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Infinite volume Gibbs measures on the lattice

{—1,0,1} local state space, particles with spin, and holes
Z9 lattice site space

Q={-1,0, 1}Zd infinite volume configurations

Specification: a candidate system for conditional probabilities of an infinite
volume Gibbs measure p (probability measure on Q) to be defined by DLR
equations

u((fl-)) = p(f)



Definition (Specification)

Family of proper probability kernels v = (Ya)aeze With

Consistency:
Ya(ya(dwl)|@) = va(dw|@)
for all finite volumes A C A € Z¢

Measurability: a(f|-) € Fac

Properness: ya(1a|-) = 14 for A € Fic

Quasilocality (regularity): w — ya(f|w) should be quasilocal for f quasilocal



Gibbsian specifications on the lattice

A Gibbsian specification on Q = {—1,0, l}Zd for
interaction potential ® = (®4)cz¢ and apriori measure a € M1({-1,0,1})
has kernels
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G(7) = {n € Ma(Q), pyn = p, for all A € 2}
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A Gibbsian specification on Q = {—1,0, l}Zd for
interaction potential ® = (®4)cz¢ and apriori measure a € M1({-1,0,1})
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First statistical mechanics task:
Given the specification v = (ya)pez¢. find the Gibbs measures

G(7) = {n € Ma(Q), pyn = p, for all A € 2}

If |G(7)] > 1 we say that the specification v has a phase transition



Hardcore and softcore Widom-Rowlinson model

Hardcore Widom Rowlinson model on Z? (Higuchi-Takei 2004)

hc 1 hc
Yro(Walwae) == Si— A (wawne) | | a(wi),
Z3¢(wne) g

hardcore-indicator I{<(w) = ITica Vw1, vjmi) forbids +— neighbors
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Hardcore and softcore Widom-Rowlinson model

Hardcore Widom Rowlinson model on Z? (Higuchi-Takei 2004)
hc 1 hc
)= ——-1I c i)s
o (walwae) Z5 (o) (wnwne) ] [ erlwi)

ien

hardcore-indicator I{<(w) = ITica liwiw;#-1,vj~i) forbids +— neighbors

0 +1 +1 0

. . . .

1 +1 1 0

. . . .
+1 0

Soft-Core Widom Rowlinson model with repulsion parameter 8 > 0

R ) | )
ien

1

Tpalwnlwne) == S
=g} ZRC(LU/\C)

punishes +— neighbors



Mean-Field Soft-Core Widom-Rowlinson model

Finite-volume Gibbs measure of size N € N for the Mean-Field Soft-Core
Widom-Rowlinson model with repulsion parameter 8 > 0

1
o8, (wp,n) =

5 N
_ e 2 21<ij<n fwiwj=—1) H a(w))
Zn,Bo i



Sequential Gibbsianness for mean-field (and Kac-models on torus)

Take (un)nen a sequence of exchangeable probability measures on {—1,0,1}".

The model is called sequentially Gibbs iff

pim g (dewnlwre, ) = y(dwr]v)
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Marked Gibbs Point Processes in Euclidean space:
Some analogy to lattice theory

{—1,1} mark space (has no zeros)
Q locally finite subsets of R? (for spatial degrees of freedom)
marked particle configuration w = (w™,w™)
where each w™,wt € Q
€ marked point configurations, configuration space

F, F,: o-algebras for marked particles generated by counting variables



Specification

Candidate system for conditional probabilities of Gibbs measure 1 to be defined
by DLR equations
BN =

A family of proper probability kernels v = (ya)pcre With consistency

YAVN = VA

for all measurable volumes A C A € R?



Specification

Candidate system for conditional probabilities of Gibbs measure 1 to be defined
by DLR equations

PN =
A family of proper probability kernels v = (ya)pcre With consistency

YAYN = YA
for all measurable volumes A C A € R?

