Gibbs-non Gibbs transitions in different geometries: The Widom-Rowlinson model under stochastic spin flip dynamics

Christof Külske

August 25, 2018

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Gibbs on lattice, sequentially Gibbs, marked Gibbs point processes

Hard-core and soft-core Widom-Rowlinson model

Dynamical Gibbs-non Gibbs transitions

Infinite volume Gibbs measures on the lattice

 $\{-1,0,1\}$ local state space, particles with spin, and holes \mathbb{Z}^d lattice site space $\Omega=\{-1,0,1\}^{\mathbb{Z}^d} \text{ infinite volume configurations}$

Infinite volume Gibbs measures on the lattice

 $\{-1,0,1\}$ local state space, particles with spin, and holes \mathbb{Z}^d lattice site space $\Omega=\{-1,0,1\}^{\mathbb{Z}^d} \text{ infinite volume configurations}$

Specification: a candidate system for conditional probabilities of an infinite volume Gibbs measure μ (probability measure on Ω) to be defined by DLR equations

 $\mu(\gamma_{\Lambda}(f|\cdot)) = \mu(f)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition (Specification)

Family of proper probability kernels $\gamma = (\gamma_{\Lambda})_{\Lambda \Subset \mathbb{Z}^d}$ with

Consistency:

$$\gamma_{\Delta}(\gamma_{\wedge}(d\omega|\cdot)|\widetilde{\omega})=\gamma_{\Delta}(d\omega|\widetilde{\omega})$$

for all finite volumes $\Lambda \subset \Delta \Subset \mathbb{Z}^d$

Measurability: $\gamma_{\Lambda}(f|\cdot) \in \mathcal{F}_{\Lambda^c}$

Properness: $\gamma_{\Lambda}(1_A|\cdot) = 1_A$ for $A \in \mathcal{F}_{\Lambda^c}$

Quasilocality (regularity): $\omega \mapsto \gamma_{\Lambda}(f|\omega)$ should be quasilocal for f quasilocal

Gibbsian specifications on the lattice

A Gibbsian specification on $\Omega = \{-1, 0, 1\}^{\mathbb{Z}^d}$ for interaction potential $\Phi = (\Phi_A)_{A \in \mathbb{Z}^d}$ and apriori measure $\alpha \in \mathcal{M}_1(\{-1, 0, 1\})$ has kernels

$$\gamma_{\Lambda,\Phi,\alpha}(\omega_{\Lambda}|\omega_{\Lambda^{\rm c}}):=\frac{1}{Z_{\Lambda}(\omega_{\Lambda^{\rm c}})}e^{-\sum_{A\cap\Lambda\neq\emptyset}\Phi_A(\omega)}\prod_{i\in\Lambda}\alpha(\omega_i)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Gibbsian specifications on the lattice

A Gibbsian specification on $\Omega = \{-1, 0, 1\}^{\mathbb{Z}^d}$ for interaction potential $\Phi = (\Phi_A)_{A \in \mathbb{Z}^d}$ and apriori measure $\alpha \in \mathcal{M}_1(\{-1, 0, 1\})$ has kernels

$$\gamma_{\Lambda,\Phi,\alpha}(\omega_{\Lambda}|\omega_{\Lambda^{\rm c}}):=\frac{1}{Z_{\Lambda}(\omega_{\Lambda^{\rm c}})}e^{-\sum_{A\cap\Lambda\neq\emptyset}\Phi_{A}(\omega)}\prod_{i\in\Lambda}\alpha(\omega_{i})$$

First statistical mechanics task:

Given the specification $\gamma = (\gamma_{\Lambda})_{\Lambda \in \mathbb{Z}^d}$, find the **Gibbs measures**

$$\mathcal{G}(\gamma) = \{\mu \in \mathcal{M}_1(\Omega), \mu \gamma_{\Lambda} = \mu, \text{ for all } \Lambda \Subset \mathbb{Z}^d\}$$

