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Introduction

For a function f ≥ 0 with
∫∞
−∞ f(u)du <∞; let

Lf,λ(w) :=

∫ ∞
−∞

ewueλu
2
f(u)du

for w ∈ C, λ ∈ R where possible (e.g., λ < 0); and

Lρ,λ(w) :=

∫
R
ewu+λu2dρ(u).

We take f (or ρ) to be even (and ρ is usually a probability
measure).
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Riemann Hypothesis (RH) — 1859

For a specific function Φ,

RH⇐⇒ zeros in C of LΦ,0 all pure imaginary;

we’ll say LΦ,0 is PIZ. Φ is defined so that

LΦ,0 = Cs(s− 1)π−s/2Γ(s/2)

∞∑
1

n−s
∣∣∣∣
s=1/2+w/2

and its explicit formula is

Φ =

∞∑
1

(
n4π2e9u − 3

2
n2πe5u

)
e−n

2πe4u
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Graph of Φ
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Some History

Polya ‘20s: hoped that LΦ,λ is PIZ ∀λ ∈ R; he proved that
PIZ for λ1 =⇒ PIZ for λ ≥ λ1. (I.e., increasing/decreasing λ
helps/hurts PIZ.)

de Bruijn ‘50: LΦ,λ is PIZ for λ ≥ 1/2. (Based on zeros of
LΦ,0 being in critical strip.)

N. ‘76: ∃λ s.t. LΦ,λ is not PIZ and thus ∃Λ ∈ (−∞, 1/2] s.t.
PIZ for λ ≥ Λ but not for λ < Λ. Λ is now called the de B-N
constant.

RH⇐⇒ Λ ≤ 0
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Some History

de B. ‘50: Λ ≤ 1/2,

N. ‘76: Λ > −∞.

There is also

N. ‘76 Conjecture: Λ ≥ 0;
i.e., the RH, if true, is only barely so.

∃ series of bounds on Λ better than Λ > −∞:

Λ > −50 (Csordas-Norfolk-Varga ‘88), ... ,

Λ > −4.3× 10−6 (Csordas-Smith-Varga ‘94), ... ,

Λ > −1.1× 10−11 (Saouter-Gourdon-Demichel ‘11);

also Λ < 1/2 (Ki-Kim-Lee ‘09).
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Update

B. Rodgers - T. Tao (arXiv 18 Jan 2018):

Proof of N. Conjecture: Λ ≥ 0

Methods — extend Csordas-Smith-Varga work to study
motion in t of zeros of LΦ,t.

New Project (see terrytao.wordpress.com) to improve
upper bound Λ < 1/2 of Ki-Kim-Lee: this is
Polymath 15 project; as of 04/30/18: Λ < 0.28.
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Mathematical Physics Background

Math. Phys. interest starts from the ‘52 Ising model Thm. of Lee
and Yang that generates ρ’s s.t. Lρ,λ is PIZ for λ ≥ 0.

For Euclidean Field Theory, would like f = e−V s.t. Lf,λ is PIZ
also for all λ < 0; call such an f “perfect”.

Example, Polya ‘20s, Simon-Griffiths ‘73

e−au
4−bu2 for a > 0, b ∈ R is perfect.

Motivated by e−a cosh(u), N ‘76 determined all perfect f ’s; they did
not include e−a cosh(u) or Φ of RH (which proved Λ > −∞).
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Some related results

Theorem A (N., Wei WU ‘17)

If
∫
eλu

2
dρ =∞ ∀ λ > 0; then for every λ < 0, Lρ,λ is not PIZ.

Proof is based on a surprising weak convergence result (Thm. B
below). (∃ also a connection to Gaussian Multiplicative Chaos.)
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Some related results

Definition

A random variable X is in Z if:
(i) X

d
= −X, and (ii) E[ebX

2
] <∞ for some b > 0, and

(iii) E(ezX) has only PIZ.

Theorem B (N., WU ‘17)

If each Xn ∈ Z (with b = b(Xn)) and Xn
d

=⇒ X, then X ∈ Z .

How Th. B=⇒ Th. A: If conclusion of Th. A not valid, then
ρλ0 ≡ Cλ0eλ0u

2
dρ ∈ Z for some λ0 < 0; then by Polya would be

in Z ∀λ ∈ (λ0, 0), but ρλ → ρ as λ ↑ 0. So by Th. B, ρ ∈ Z .
But ρ /∈ Z since by assumptions of Th. A, it doesn’t satisfy (ii).
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Proof of Theorem B

Key to the proof of Th. B is a Hadamard factorization:

X ∈ Z ⇒ E(ezX) = eBz
2
∏
k

(1 +
z2

y2
k

)

with B ≥ 0, yk ∈ R,
∑

1/y2
k <∞ and E(X2) = 2(B +

∑
1/y2

k).

Remark about N. ‘76:

A perfect f(u) must be of form

Ku2me−au
4−bu2

∏
(1 +

u2

y2
k

)e−u
2/y2k

with
∑

1/y4
k <∞, a > 0, b ∈ R (or a = 0, b+

∑
1/y2

k > 0).

Charles M. Newman Remarks on the Riemann Hypothesis 11/12



Background and Motivation
Some Related Results

Thanks!
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