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Anton and the Adaptive Biology



Adaptive Biology

The population has the propensity to generate as well to select individual
diversity.

The ability of an individual (bacteria) to survive and reproduce depends on
phenotypic (or genetic) parameters called traits.

The evolution of the trait distribution results from the following mechanisms:

Heredity. (Vertical) transmission of the ancestral trait to the offsprings.

Mutation. Generates variability in the trait values.

Selection. Individuals with traits increasing their survival probability or
their reproduction ability will spread through the population over time.
The variability can also result from competition between individuals.

Horizontal Gene Transfer (HGT): the bacteria exchange genetic
information.



Horizontal Gene Transfer

There are several mechanisms for horizontal gene transfer: transformation,
transduction and conjugation.

Conjugation : transfer of genetic material between bacteria cells by direct
cell-to-cell contact. We will focus on plasmid conjugation.

Plasmids: small circular double-stranded DNA, physically separated from the
chromosonal DNA. They replicate from a cell to another one, independently
of the chromosome.



Plasmids in E-Coli

Number of identical plasmids in a cell: from 1 to thousands.



Plasmid transfer plays a main role in the evolution, maintenance, and
transmission of virulence.
Indeed, plasmids are known to carry factors that can affect their host’s
fitness dramatically (as pathogens or genes for antibiotic resistance).

Plasmid transfer is the primary reason for bacterial antibiotic resistance.

Artificial plasmids are widely used as vectors in molecular cloning
(CRISPR/Cas 9)

The plasmids are costy and the cells with plasmids are less efficient for
reproduction.

How the demographic parameters, the transfer rate and the environment do
interplay in the evolution mechanism?



Our goal

To propose a general stochastic eco-evolutionary model of population
dynamics with birth, death, mutation, transfer and competition

To integrate the different size and time scales.

Understanding the trade-offs between intrinsic growth, competition and
transfer in evolutionary mechanisms.

Focus on the interplay between ecology and evolution.

To study the maintenance of polymorphism and the invasion or
elimination of traits

To show how HGT can drastically affect the evolutionary outcomes.



Adaptive Biology

How to describe and quantify the successive invasions of successful
mutants?

Three biological assumptions:
large populations

rare mutations

small mutation steps

and long (evolutive) time scale.

Remark: The evolution time scale can be very fast (with respect to the human
time scale . . . ).

For example, bacteria E. Coli become resistant to an antibiotic by an
evolutive procedure after ∼ 5 years.

From a virus, its shorter (∼ 6 months).
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An individual-based model

Phenotypic trait under selection x in a compact subset X of Rd (rate of
nutrient intake, body size at maturity, age at maturity . . . ).

K scales the size of the population (large K means large population).

Population of NK (t) individuals weighted by 1
K .

It is represented by the point measure

νK
t =

1
K

NK (t)∑
i=1

δxi ; NK (t) = K 〈νK
t , 1〉,

where xi is the trait of the individual i .



Transitions

BIRTHS:

Each individual with characteristics x gives birth to a single individual at rate
b(x) .

The function b is continuous on X .

pK scales the mutation probability (small pK means rare mutation).

At each birth time:

with probability 1−pK , the offsprings inherits of x . (Clonal reproduction)

Otherwise mutations on trait occur independently with probability pK .

Trait mutation: the new trait is z chosen according to m(x , z)dz.

The mutation measure m(., z)dz is continuous.



HORIZONTAL GENE TRANSFER (HGT)

Bacteria conjugation: the donor transfers its trait to the recipient.

In a population ν, an individual with trait x chooses a partner with trait y
at rate hK (x , y , ν).
The new traits are (x , x).

Unilateral plasmid transfer.
The donor transmits a copy of its plasmid to individuals with less
plasmids: hK (x , y , ν) = 0 for x < y .



DEATHS:

Each individual with characteristics x dies at rate

d(x) +
1
K

NK (t)∑
i=1

C(x , xi ) = d(x) + C ∗ νK
t (x).

C(x , xi )

K
: competition pressure between two individuals.