Gibbsian specifications on the lattice

A Gibbsian specification on $\Omega = \{-1, 0, 1\}^{\mathbb{Z}^d}$ for interaction potential $\Phi = (\Phi_A)_{A \in \mathbb{Z}^d}$ and apriori measure $\alpha \in \mathcal{M}_1(\{-1, 0, 1\})$ has kernels

$$\gamma_{\Lambda,\Phi,\alpha}(\omega_{\Lambda}|\omega_{\Lambda^{\rm c}}):=\frac{1}{Z_{\Lambda}(\omega_{\Lambda^{\rm c}})}e^{-\sum_{A\cap\Lambda\neq\emptyset}\Phi_{A}(\omega)}\prod_{i\in\Lambda}\alpha(\omega_{i})$$

First statistical mechanics task:

Given the specification $\gamma = (\gamma_{\Lambda})_{\Lambda \in \mathbb{Z}^d}$, find the **Gibbs measures**

$$\mathcal{G}(\gamma) = \{\mu \in \mathcal{M}_1(\Omega), \mu \gamma_{\Lambda} = \mu, \text{ for all } \Lambda \Subset \mathbb{Z}^d\}$$

If $|\mathcal{G}(\gamma)| > 1$ we say that the specification γ has a **phase transition**

Hardcore and softcore Widom-Rowlinson model

Hardcore Widom Rowlinson model on \mathbb{Z}^d (Higuchi-Takei 2004)

$$\gamma_{\Lambda,\alpha}^{hc}(\omega_{\Lambda}|\omega_{\Lambda^{c}}) := \frac{1}{Z_{\Lambda}^{hc}(\omega_{\Lambda^{c}})} I_{\Lambda}^{hc}(\omega_{\Lambda}\omega_{\Lambda^{c}}) \prod_{i\in\Lambda} \alpha(\omega_{i}),$$

hardcore-indicator $I^{hc}_{\Lambda}(\omega) = \prod_{i \in \Lambda} I_{(\omega_i \omega_j \neq -1, \forall j \sim i)}$ forbids +- neighbors

Hardcore and softcore Widom-Rowlinson model

Hardcore Widom Rowlinson model on \mathbb{Z}^d (Higuchi-Takei 2004)

$$\gamma^{hc}_{\Lambda,\alpha}(\omega_{\Lambda}|\omega_{\Lambda^{c}}) := \frac{1}{Z^{hc}_{\Lambda}(\omega_{\Lambda^{c}})} I^{hc}_{\Lambda}(\omega_{\Lambda}\omega_{\Lambda^{c}}) \prod_{i\in\Lambda} \alpha(\omega_{i}),$$

hardcore-indicator $I^{hc}_{\Lambda}(\omega) = \prod_{i \in \Lambda} I_{(\omega_i \omega_j \neq -1, \forall j \sim i)}$ forbids +- neighbors

Hardcore and softcore Widom-Rowlinson model

Hardcore Widom Rowlinson model on \mathbb{Z}^d (Higuchi-Takei 2004)

$$\gamma_{\Lambda,\alpha}^{hc}(\omega_{\Lambda}|\omega_{\Lambda^{c}}) := \frac{1}{Z_{\Lambda}^{hc}(\omega_{\Lambda^{c}})} I_{\Lambda}^{hc}(\omega_{\Lambda}\omega_{\Lambda^{c}}) \prod_{i\in\Lambda} \alpha(\omega_{i}),$$

hardcore-indicator $I^{hc}_{\Lambda}(\omega) = \prod_{i \in \Lambda} I_{(\omega_i \omega_j \neq -1, \forall j \sim i)}$ forbids +- neighbors

Soft-Core Widom Rowlinson model with repulsion parameter $\beta > 0$

$$\gamma_{\Lambda,\beta,\alpha}^{sc}(\omega_{\Lambda}|\omega_{\Lambda^{c}}) := \frac{1}{Z_{\Lambda}^{sc}(\omega_{\Lambda^{c}})} e^{-\beta \sum_{\{i,j\} \in \mathcal{E}_{\Lambda}^{b}} I'(\omega_{i}\omega_{j}=-1)} \prod_{i \in \Lambda} \alpha(\omega_{i})$$

punishes +- neighbors

Finite-volume Gibbs measure of size $N \in \mathbb{N}$ for the **Mean-Field** Soft-Core Widom-Rowlinson model with repulsion parameter $\beta > 0$

