-k+1)}}\right)$

[Aizenmann, Lebowitz '88, Cerf, Manzo '02, Balogh, ..., Bollobas, Duminil-Copin, Morris '12]

Theorem (Martinelli, C.T. '16)

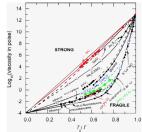
• 2-neighbour KCM:

$$\exp(c/q^{1/(d-1)}) \le \tau^{\text{KCM}}(q) \le \exp\left(\log(1/q)^c/q^{1/(d-1)}\right)$$

• k-neighbour KCM:

$$\exp_{k-1}\left(\frac{c}{q^{1/(d-k+1)}}\right) \leq \tau^{\mathrm{KCM}}(q) \leq \exp_{k-1}\left(\frac{c'}{q^{1/(d-k+1)}}\right)$$

Liquid/glass transition



Strong supercooled liquids: Arrhenius $\tau \sim \exp(\Delta E/T)$

Fragile supercooled liquids: superArrhenius $\tau \sim \exp(c/T^2), \ldots$

$$q \leftrightarrow e^{-1/T}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- \Rightarrow supercritical unrooted models \leftrightarrow strong liquids
- \Rightarrow supercritical rooted models \leftrightarrow fragile liquids

A general constrained Poincare inequality

$$\Omega = S^{\mathbb{Z}^2}$$
$$\mu = \prod_x \mu_x$$

 A_x event on quadrant with bottom left corner xIf $\sup_{x \in \mathbb{Z}^2} (1 - \mu(A_x)) |Supp(A_x)| \le 1/4$

$$Var_{\mu}(f) \le 4\sum_{x} \mu(c_x Var_{\mu_x}(f))$$

where $c_x = 1_{A_x}$