The functions d and C are bounded continuous and

r(x) = b(x)− d(x) > 0 ; C(x , y) ≥ c > 0.

For some p ≥ 2,
E
(
〈νK

0 , 1〉p
)
< +∞.

Moment conditions propagate and imply the existence and uniqueness of the
process.



Let us introduce Ff (ν) =
∫

f (x)ν(dx), for f ∈ Cb and ν = 1
K

∑
i=1 δxi .

The infinitesimal generator of (νK
t )t is then given by

LK Ff (ν) =

∫
X
ν(dx)

[
b(x)

(
(1− pK )f (x) + pK

∫
X

f (z)m(x , z)dz
)

−
(
d(x) + C ∗ ν(x)

)
f (x)

+

∫
X

K hK (x , y , ν)
(
f (x)− f (y)

)
ν(dy)

]
.

Moreover,∫
X

f (x)νK
t (dx) =

∫
X

f (x)νK
0 (dx) +

∫ t

0
LK Ff (ν

K
s )ds + MK ,f

t ,

where MK ,f is a càdlàg square-integrable martingale issued from 0 and

E((MK ,f
t )2) =

1
K

E
(∫ t

0

∫
X

{(
(1− pK )b(x)− d(x)− C ∗ νK

s (x))
)

f 2(x)

+ pK b(x)

∫
X

f 2(z) m(x , z)dz

+

∫
X

K hK (x , y , νK )
(
f (x)− f (y)

)2
νK

s (dy)

}
νK

s (dx)ds
)
.



Large population, time scale O(1)

K →∞ , pK → p and.

Observations: HGT rate is density-dependent when the population size is low
and frequency-dependent when the population is close to its carrying
capacity.

lim
K→∞

K hK (x , y , ν) = τ(x , y , 〈ν, 1〉) =
τ(x , y)

β + µ 〈ν, 1〉 ,

where τ is a continuous function.

β = 1, µ = 0 : density dependent transfer rate (DD) ;

β = 0, µ = 1 : frequency dependent transfer rate (FD) ;

β, µ 6= 0 : Beddington-deAngelis transfer rate (BDA). (Cf. Geritz, Gyllenberg)



Proposition: Let T > 0. If νK
0 =⇒ ξ0 when K → +∞, the sequence

(νK )K≥1 converges in probability in D([0,T ],MF (Rd )) to the solution
ξ ∈ C([0,T ],MF (Rd )) of

〈ξt , f 〉 = 〈ξ0, f 〉+
∫ t

0

∫
X

{(
b(x)(1− p)− d(x)− C ∗ ξ(x)

)
f (x)

+pb(x)

∫
X

f (z)m(x , z)dz

+

∫
X

(
f (x)− f (y)

) τ(x , y)

β + µ〈ξs, 1〉
ξs(dy)

}
ξs(dx)ds.

Proof: usual argument compactness-identification-uniqueness using moment
estimates.



Conjugation - time scale O(1)

Let us introduce the transfer flux α(x , y) = τ(x , y)− τ(y , x) (positive or
negative or 0).

Proposition: If ξ0 � leb meas., then for any t > 0, the measure
ξt � leb meas. and its density is given by (u(t , x), x ∈ X ) positive solution
of the equation

∂tu(t , x) =
(
b(x)(1− p)− d(x)− C ∗ u(t , x)

)
u(t , x) + p

∫
X

b(y)m(y , x)u(t , y)dy

+
u(t , x)

β + µ‖u(t , .)‖1

∫
X
α(x , y)u(t , y)dy ,

with C ∗ u(t , x) =
∫

C(x , y)u(t , y)dy , ‖u(t , .)‖1 =
∫

u(t , y)dy.

Long time behaviour? (Cf. Desvillettes, Jabin, Mischler, Raoul ’08 (α = 0), Hinow,
Le Foll, Magal, Webb ’09, Magal, Raoul ’15).

Rare mutation p = 0: The mutations disappear at this time scale.



Two traits case X = {x , y} and rare mutations: pK → 0.

Set X K
t = νK

t ({x}) ; Y K
t = νK

t ({y}).