$$\mu_{N,\beta,\alpha}(\omega_{[1,N]}) := \frac{1}{Z_{N,\beta,\alpha}} e^{-\frac{\beta}{2N}\sum_{1 \le i,j \le N} I_{(\omega_i \omega_j = -1)}} \prod_{j=1}^N \alpha(\omega_j)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Take $(\mu_N)_{N \in \mathbb{N}}$ a sequence of exchangeable probability measures on $\{-1, 0, 1\}^N$. The model is called **sequentially Gibbs** iff

$$\lim_{N\uparrow\infty}\mu_N(d\omega_1|\omega_{[2,N]})=\gamma(d\omega_1|\nu)$$

・ロト・日本・モト・モート ヨー うへで

Take $(\mu_N)_{N \in \mathbb{N}}$ a sequence of exchangeable probability measures on $\{-1, 0, 1\}^N$. The model is called **sequentially Gibbs** iff

$$\lim_{N\uparrow\infty}\mu_N(d\omega_1|\omega_{[2,N]})=\gamma(d\omega_1|\nu)$$

exists whenever

$$rac{1}{N-1}\sum_{i=2}^N \delta_{\omega_i} o
u$$

for all limiting empirical distributions of conditionings $\nu \in \mathcal{M}_1(\{-1, 0, 1\})$.

(日) (日) (日) (日) (日) (日) (日) (日)

Take $(\mu_N)_{N \in \mathbb{N}}$ a sequence of exchangeable probability measures on $\{-1, 0, 1\}^N$. The model is called **sequentially Gibbs** iff

$$\lim_{N\uparrow\infty}\mu_N(d\omega_1|\omega_{[2,N]})=\gamma(d\omega_1|\nu)$$

exists whenever

$$rac{1}{N-1}\sum_{i=2}^N \delta_{\omega_i} o
u$$

for all limiting empirical distributions of conditionings $\nu \in \mathcal{M}_1(\{-1, 0, 1\})$.

Consequence: Sequential Gibbs

 \Rightarrow The limiting kernel $u \mapsto \gamma(d\omega_1|
u)$ is continuous

Take $(\mu_N)_{N \in \mathbb{N}}$ a sequence of exchangeable probability measures on $\{-1, 0, 1\}^N$. The model is called **sequentially Gibbs** iff

$$\lim_{N\uparrow\infty}\mu_N(d\omega_1|\omega_{[2,N]})=\gamma(d\omega_1|\nu)$$

exists whenever

$$rac{1}{N-1}\sum_{i=2}^N \delta_{\omega_i} o
u$$

for all limiting empirical distributions of conditionings $\nu \in \mathcal{M}_1(\{-1, 0, 1\})$.

Consequence: Sequential Gibbs

 \Rightarrow The limiting kernel $\nu \mapsto \gamma(d\omega_1|\nu)$ is continuous

If the lim does not exist for a given ν , call ν a **bad** empirical measure

Take $(\mu_N)_{N \in \mathbb{N}}$ a sequence of exchangeable probability measures on $\{-1, 0, 1\}^N$. The model is called **sequentially Gibbs** iff

$$\lim_{N\uparrow\infty}\mu_N(d\omega_1|\omega_{[2,N]})=\gamma(d\omega_1|\nu)$$

exists whenever

$$rac{1}{N-1}\sum_{i=2}^N \delta_{\omega_i} o
u$$

for all limiting empirical distributions of conditionings $\nu \in \mathcal{M}_1(\{-1, 0, 1\})$.

