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Bootstrap percolation

First example: 2-neighbour bootstrap on Z2

• At time t = 0 sites are i.i.d., empty with probability q,
occupied with probability 1− q

• At time t = 1
• each empty site remains empty
• each occupied site is emptied iff it has at least 2 empty n.n.

• Iterate

⇒ deterministic monotone dynamics

⇒ ∃ blocked clusters

.
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Critical density and Infection time

• Will the whole lattice become empty?

→ Yes (Van Enter ’87)

• qc := inf{q ∈ [0, 1] : µq(origin is emptied eventually) = 1}

→ qc = 0

• How many steps are needed to empty the origin?

• τBP(q) := µq(first time at which origin is empty)

→ τBP(q) ∼ exp

(
π2

18q
(1 + o(1))

)
for q → 0

[ Aizenmann-Lebowitz ’88, Holroyd ’02, . . . ]
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The general framework: U-bootstrap percolation

• Choose the update family, a finite collection

U = {U1, . . . , Um} of local neighbourhoods of the origin,

i.e. Ui ⊂ Z2 \ 0, |Ui| <∞

• At time t = 1 site x is emptied iff at least one of the
translated neighborhoods Ui + x is completely empty

• Iterate

Example: 2-neighbour bootstrap percolation

U = collection of the sets containing 2 nearest neighb. of origin
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Some other examples

• r-neighbour bootstrap percolation:
U = all the sets containing r nearest neighb. of origin

• East model U = {U1, U2} with U1 = (0,−1), U2 = (−1, 0)

• North-East model U = {U1} with U1 = {(0, 1), (1, 0)}

• Duarte model U = {U1, U2, U3}

3

xxx

U1 U U2
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Universality classes

• qc?
• Scaling of τBP(q) for q ↓ qc?

Of course, answers depend on the choice of the rule U

Three universality classes

• Supercritical models: qc = 0, τBP(q) = 1/qΘ(1)

• Critical models: qc = 0, τBP(q) = exp(1/qΘ(1))

• Subcritical models: qc > 0

[Bollobas, Smith, Uzzell ’15, Balister, Bollobas, Przykucki, Smith ’16]
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Kinetically Constrained Models, a.k.a. KCM

Configurations : η ∈ {0, 1}Z2

Dynamics: continuous time Markov process of Glauber type,
i.e. birth / death of particles

Fix an update family U and q ∈ [0, 1].

Each site for which the U bootstrap constraint is satisfied is
updated to empty at rate q and to occupied at rate 1− q.
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Kinetically Constrained Models, a.k.a. KCM

KCM are a stochastic version version of BP:

⇒ non monotone dynamics ;

⇒ reversible w.r.t. product measure at density 1− q;
⇒ blocked clusters for BP ↔ blocked clusters for KCM;

⇒ empty sites needed to update → slowing down when q ↓ 0
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2-neighbour KCM

q

1−q
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Origins of KCM

KCM introduced by physicists in the ’80’s to model the
liquid/glass transition

• understanding this transition is a major open problem in
condensed matter physics;

• sharp divergence of timescales;

• no significant structural changes.

KCM:

⇒ constraints mimic cage effect:
if temperature is lowered free volume shrinks, q ↔ e−1/T

⇒ trivial equilibrium, sharp divergence of timescales when
q ↓ 0, glassy dynamics (aging, heterogeneities, . . . )
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Why are KCM mathematically challenging?

• KCM dynamics is not attractive: more empty sites can
have unpredictable consequences

• Coupling arguments and censoring arguments fail

• ∃ blocked clusters → relaxation not uniform on initial
condition → worst case analysis is too rough

• Coercive inequalities (e.g. Log-Sobolev) anomalous

→ new tools are needed
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KCM: time scales

τKCM(q) := Eµq( first time at which origin is emptied )

• How does τKCM diverge when q ↓ qc?
• How does it compare with τBP, the infection time of the

corresponding bootstrap process?

An (easy) lower bound

τKCM ≥ c τBP

General, but it does not always capture the correct behavior
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How can you identify the universality class of U?