Measurability: a(f]-) € Fxc
Properness: ya(1a|-) = 1a for A€ F .
Quasilocality: Compatibility of ya with local topology

(Convergence means that sequences of marked particle clouds stabilize locally)



Widom-Rowlinson model in Euclidean space (1970)

Spatial dimension d > 2, two color local spin space {—, +}
base measure P: two-color homogenous Poisson Point Process,
intensities A4 for plus colors and A_ for minus colors The (hardcore)

Widom-Rowlinson specification is the Poisson-modification

Ya(dwplwne) X(wWawpe ) Pa(dw,)

L 1
- Zawpe)

where indicator x is one iff interspecies distance is bigger or equal than 2a



Widom-Rowlinson model in Euclidean space (1970)

Spatial dimension d > 2, two color local spin space {—, +}
base measure P: two-color homogenous Poisson Point Process,
intensities A4 for plus colors and A_ for minus colors The (hardcore)

Widom-Rowlinson specification is the Poisson-modification

Ya(dwplwne) X(wWawpe ) Pa(dw,)

L 1
- Zawpe)

where indicator x is one iff interspecies distance is bigger or equal than 2a

Chayes-Chayes-Kotecky 95, Ruelle 71, Bricmont-Kuroda-Lebowitz 84:
d >2, Ay = A_ large = the continuum WiRo has a phase transition



Hyperedge potentials

General concepts to define Gibbsian specifications for point particles:
physical multibody interactions OR hyperedge potentials

1 — . d(n,w
m(denlune) = 7 e e YP, (dwy)
where ®(n,w) is allowed to depend on w also beyond the

hyperedge 1 in neighborhood up to some horizon



Hyperedge potentials

General concepts to define Gibbsian specifications for point particles:
physical multibody interactions OR hyperedge potentials

1 - w
(il = g oy e T B )
WAc

where ®(n,w) is allowed to depend on w also beyond the
hyperedge 1 in neighborhood up to some horizon

Dereudre, Drouilhet, Georgii PTRF 2012: existence theory

Jahnel-K preprint 2017: representation theorems from u to ®,
in spirit of Kozlov-Sullivan



Independent spinflip dynamics

Define continuous time stochastic dynamics:
Particle locations stay fixed, holes stay fixed.

+ <> — flips at rate one independently over the sites
Every site has the transition kernel

Pl m) = 51— )



Independent spinflip dynamics

Define continuous time stochastic dynamics:
Particle locations stay fixed, holes stay fixed.
+ <> — flips at rate one independently over the sites

Every site has the transition kernel




Dynamical Gibbs-non Gibbs transitions

We say the model shows a dynamical Gibbs-non Gibbs transition
if the initial measure p is Gibbs for a quasilocal specification,
and for some time t the time-evolved measure pu; = pP:

is not compatible with any quasilocal specification.



Dynamical Gibbs-non Gibbs transitions

We say the model shows a dynamical Gibbs-non Gibbs transition
if the initial measure p is Gibbs for a quasilocal specification,
and for some time t the time-evolved measure pu; = pP:

is not compatible with any quasilocal specification.

Dynamical Gibbs-non Gibbs transitions for Ising:

Enter, Fernandez, den Hollander, Redig 02: lattice

K-LeNy 07: sequential Gibbs, broken symmetry of bad configurations
Ermolaev-K 10: mean field low temperature dynamics, Lagrangian view

Enter, Fernandez, Hollander, Redig 10: Feng-Kurtz Hamiltonian view

Enter, Ermolaev, lacobelli, K 12: tree

Fernandez, den Hollander, Martinez 14: Kac-model

Kraaij, Redig, van Zuijlen preprint 17: mean-field Hamilton-Jacobi point of view



Relation to disordered systems

nG indicated by very long-range dependencies in conditional probabilities:
n— /Lt(nf|7]Zd\,-) behaves discontinuously w.r.t. local topology

Useful strategy (for independent dynamics): Consider two-layer measure

fit(dw, dn) = p(dw)Pe(w, dn)



Relation to disordered systems

nG indicated by very long-range dependencies in conditional probabilities:

n = pe(nilnzay;) behaves discontinuously w.r.t. local topology

Useful strategy (for independent dynamics): Consider two-layer measure
fir(dw, dn) = p(dw)Pe(w, dn)

Analyze hidden phase transitions
in first layer measure constrained on the future 7:

Ae(dw|n)

Relation to disordered systems:
1 = (Ni)ieze plays the role of quenched disorder configuration



Definitions for Euclidean model

A marked infinite-volume configuration w € Q is called good for specification ~y
iff for any Euclidean ball B we have

—0

|ve(flwpe) — v8(flws.)

as w’ = w in the sense of local convergence.