Consequence: Sequential Gibbs

 \Rightarrow The limiting kernel $\nu \mapsto \gamma(d\omega_1|\nu)$ is continuous

If the lim does not exist for a given ν , call ν a **bad** empirical measure

Marked Gibbs Point Processes in Euclidean space: Some analogy to lattice theory

 $\begin{aligned} &\{-1,1\} \text{ mark space (has no zeros)} \\ &\Omega \text{ locally finite subsets of } \mathbb{R}^d \text{ (for spatial degrees of freedom)} \\ &\text{marked particle configuration } \underline{\omega} = (\omega^-, \omega^+) \\ &\text{ where each } \omega^-, \omega^+ \in \Omega \end{aligned}$

 $\underline{\Omega}$ marked point configurations, configuration space

 $\underline{\mathcal{F}}, \underline{\mathcal{F}}_{\Lambda}$: σ -algebras for marked particles generated by counting variables

Specification

Candidate system for conditional probabilities of Gibbs measure μ to be defined by DLR equations

 $\mu \gamma_{\Lambda} = \mu$

A family of proper probability kernels $\gamma = (\gamma_{\Lambda})_{\Lambda \Subset \mathbb{R}^d}$ with consistency

 $\gamma_{\Delta}\gamma_{\Lambda} = \gamma_{\Delta}$

for all measurable volumes $\Lambda \subset \Delta \Subset \mathbb{R}^d$

Specification

Candidate system for conditional probabilities of Gibbs measure μ to be defined by DLR equations

 $\mu \gamma_{\Lambda} = \mu$

A family of proper probability kernels $\gamma = (\gamma_{\Lambda})_{\Lambda \Subset \mathbb{R}^d}$ with consistency

 $\gamma_{\Delta}\gamma_{\Lambda} = \gamma_{\Delta}$

for all measurable volumes $\Lambda \subset \Delta \Subset \mathbb{R}^d$

Measurability: $\gamma_{\Lambda}(f|\cdot) \in \underline{\mathcal{F}}_{\Lambda^c}$

Properness: $\gamma_{\Lambda}(1_A|\cdot) = 1_A$ for $A \in \underline{\mathcal{F}}_{\Lambda^c}$

Quasilocality: Compatibility of γ_{Λ} with local topology

(Convergence means that sequences of marked particle clouds stabilize locally)

Widom-Rowlinson model in Euclidean space (1970)

Spatial dimension $d \ge 2$, two color local spin space $\{-,+\}$ base measure <u>P</u>: two-color homogenous **Poisson Point Process**, intensities λ_+ for plus colors and λ_- for minus colors The (hardcore)

Widom-Rowlinson specification is the Poisson-modification

$$\gamma_{\Lambda}(d\underline{\omega}_{\Lambda}|\underline{\omega}_{\Lambda^{c}}) := \frac{1}{Z_{\Lambda}(\underline{\omega}_{\Lambda^{c}})}\chi(\underline{\omega}_{\Lambda}\underline{\omega}_{\Lambda^{c}})\underline{P}_{\Lambda}(d\underline{\omega}_{\Lambda})$$

where indicator χ is one iff interspecies distance is bigger or equal than 2a

Widom-Rowlinson model in Euclidean space (1970)

Spatial dimension $d \ge 2$, two color local spin space $\{-,+\}$ base measure <u>P</u>: two-color homogenous **Poisson Point Process**, intensities λ_+ for plus colors and λ_- for minus colors The (hardcore)

Widom-Rowlinson specification is the Poisson-modification

$$\gamma_{\wedge}(d\underline{\omega}_{\wedge}|\underline{\omega}_{\wedge^{\mathrm{c}}}) := rac{1}{Z_{\wedge}(\underline{\omega}_{\wedge^{\mathrm{c}}})}\chi(\underline{\omega}_{\wedge}\underline{\omega}_{\wedge^{\mathrm{c}}})\underline{P}_{\wedge}(d\underline{\omega}_{\wedge})$$

where indicator χ is one iff interspecies distance is bigger or equal than 2a

Chayes-Chayes-Kotecky 95, Ruelle 71, Bricmont-Kuroda-Lebowitz 84: $d \ge 2$, $\lambda_+ = \lambda_-$ large \Rightarrow the continuum WiRo has a **phase transition**

Hyperedge potentials

General concepts to define **Gibbsian specifications for point particles**: physical multibody interactions OR **hyperedge potentials**

$$\gamma_{\wedge}(d\underline{\omega}_{\wedge}|\underline{\omega}_{\wedge^c}):=rac{1}{Z_{\wedge}(\underline{\omega}_{\wedge^c})}e^{-\sum_{\eta\in\omega:\;\eta\cap\wedge
eq\emptyset}\,\Phi(\eta,\underline{\omega})}\underline{P}_{\wedge}(d\underline{\omega}_{\wedge})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $\Phi(\eta, \underline{\omega})$ is allowed to depend on $\underline{\omega}$ also beyond the hyperedge η in neighborhood up to some **horizon**