We need the notion of stable and unstable directions

• Fix a direction ~u

• Start from a configuration which is
• completely empty on the half plane perpendicular to ~u in

the negative direction (Hu)

• filled otherwise

• Run the bootstrap dynamics
H_u

u

~u is

{
stable if no other site can be emptied

unstable otherwise
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Stable and unstable directions: examples

Of course, the stability of a direction depends on U

Ex. East model:

~u = −~e1 is stable; ~u = ~e1 + ~e2 is unstable

directionStable

direction

Unstable

Instead :

• both directions are unstable for 1-neighbour bootstrap

• both directions are stable for North East
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Supercritical universality class

U is supercritical iff there exists an open semicircle C which
does not contain stable directions

⇒ exists a finite empty droplet
from which we can empty the
line bisecting C
⇒ qc = 0

[Bollobas, Smith, Uzzell ’15]
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Supercritical universality class

U is supercritical iff there exists an open semicircle C which
does not contain stable directions

0

⇒ exists a finite empty droplet
from which we can empty the
line bisecting C
⇒ qc = 0

⇒ τBP ∼ distance of origin from empty droplet ∼ 1/qΘ(1)

[Bollobas, Smith, Uzzell ’15]
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Examples of supercritical rules

For East and 1-neighbour: droplet = single empty site
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Supercritical KCM: a refined classification

We say that supercritical model is{
• rooted if it has at least 2 non opposite stable directions
• unrooted otherwise

Examples

{
• East model is rooted
• 1-neighbour model is unrooted
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Supercritical KCM : results

Theorem 1. [Martinelli, Morris, C.T. ’17 ]

(i) for all supercritical unrooted models τKCM = 1/qΘ(1)

(ii) for all supercritical rooted models τKCM = 1/qΘ(log(1/q))

Thus for rooted models: τKCM(q)� τBP(q). Why? . . .
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Heuristic for supercritical unrooted KCM

Unrooted KCM:

• empty droplet, D, can move back and forth

• D behaves roughly as a random walk of rate q|D|

• distance of origin to first empty droplet ∼ 1/q|D|

=⇒ τKCM ∼ 1/qc
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Heuristic for supercritical rooted KCM

Rooted KCM:

• empty droplet moves only in one direction

• → logarithmic energy barriers (L.Marêché ’17):

to create new droplet at distance n ∼ 1/qc we

have to go through a configuration with log n empty sites

=⇒ τKCM ∼ 1/qc| log q|
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Critical universality class

A KCM is critical if
• it is not supercritical
• and there exist an open semicircle C with only

a finite number of stable directions

Example 2-neighbour model
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2-neighbour model

• 1 site is sufficient to unblock ~e1

→ ~e1 is stable with difficulty 1

• A column of size 1/q log(1/q) is a droplet:
if it is empty it can (typically) empty the next column
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U-bootstrap: the general critical case

• Difficulty of direction ~u :
d(~u) = minimal number of empty sites to unstabilize ~u

• Difficulty of a model :
α = minC max~u∈C d(~u)

⇒ the size of the minimal empty droplet is ∼ 1/qα

⇒ τBP(q) ∼ e1/qα log(1/q)Θ(1)
= mean distance from origin to

nearest empty droplet

⇒ qc = 0
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Critical KCM

We introduce a new key quantity the bilateral difficulty :

β = minC max~u∈C max{d(~u), d(−~u)}

Theorem 2. [Martinelli, Morris, C.T. ’18]

Let γ = min(2α, β). Then

τKCM(q) ≤ e1/qγ | log q|Θ(1)
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Critical KCM

β = minC max~u∈C max{d(~u), d(−~u)}

Theorem 2. [Martinelli, Morris, C.T. ’18]

Let γ = min(2α, β). Then

τKCM(q) ≤ e1/qγ | log q|Θ(1)

Conjecture

The upper bound is tight.

Conjecture proven for

• α = β, just use general bound τKCM ≥ cτBP

• Duarte model (hard!) [L.Marêché, F.Martinelli, C.T ’18]

• work in progress for general cases . . .

C.Toninelli Bootstrap percolation and Kinetically constrained models: critical time scales



The case of the Duarte model

• Constraint: at least 2 empty among S , W, and N neighb.

• ~e1,±~e2 have difficulty = 1;

• all other stable directions
have difficulty =∞

→ α = 1 and β =∞
→ γ = min(2α, β) = 2

Theorem 3. [Marêché, Martinelli, C.T. ’18]

For Duarte model it holds τKCM = exp
(
c| log q|4
q2

)
Thus τKCM � exp c| log q|2

q = τBP. Why? . . .
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Duarte model: heuristic

: OK MOVE to the LEFT : NOMOVE to the RIGHT

• Droplet: empty column of size ` = | log q|
q

• Droplets evolve East-like: we can tipically create/destroy a
droplet to the right of an existing droplet