Q(~): good configurations
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Definitions for Euclidean model

A marked infinite-volume configuration w € Q is called good for specification ~y
iff for any Euclidean ball B we have

—0

|ve(flwpe) — v8(flws.)

as w’ = w in the sense of local convergence.
Q(~): good configurations
~y is called quasilocal iff Q(v) = Q

w is called gl (quasilocally Gibbs) iff there exists v such that Q(v) = Q

u is called aqgl (almost surely quasilocally Gibbs) iff there exists v
with 1(Q(v)) = 1



Gibbsian transitions in time and intensity for u™

Reentrance time into Gibbs t¢ := %Iog ;Iti: for Ax > A_

high-intensity (percolating) regime: u*(B < c0) > 0 for some ball B

A > Ao A=A
time | 0< t< tg t=tc te<t<oo | 0<t< @
high non-asq asq, non-q q non-asq
low | asq, non-q asq, non-q q asq, non-q

Jahnel, K in AAP 2017:
uses cluster representations for time-evolved conditional probabilities
Main features: Immediate loss, full measure discontinuities



Mean-field softcore WiRo model

Pressure

p(B,a) = NILmQQ % log (/ —NBLy @)Ly (@) 1:[ a(dw; )
= sup (=Br(1)v(-1) — I(v]a))

veMi({—1,0,1})

Theorem (with Sascha Kissel). The symmetric model at any
a(1) = a(—1) > 0 has a second order phase transition driven by repulsion

strength 3 >0at 3. =2+ e E(l);

/ %—T\ | V & ’ >\ ;//T\g

U‘ 1/1 Ja——————V S
5—0 B=4 B=5(>pB.=2+e)
Rate-function contours, equidistribution  «(0) = (1) = a(—1)

Blue line: Possible maximizers for any 5 > 0



Solution for mean-field WiRo model at time t =0

Parametrize empirical spin distribution v via coordinates (x, m)

X = occupation density, m = magnetization on occupied sites

v(-1) 3(1—m)
v(0) | = 1—x
v(1) 3(1+m)

Parametrize a priori measure « via coordinates (h, /)

" magnetic field” h:= } log (a‘f(_li))

1—a(0)
«a(0)

Bias on occupations / := log



Pressure

p(B,a) =loga(0)+ sup (—ﬁTX2 + x(I — log(2 cosh(h)) — J(x)

0<x,|m|<1

part for occupation density

Bxm?

+ x( + hm — I(m) — log 2 ))

Ising part at occupation-dependent temperature
with entropies for spins and occupations

-m 1—m 1+ m
S log(+ ™) + 5 log(

J(x) = (1— x) log(3(1 — x)) + xlog(>5)

1+m

i(m) =1 )




The antiferromagnet 5 < 0: Holes matter

Theorem. The symmetric antiferromagnetic model has a first order transition
when crossing the red Maxwell line in 3, a(0)-space.
Jumps occur in occupation density x, at fixed zero magnetization m = 0.

Pressure becomes

p(8,0(0)) = log a(0) + sup (2% — J(x) + x(/ ~ log(2)))

0<x<1

V(x:8,a(0))

Bifurcation set B = {(8,/),3x € (0,1) : V'(x) = V"(x) = 0}

a(0) vs. S71: BLUE line bifurcation set, RED line Maxwell-line V(x1) = V(x2)



Solution by parametrization, possibly asymmetric model
Theorem. Repulsion parameter
a priori measure oo = a(h, /)
and typical values (m, x) of the empirical distribution
are related via the parametrization

8= B(ma) = %(Il(m) R+ efl+log(2cosh(h))+%(I'(m)—h)—ml’(m)Jrl(m))

x = x(m;a) = (1 + e—l+|og(2cosh(h))+%(I’(m)—h)—ml’(m)+l(m))—1

v(0)=1

v(1)=1 V(-1)=1



Critical exponents

Corollary: The model has mean-field critical exponents:
Fix any «(0) € (0,1).
Let B¢ be the corresponding critical value for the symmetric model.
Then h—0
jim M(B:A=0) _
pise (8- fe)}
e h /
fim MG ) _
hlO h3