Proposition:
When K →∞ , the stochastic process (X K

t ,Y
K
t )t≥0 converges in probability

to the solution (nx
t , n

y
t )t≥0 of the ODEs system:

dnx

dt
=
(

r(x)− C(x , x)nx − C(x , y)ny +
α(x , y)

β + µ (nx + ny )
ny
)

nx ;

dny

dt
=
(

r(y)− C(y , x)nx − C(y , y)ny − α(x , y)

β + µ (nx + ny )
nx
)

ny .

α(x , y) = τ(x , y)− τ(y , x).

Remark: if there is only one type x , the equation becomes
dnx

dt
=
(

r(x)− C(x , x)nx
)

nx .

A unique stable equilibrium:

n̄x =
r(x)

C(x , x)
.

In the case of a single trait x : equilibrium nx =
r(x)

C(x , x)
.



Stability Analysis
When α(x , y) ≡ 0: classical Lotka-Volterra system. The stability is governed
by the sign of the invasion fitness function

f (y ; x) = r(y)− C(y , x) n̄x = r(y)− C(y , x)
r(x)

C(x , x)
.

For C constant and r monotone, f (y ; x) = r(y)− r(x): no co-existence.

When α(x , y) 6= 0:
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The circles and stars respectively show
the stable and unstable fixed points.



Invasion fitness of individuals with trait y in the x-resident population:

S(y ; x) = r(y) +
(α(y , x) n̄x

β + µ n̄x − C(y , x)
)

n̄x

= r(y) +
α(y , x)r(x)

βC(x , x) + µr(x)
− C(y , x))r(x)

C(x , x)
.

Compared to the classical two-species Lotka-Volterra system, 4 new
phase diagrams are possible: Figures (5)-(8).

Figures (1)-(4) are possible for all forms of HGT rates while Figures
(5)-(6) are not possible when the HGT rate is DD and Figures (7)-(8) are
only possible when the HGT rate is BDA.

Figures (5)-(8): depending on the initial conditions, the population can be
stably polymorphic or can fix one of the two traits.



Study of the dynamical system

If C(y , y) > 0 and C(x , x) > 0, then φ(nx , ny ) = 1
nx ny is a Dulac function.

Bendixson-Dulac Theorem : the system has no cycle in (R∗+)2.

Fixed points in the positive quadrant: it’s easier to consider the system
"population size and frequencies".

n(t) = nx (t) + ny (t) ; q(t) =
nx (t)
n(t)

.

dn
dt

= n
(

q r(y) + (1− q) r(x)− Cyy q2n − (Cyx + Cxy ) q(1− q)n

− Cxx (1− q)2n
)

dq
dt

= q (1− q)
(

r(y)− r(x) + nq(Cxy − Cyy ) + n(1− q)(Cxx − Cyx )+

+ α(x , y)
n

β + µn

)
.

Use of the Poincaré index and of Poincaré-Hopf Theorem to get the
sources and the sinks.



Constant competition case

Assume that C is constant.

Then the system reduces to

dn
dt

= n
(

q r(y) + (1− q) r(x)− Cn
)

dq
dt

= q (1− q)
(

r(y)− r(x) + α(x , y)
n

β + µn

)
.

In the particular case of frequency-dependent transfer rate (µ = 1, β = 0), we
cannot obtain co-existence.

We have the "Invasion-implies-Fixation" principle.



Invasion, fixation or polymorphism persistence of a costly plasmid

Our results show that the horizontal transfer can dramatically change the
usual picture.

Fate of a deleterious mutant y in a resident population x .

Here the usual fitness is negative and the transfer is unilateral.

f (y ; x) < 0 ; τ(y , x) > 0 ; τ(x , y) = 0.



Cases where C is constant:

• Unilateral DD transfer.

S(y ; x) = r(y)− r(x) + τ(y , x)
r(x)

C
; S(x ; y) = r(x)− r(y)− τ(y , x)

r(y)

C
.

b(y) = 0.5 ; b(x) = 1 ; τ(y , x) =
α(y , x) = 0, 7 ; K = 1000 ;
C = 1 ; d ≡ 0.