Hyperedge potentials

General concepts to define **Gibbsian specifications for point particles**: physical multibody interactions OR **hyperedge potentials**

$$\gamma_{\wedge}(d\underline{\omega}_{\Lambda}|\underline{\omega}_{\Lambda^c}):=rac{1}{Z_{\Lambda}(\underline{\omega}_{\Lambda^c})}e^{-\sum_{\eta\,\Subset\,\omega\,:\,\eta\,\cap\,\Lambda
eq\,\emptyset}\,\Phi(\eta,\underline{\omega})}\underline{P}_{\Lambda}(d\underline{\omega}_{\Lambda})$$

where $\Phi(\eta, \underline{\omega})$ is allowed to depend on $\underline{\omega}$ also beyond the hyperedge η in neighborhood up to some **horizon**

Dereudre, Drouilhet, Georgii PTRF 2012: existence theory Jahnel-K preprint 2017: representation theorems from μ to Φ , in spirit of Kozlov-Sullivan

Independent spinflip dynamics

Define continuous time stochastic dynamics:

Particle locations stay fixed, holes stay fixed. $+\leftrightarrow-\text{ flips at rate one independently over the sites}$ Every site has the transition kernel

$$p_t(+,-) = \frac{1}{2}(1-e^{-2t})$$

・ロト・日本・モート モー うへぐ

Independent spinflip dynamics

Define continuous time stochastic dynamics:

Particle locations stay fixed, holes stay fixed. $+ \leftrightarrow - \text{ flips at rate one independently over the sites}$ Every site has the transition kernel

$$p_t(+,-) = \frac{1}{2}(1-e^{-2t})$$

Symmetric Euclidean WiRo under spin-flip time-evolution

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Dynamical Gibbs-non Gibbs transitions

We say the model shows a **dynamical Gibbs-non Gibbs transition** if the initial measure μ is Gibbs for a quasilocal specification, and for some time t the time-evolved measure $\mu_t = \mu P_t$ is not compatible with any quasilocal specification.

Dynamical Gibbs-non Gibbs transitions

We say the model shows a **dynamical Gibbs-non Gibbs transition** if the initial measure μ is Gibbs for a quasilocal specification, and for some time t the time-evolved measure $\mu_t = \mu P_t$ is not compatible with any quasilocal specification.

Dynamical Gibbs-non Gibbs transitions for Ising:

Enter, Fernandez, den Hollander, Redig 02: lattice K-LeNy 07: sequential Gibbs, broken symmetry of bad configurations Ermolaev-K 10: mean field low temperature dynamics, Lagrangian view Enter, Fernandez, Hollander, Redig 10: Feng-Kurtz Hamiltonian view Enter, Ermolaev, lacobelli, K 12: tree Fernandez, den Hollander, Martinez 14: Kac-model Kraaij, Redig, van Zuijlen preprint 17: mean-field Hamilton-Jacobi point of view

Relation to disordered systems

nG indicated by very long-range dependencies in **conditional probabilities:** $\eta \mapsto \mu_t(\eta_i | \eta_{\mathbb{Z}^d \setminus i})$ behaves discontinuously w.r.t. local topology

Useful strategy (for independent dynamics): Consider two-layer measure

 $\bar{\mu}_t(d\omega, d\eta) = \mu(d\omega) P_t(\omega, d\eta)$

Relation to disordered systems

nG indicated by very long-range dependencies in **conditional probabilities:** $\eta \mapsto \mu_t(\eta_i | \eta_{\mathbb{Z}^d \setminus i})$ behaves discontinuously w.r.t. local topology

Useful strategy (for independent dynamics): Consider two-layer measure

 $\bar{\mu}_t(d\omega, d\eta) = \mu(d\omega)P_t(\omega, d\eta)$

Analyze hidden phase transitions in first layer measure constrained on the future η :

 $\bar{\mu}_t(d\omega|\eta)$

Relation to disordered systems:

 $\eta = (\eta_i)_{i \in \mathbb{Z}^d}$ plays the role of quenched disorder configuration

Definitions for Euclidean model

A marked infinite-volume configuration $\underline{\omega} \in \underline{\Omega}$ is called **good** for specification γ iff for any Euclidean ball *B* we have

$$\left|\gamma_{B}(f|\underline{\omega}_{B^{\mathrm{c}}}^{\prime})-\gamma_{B}(f|\underline{\omega}_{B^{\mathrm{c}}})
ight|
ightarrow0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

as $\underline{\omega}' \Rightarrow \underline{\omega}$ in the sense of local convergence.

 $\underline{\Omega}(\gamma)$: good configurations

Definitions for Euclidean model

A marked infinite-volume configuration $\underline{\omega} \in \underline{\Omega}$ is called **good** for specification γ iff for any Euclidean ball *B* we have

$$\left|\gamma_{B}(f|\underline{\omega}_{B^{\mathrm{c}}}^{\prime})-\gamma_{B}(f|\underline{\omega}_{B^{\mathrm{c}}})
ight|
ightarrow0$$

as $\underline{\omega}' \Rightarrow \underline{\omega}$ in the sense of local convergence.

 $\underline{\Omega}(\gamma)$: good configurations

 γ is called **quasilocal** iff $\underline{\Omega}(\gamma) = \underline{\Omega}$

Definitions for Euclidean model

A marked infinite-volume configuration $\underline{\omega}\in\underline{\Omega}$ is called **good** for specification γ iff for any Euclidean ball B we have

$$\left|\gamma_{B}(f|\underline{\omega}_{B^{\mathrm{c}}}^{\prime})-\gamma_{B}(f|\underline{\omega}_{B^{\mathrm{c}}})
ight|
ightarrow0$$

as $\underline{\omega}' \Rightarrow \underline{\omega}$ in the sense of local convergence.

$\underline{\Omega}(\gamma)$: good configurations

 γ is called **quasilocal** iff $\underline{\Omega}(\gamma) = \underline{\Omega}$

 μ is called **ql** (quasilocally Gibbs) iff there exists γ such that $\underline{\Omega}(\gamma) = \underline{\Omega}$ μ is called **aql** (almost surely quasilocally Gibbs) iff there exists γ with $\mu(\underline{\Omega}(\gamma)) = 1$

Gibbsian transitions in time and intensity for μ^+

Reentrance time into Gibbs $t_G := \frac{1}{2} \log \frac{\lambda_+ + \lambda_-}{\lambda_+ - \lambda_-}$ for $\lambda_+ > \lambda_$ high-intensity (percolating) regime: $\mu^+(B \leftrightarrow \infty) > 0$ for some ball B

		$\lambda_+ > \lambda$		$\lambda_+ = \lambda$
time	$0 < t < t_G$	$t = t_G$	$t_G < t \leq \infty$	$0 < t \leq \infty$
high	non-asq	asq, non-q	q	non-asq
low	asq, non-q	asq, non-q	q	asq, non-q

Jahnel, K in AAP 2017:

uses cluster representations for time-evolved conditional probabilities Main features: Immediate loss, full measure discontinuities

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Mean-field softcore WiRo model

Pressure

$$p(\beta, \alpha) = \lim_{N \to \infty} \frac{1}{N} \log \left(\int e^{-N\beta L_N^1(\omega) L_N^{-1}(\omega)} \prod_{j=1}^N \alpha(d\omega_j) \right)$$
$$= \sup_{\nu \in \mathcal{M}_1(\{-1, 0, 1\})} (-\beta \nu(1) \nu(-1) - I(\nu | \alpha))$$

Theorem (with Sascha Kissel). The symmetric model at any $\alpha(1) = \alpha(-1) > 0$ has a second order phase transition driven by repulsion strength $\beta > 0$ at $\beta_c = 2 + e \frac{\alpha(0)}{\alpha(1)}$.