Dynamical GnG: Bad empirical measures of time-evolved symmetric WiRo

Bad empirical measures, time-evolution of WiRo for 5 =5 >3

a1 aro1 a1

\/ Y

ar(i)=t ar-1)=1 a1 ar-1=1 arii=1 ar-1)z1

a1 a1 a1

artiyet ar-1)z1 a1 ar-1=1 agin)e1 ari-1)z1



Kissel-K 18:

The bad measures ar in the time-evolved mean-field WiRo model after time ¢t
satisfy for any symmetric a priori measure «

BWIRO(ﬁ’ t) _ {af c Ml({—l,o,l})’

(1) (1) _ g (1.
iy € B o)

where B8 (3, t) are bad magnetizations for the time-evolved Curie-Weiss
Ising model (K-LeNy-CMP 07) with initial inverse temperature 3;.



Kissel-K 18:

The bad measures ar in the time-evolved mean-field WiRo model after time ¢t
satisfy for any symmetric a priori measure «

B"™(8,1) = {ar € Mi({-1,0, 1}),
O(f(l) — Oéf(_l) Ising 5af({1
o) € B (————— f)}

where B8 (3, t) are bad magnetizations for the time-evolved Curie-Weiss
Ising model (K-LeNy-CMP 07) with initial inverse temperature 3;.

Consequences: Short-time Gibbs for all 8, «
Small 5-Gibbs for all times t, for 5 < 2
B"™iRe have dimension one on the simplex

B, t-regimes of disconnected curves, Y-shapes, growing antenna



Bifurcation set of first layer rate time-evolved symmetric Ising model

B'"&(3, t) symmetric pair OR magnetization zero OR empty

Obtained via conditional first layer rate function M — W(M; B,‘l, t, Meinar)
BLUE: Fixed-t slices of bifurcation set in (8,*, Mfinar)-plane
RED: Maxwell-line giving set of bad configurations B*"¢(,, t)




Almost surely sequentially Gibbs in time-evolved WiRo?

Analytical principle for Ising-systems in mean-field:

Atypicality of bad configurations follows from preservation of semiconcavity for
time-evolved rate-function via integrals over Lagrange densities (Kraaij, Redig,
van Zuijlen preprint 2017)

Fixed-8-typical configurations, any symmetric «, are above BLUE DOTTED line

BLUE: after time-evolution RED: set of bad configurations at same time
a(0)=1 a(0)=1

a1 a1yt a1 T a1

very low =4 >3 low 5 =2.8



Lattice Soft-Core Widom-Rowlinson model, Dobrushin uniqueness

Let v := (7A)aeze be a quasilocal specification on the lattice
Dobrushin interdependence matrix

Ci(v) = sup vy Clw) = vy Clm v i
“zd\ {3y T 29\ (i}

Theorem (Dobrushin). If c(v) := sup;czs 3 ;czq Gi(7) <1 then [G(y)[ =1

Dobrushin region for homogeneous model on Z?, in space of o € M({—1,0,1})

f<i  p=or f=105  p=2



Lattice Soft-Core, short-time Gibbs via Dobrushin uniqueness

Theorem (homogeneous model) (1) Let 0 < 8d < 1. Then for all
a € M({-1,0,1}) the Soft-Core Widom Rowlinson model satisfies the
Dobrushin condition.

(2) For every 3 > 0 there exists an € := ¢(8) > 0 such that the Soft-Core
model satisfies the Dobrushin condition if drv(«, 1) < € or drv(a,d-1) < €.

Theorem (short-time Gibbs) Let o € M({-1,0,1}), 8 >0, and
i € G(78,a). Then there exists a time t. > 0 such that for all t < t. the time
evolved measure p; is a Gibbs measure for some quasilocal specification ~;.

(Kissel-K, extension of Opoku-K to degenerate time-evolutions,
uses (2) to control all first-layer models for possible end-condionings)

Symmetric soft-core model: ;] is nG for t large
(since fully occupied checkerboard configuration is bad)



THANK YOU!
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