Polymorphism with C constant.

• Unilateral FD transfer.

S(y ; x) = r(y)− r(x) + τ(y , x) ; S(x ; y) = −S(y ; x).

b(y) = 0.5 ; b(x) = 1 ; τ(y , x) =
α(y , x) = 0, 7 ; K = 1000 ;
C = 1 ; d ≡ 0.

Fixation of a deleterious mutant.



The case of a very consuming mutant (x = a, y = A).

• Unilateral DD transfer.

b(y) = 0.8 ; b(x) = 1 ; τ(y , x) =
α(y , x) = 0.5 ; K = 5000, Cyx =
Cxx = 2 ; Cyy = 4 ; Cxy = 1 ; d ≡ 0.

Fixation of a deleterious and very
consuming mutant.

• Unilateral FD transfer.

b(y) = 0.8 ; b(x) = 1 ; τ(y , x) =
α(y , x) = 0.5 ; K = 5000 ; Cyx =
Cxx = 2 ; Cyy = 4 ; Cxy = 1 ; d ≡ 0.

Polymorphism with a deleterious and
very consuming mutant.



Invasion probability of y in a resident population of type x :
S(y ; x) > 0.

Pyx =
[S(y ; x)]+

b(y) + τ(y , x , 0, n̄x ) n̄x =
[b(y)− d(y) +

(
τ(y , x , 0, n̄x )− Cyx

)
n̄x ]+

b(y) + τ(y , x , 0, n̄x ) n̄x .

Unilateral horizontal transfer increases the probability of invasion of y.

Time for the population y to be of order K : log K
S(y ;x) .

Competition (deterministic): follows the EDOs system - Duration of
order 1.

Fixation (when the deterministic system converges to (n̄y , 0)):
birth-death process with negative fitness S(x ; y) < 0.

Duration of order log K
|S(x ;y)| .

Fixation times are decreased by transfer.



Large population, Rare mutations, Evolution time scale t
KpK

We come back to the continuum of traits x ∈ X .

We assume rare mutations:

log K � 1
KpK

� eKV , ∀V > 0.

It results a separation of time scales, between competition phases and
mutation arrivals. (Adaptation of Champagnat 2006, heuristics in Metz et al.
1996).

log K � 1
KpK

: the selection process has sufficient time to eliminate
disadvantaged trait before the next mutation event arrives with high
probability.

Succession of phases of trait mutant invasion, and phases of
competition between traits.

At the mutation time scale: we will only see jumps from nx bacteria
with trait x to ny bacteria with trait y .



Each jump corresponds to the successful invasion of a new mutant trait.

Theorem (TSS Approximation)

Assume: the initial conditions νK
0 = nK

0 δx0 (dx) converge to nx0δx0 (dx).

As soon as Invasion-implies-fixation, the sequence
(
νK

t
KpK

, t ≥ 0
)

K≥1

converges in law to a jump process which jumps from nx δx to ny δy with the
jump measure

b(x) nx [S(y ; x)]+

b(y) + τ(y , x , nx )nx
m(x , y)dy with nx =

r(x)

C(x , x)
.



Main Fact: transfer events may drastically change the evolution.

Assume constant competition pressure C:

S(y ; x) = r(y)− r(x) +
α(y , x) r(x)

β C + µ r(x)
= f (y ; x) +

α(y , x) r(x)

β C + µ r(x)
.

Example: x ∈ [0, 4]. b(x) = 4− x ; d ≡ 1 , C(x , y) ≡ C . Then,

nx =
3− x

C
.

(i) Without HGT: the fitness function equals

f (y ; x) = x − y ,

f (y ; x) > 0 ⇐⇒ y < x .

A mutant with trait y will invade the population ⇐⇒ y < x .
The evolution will yield decreasing traits.

(ii) With frequency-dependence HGT: We consider the transfer rates

τ(x , y) = ex−y , β = 0 , µ = 1,

S(y ; x) = −(y − x) + ey−x − e−(y−x)

S(y ; x) > 0 ⇐⇒ y > x .

The evolution will lead to larger and larger traits.