Solution for mean-field WiRo model at time t = 0

Parametrize empirical spin distribution ν via coordinates (x, m) x = occupation density, m = magnetization on occupied sites

$$\begin{pmatrix} \nu(-1) \\ \nu(0) \\ \nu(1) \end{pmatrix} = \begin{pmatrix} \frac{x}{2}(1-m) \\ 1-x \\ \frac{x}{2}(1+m) \end{pmatrix}$$

Parametrize a priori measure α via coordinates (h, l)

"magnetic field" $h := \frac{1}{2} \log \left(\frac{\alpha(1)}{\alpha(-1)}\right)$ Bias on occupations $l := \log \frac{1-\alpha(0)}{\alpha(0)}$

Pressure

$$p(\beta, \alpha) = \log \alpha(0) + \sup_{0 \le x, |m| \le 1} \left(\underbrace{-\frac{\beta x^2}{4} + x(l - \log(2\cosh(h)) - J(x))}_{\text{part for occupation density}} + x(\underbrace{\frac{\beta x m^2}{4} + hm - I(m) - \log 2}_{0 \le 1}) \right)$$

Ising part at occupation-dependent temperature

with entropies for spins and occupations

$$I(m) = \frac{1-m}{2}\log(\frac{1-m}{2}) + \frac{1+m}{2}\log(\frac{1+m}{2})$$
$$J(x) = (1-x)\log(3(1-x)) + x\log(\frac{3x}{2})$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

The antiferromagnet $\beta < 0$: Holes matter

Theorem. The symmetric antiferromagnetic model has a first order transition when crossing the red Maxwell line in β , α (0)-space.

Jumps occur in occupation density x, at fixed zero magnetization m = 0. Pressure becomes

$$p(\beta, \alpha(0)) = \log \alpha(0) + \sup_{0 \le x \le 1} (\underbrace{-\frac{\beta}{4} x^2 - J(x) + x(I - \log(2))}_{V(x;\beta,\alpha(0))})$$

Bifurcation set $B = \{(\beta, I), \exists x \in (0, 1) : V'(x) = V''(x) = 0\}$

 $\alpha(0)$ vs. β^{-1} : BLUE line bifurcation set, RED line Maxwell-line $V(x_1) = V(x_2)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Solution by parametrization, possibly asymmetric model

Theorem. Repulsion parameter β a priori measure $\alpha = \alpha(h, l)$ and typical values (m, x) of the empirical distribution are related via the parametrization

$$\beta = \beta(m; \alpha) = \frac{2}{m} (l'(m) - h) (1 + e^{-l + \log(2\cosh(h)) + \frac{1}{m}(l'(m) - h) - ml'(m) + l(m)})$$

$$x = x(m; \alpha) = (1 + e^{-l + \log(2\cosh(h)) + \frac{1}{m}(l'(m) - h) - ml'(m) + l(m)})^{-1}$$

Critical exponents

Corollary: The model has mean-field critical exponents:

Fix any $\alpha(0) \in (0, 1)$.

Let β_c be the corresponding critical value for the symmetric model.

Then

$$\lim_{\beta \downarrow \beta_c} \frac{m(\beta, h = 0)}{(\beta - \beta_c)^{\frac{1}{2}}} = c$$
$$\lim_{h \downarrow 0} \frac{m(\beta_c, h)}{h^{\frac{1}{3}}} = c'$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Dynamical GnG: Bad empirical measures of time-evolved symmetric WiRo

Bad empirical measures, time-evolution of WiRo for $\beta = 5 > 3$

Kissel-K 18:

The bad measures α_f in the time-evolved mean-field WiRo model after time t satisfy for any symmetric a priori measure α

$$\begin{split} B^{\textit{WiRo}}(\beta,t) &= \Big\{ \alpha_f \in \mathcal{M}_1(\{-1,0,1\}) \,, \\ \frac{\alpha_f(1) - \alpha_f(-1)}{\alpha_f(\{1,-1\})} \in B^{\textit{lsing}}(\frac{\beta \alpha_f(\{1,-1\})}{2},t) \Big\}. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where $B^{lsing}(\beta_I, t)$ are bad magnetizations for the time-evolved Curie-Weiss Ising model (K-LeNy-CMP 07) with initial inverse temperature β_I .