• Density of droplets is qeff = q` = exp− | log(q)|2
q

• Droplets also occasionally move up (or down) if they find
an empty site above (resp. below) the next column
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Heuristic for Duarte model: KCM vs BP

L= distance from the origin to the nearest droplet on the left

• L is typically 1/qeff
• due to the East like dynamics of droplets we must

overcome a logarithmic energy barrier to empty the origin,
i.e. create log2 L simultaneous droplets

=⇒ τKCM ∼ 1

q
c| log2 qeff |
eff

= exp
c| log q|4

q2

τBP = number of moves in the shortest path ∼ exp
c| log q|2

q

=⇒ τKCM � τBP
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Turning heuristics into a proof: the key difficulties

• the droplets evolve only if the environment is ”good”

• the environment evolves

• no monotonicity, no coupling arguments

• the droplet is not a ”rigid” object

• how can we get the lower bound on τKCM?
couldn’t there be a relaxation mechanism faster than the
East-like motion of droplets?
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Summary

• KCM are the stochastic counterpart of bootstrap
percolation;

• times for KCM may diverge very differently from those of
bootstrap due to the occurrence of energy barriers;

• a refined classification of update rules needed to capture
the universality classes of KCM

Thanks for your attention

many thanks to the organisers

and very happy birthday Anton!
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Subcritical universality class

Two equivalent definitions

U is subcritical iff it is neather supercritical nor critical

or

U is subcritical iff each open semicircle contains infinite stable
directions

⇒ qc > 0: blocked clusters percolate at q < qc

Example: North East model
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Given a KCM, how can we guess its scaling?

• If I give you a rule, can you guess its scaling?

• Sharp divergence: numerics often cannot give clear cut
answer

Try to guess:

is model A superArrhenius or Arrhenius? And model B? Is B
faster or slower than A?
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2-neighbour KCM: more on the proof

• First step: upper bound infection time with relaxation time

τ ≤ Trel
q

=
1

q
inf
(
λ : Var(f) ≤ λ

∑
x

µq(cx Varx(f)) ∀f
)

cx = 1x has at least 2 empty neighbours

• Second step: an auxiliary long range block dynamics
• blocks are `× ` boxes, ` = 1/q log(1/q)

• put equilibrium on box Bx at rate 1 iff it belongs to a good
cluster with two droplets at distance at most
L = exp(1/q log(1/q)2)

=good box

−

=B_x

=contains droplet

C.Toninelli Bootstrap percolation and Kinetically constrained models: critical time scales



2-neighbour KCM: more on the proof

• Third step : we establish a new long range Poincaré
inequality that yields T auxrel = O(1)

• Fourth step : canonical path techniques for reversible
Markov chains

• We construct an allowed path to bring the droplets near Bx

• We move the droplets inside Bx near any site y ∈ Bx:
flip at y is now allowed → we ”reconstruct” the update of
block Bx via allowed elementary moves

y y

B_x B_x

→ τ 2-neighb. KCM ≤ length of path× congestion = exp
(
c/q(log 1/q)2

)
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k-neighbour model on Zd, k ∈ [2, d]

qc = 0, blocked clusters do not percolate [Schonmann ’90]

∃λ(d, k) > 0 s.t. τBP = expk−1

(
λ(d, k) + o(1)

q1/(d−k+1)

)
[Aizenmann, Lebowitz ’88, Cerf,Manzo ’02, Balogh, . . . ,
Bollobas, Duminil-Copin,Morris ’12]

Theorem (Martinelli, C.T. ’16)

• 2-neighbour KCM:

exp(c/q1/(d−1)) ≤ τKCM(q) ≤ exp
(

log(1/q)c/q1/(d−1)
)

• k-neighbour KCM:

expk−1

(
c

q1/(d−k+1)

)
≤ τKCM(q) ≤ expk−1

(
c′

q1/(d−k+1)

)
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Liquid/glass transition

Strong supercooled liquids: Arrhenius τ ∼ exp(∆E/T )

Fragile supercooled liquids: superArrhenius τ ∼ exp(c/T 2), . . .

q ↔ e−1/T

• ⇒ supercritical unrooted models ↔ strong liquids

• ⇒ supercritical rooted models ↔ fragile liquids
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A general constrained Poincare inequality

Ω = SZ2

µ =
∏
x

µx

Ax event on quadrant with bottom left corner x

If supx∈Z2(1− µ(Ax))|Supp(Ax)| ≤ 1/4

V arµ(f) ≤ 4
∑
x

µ(cxV arµx(f))

where cx = 1Ax
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