The canonical equation - FD HGT

When the mutation step tends to zero and in a longer time scale, the trait
dynamics is given by the ODE

x ′(t) = nx
(

r ′(x) + ∂1τ(x , x)− ∂2τ(x , x)
) ∫

h2 m(x , h)dh.

In the example:

Without transfer:

x ′(t) = − 3− x(t)
C

∫
h2 m(x(t), h)dh

yields the optimal nil trait which maximizes the birth rate.

With transfer:
x ′(t) =

3− x(t)
C

∫
h2 m(x(t), h)dh.

The evolution decreases the reproduction rate until it vanishes and therefore
may lead the population to evolutive suicide.



Unilateral HGT: transfer of plasmid

(Simulations: Lucie Desfontaines and Stéphane Krystal).

x ∈ [0, 4]; m(x , z)dz = N (x , σ2).

Frequency-dependent unilateral HGT model. τ(x , y) = τ 1x>y .

The constant τ > 0 will be the varying parameter.

b(x) = 4− x ; d(x) = 1 ; C = 0, 5 ; p = 0, 03 ; σ = 0, 1 ; K = 1000.

Initial state: 1000 individuals with trait 1. Equilibrium of population size
with trait 1: 1000× b(1)−d(1)

C = 4000 individuals.

Optimal trait 0 and size at equilibrium: 1000× b(0)−d(0)
C = 6000

individuals.

The transfer favorizes the large traits: a trade-off between reproduction
and transfer.



τ = 0



τ = 0,2 - Almost no modification



τ = 0,6 - Stepwise Evolution

Transfer will convert individuals to larger traits.

Then, the population decreases. For a given trait x , the equilibrium size
Neq = b(x)−d

C × 1000 = 2000(3− x).

Brutal appearance of new strains.



τ = 0,7 - Random Macroscopic Evolution

Four simulations with the same parameters. Big differences due to the
aptitude of a mutant to create a new strain.



τ = 1 - Evolutive Suicide

HGT impedes the population to keep a small mean trait to survive.



Happy Birthday, Anton!



Rare or small mutations and long time scale

1 - Work in progress (with V. Calvez and S. Mirrahimi)

We consider a close equation with Gaussian mutations at rate ε2 and long
time t/ε.

∂tnε = (b − x)
nε
ε

+ ε b ∂2
x nε +

nε
ε
∫

nε(t , y)dy

∫
α(x , y)nε(t , y)dy .

One introduces uε(t , x) = ε log nε(t , x).

Then

∂tuε = b − x + εb∂2
x uε + b |∂x uε|2 +

∫
α(x , y)nε(t , y)dy∫

nε(t , y)dy
.

Assume that nε → n,
∫
α(x , y)nε(t , y)dy → Iα(t) =

∫
α(x , y)n(t , y)dy and∫

nε(t , y)dy → I(t) =
∫

n(t , y)dy .

One obtains the limiting equation

∂tu(t , x) = b − x + b |∂x u|2 +
Iα(t)
I(t)

.



Assume now that for any t , there exists a unique dominant trait:
argmax u(t , x) = {x̄(t)}.

Then the equation is

∂tu(t , x) = b − x + b |∂x u|2 + α(x , x(t)).

Seeking a stationary equation of the form u(t , x) = λt + U(x) is equivalent to
solving:

λ = b − x + b|∂x U(x)|2 + α(x , x̄) (1)

where x̄ is the dominant trait: argmax U = {x̄}. There are two macroscopic
equations for the two unknowns (λ, x̄):{

λ = b − x̄ + α(x̄ , x̄)

0 = −1 + ∂xα(x̄ , x̄)
(2)

Moreover, the following nonnegativity constraint must be satisfied
everywhere:

(∀x) λ− b + x − α(x , x̄) ≥ 0 (3)

This is where interesting things happen depending on the shape of α (the
value of τ ): it can happen than the solution (λ, x̄) violates the last condition.
Then, things are going to oscillate...



For α(x , y) = φ(x − y), where φ(z) = τ tanh(z), the dominant trait follows the
following dynamics:

τ small τ large.