Kissel-K 18:

The bad measures α_f in the time-evolved mean-field WiRo model after time t satisfy for any symmetric a priori measure α

$$\begin{split} & \mathcal{B}^{\textit{WiRo}}(\beta,t) = \Big\{ \alpha_f \in \mathcal{M}_1(\{-1,0,1\}), \\ & \frac{\alpha_f(1) - \alpha_f(-1)}{\alpha_f(\{1,-1\})} \in \mathcal{B}^{\textit{Ising}}(\frac{\beta \alpha_f(\{1,-1\})}{2},t) \Big\}. \end{split}$$

where $B^{\text{lsing}}(\beta_l, t)$ are bad magnetizations for the time-evolved Curie-Weiss Ising model (K-LeNy-CMP 07) with initial inverse temperature β_l .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Consequences: Short-time Gibbs for all β , α Small β -Gibbs for all times t, for $\beta \leq 2$ B^{WiRo} have dimension one on the simplex β , t-regimes of disconnected curves, Y-shapes, growing antenna

Bifurcation set of first layer rate time-evolved symmetric Ising model

 $B^{lsing}(\beta_l, t)$ symmetric pair OR magnetization zero OR empty Obtained via conditional first layer rate function $M \mapsto \Psi(M; \beta_l^{-1}, t, m_{final})$ BLUE: Fixed-*t* slices of bifurcation set in $(\beta_l^{-1}, m_{final})$ -plane RED: Maxwell-line giving set of bad configurations $B^{lsing}(\beta_l, t)$

Almost surely sequentially Gibbs in time-evolved WiRo?

Analytical principle for Ising-systems in mean-field:

Atypicality of bad configurations follows from preservation of semiconcavity for time-evolved rate-function via integrals over Lagrange densities (Kraaij, Redig, van Zuijlen preprint 2017)

・ロット (雪) (日) (日) (日)

very low $\beta = 4 > 3$

Lattice Soft-Core Widom-Rowlinson model, Dobrushin uniqueness

Let $\gamma := (\gamma_{\Lambda})_{\Lambda \Subset \mathbb{Z}^d}$ be a quasilocal specification on the lattice Dobrushin interdependence matrix

$$C_{ij}(\gamma) = \sup_{\substack{\omega_{\mathbb{Z}^d \setminus \{j\}} = \eta_{\mathbb{Z}^d \setminus \{j\}}}} \|\gamma_{\{i\}}(\cdot|\omega) - \gamma_{\{i\}}(\cdot|\eta)\|_{TV,i}.$$

Theorem (Dobrushin). If $c(\gamma) := \sup_{i \in \mathbb{Z}^d} \sum_{j \in \mathbb{Z}^d} C_{ij}(\gamma) < 1$ then $|\mathcal{G}(\gamma)| = 1$

Dobrushin region for homogeneous model on \mathbb{Z}^2 , in space of $lpha \in \mathcal{M}(\{-1,0,1\})$

Lattice Soft-Core, short-time Gibbs via Dobrushin uniqueness

Theorem (homogeneous model) (1) Let $0 \le \beta d < 1$. Then for all $\alpha \in \mathcal{M}(\{-1, 0, 1\})$ the Soft-Core Widom Rowlinson model satisfies the Dobrushin condition.

(2) For every $\beta > 0$ there exists an $\epsilon := \epsilon(\beta) > 0$ such that the Soft-Core model satisfies the Dobrushin condition if $d_{TV}(\alpha, \delta_1) < \epsilon$ or $d_{TV}(\alpha, \delta_{-1}) < \epsilon$.

Theorem (short-time Gibbs) Let $\alpha \in \mathcal{M}(\{-1, 0, 1\})$, $\beta \ge 0$, and $\mu \in \mathcal{G}(\gamma_{\beta,\alpha})$. Then there exists a time $t_c > 0$ such that for all $t < t_c$ the time evolved measure μ_t is a Gibbs measure for some quasilocal specification γ_t .

(Kissel-K, extension of Opoku-K to degenerate time-evolutions, uses (2) to control all first-layer models for possible end-condionings)

Symmetric soft-core model: μ_t^+ is nG for *t* large (since fully occupied checkerboard configuration is bad)

THANK YOU!