Manifestations of localization in the random XXZ quantum spin chain

Abel Klein
University of California, Irvine
with Alexander Elgart and Günter Stolz

Anton Bovier's Fest
Advances in Statistical Mechanics
CIRM - Luminy
August 30, 2018

The random $X X Z$ quantum spin chain Hamiltonian

The infinite XXZ chain in a random field is given by the Hamiltonian

$$
H_{\omega}=\sum_{i \in \mathbb{Z}}\left\{\frac{1}{4}\left(I-\sigma_{i}^{z} \sigma_{i+1}^{z}\right)-\frac{1}{4 \Delta}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}\right)\right\}+\lambda \sum_{i \in \mathbb{Z}} \omega_{i} \mathcal{N}_{i},
$$

acting on $\otimes_{i \in \mathbb{Z}} \mathbb{C}_{i}^{2}, \quad \mathbb{C}_{i}^{2}=\mathbb{C}^{2}$ for all i, where

The random $X X Z$ quantum spin chain Hamiltonian

The infinite XXZ chain in a random field is given by the Hamiltonian

$$
H_{\omega}=\sum_{i \in \mathbb{Z}}\left\{\frac{1}{4}\left(I-\sigma_{i}^{z} \sigma_{i+1}^{z}\right)-\frac{1}{4 \Delta}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}\right)\right\}+\lambda \sum_{i \in \mathbb{Z}} \omega_{i} \mathcal{N}_{i},
$$

acting on $\otimes_{i \in \mathbb{Z}} \mathbb{C}_{i}^{2}, \mathbb{C}_{i}^{2}=\mathbb{C}^{2}$ for all i, where
(1) $\sigma^{x}, \sigma^{y}, \sigma^{z}$ are the Pauli matrices- $\sigma_{i}^{x}, \sigma_{i}^{y}, \sigma_{i}^{z}$ act on \mathbb{C}_{i}^{2};

The random $X X Z$ quantum spin chain Hamiltonian

The infinite XXZ chain in a random field is given by the Hamiltonian

$$
H_{\omega}=\sum_{i \in \mathbb{Z}}\left\{\frac{1}{4}\left(I-\sigma_{i}^{z} \sigma_{i+1}^{z}\right)-\frac{1}{4 \Delta}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}\right)\right\}+\lambda \sum_{i \in \mathbb{Z}} \omega_{i} \mathcal{N}_{i}
$$

acting on $\otimes_{i \in \mathbb{Z}} \mathbb{C}_{i}^{2}, \mathbb{C}_{i}^{2}=\mathbb{C}^{2}$ for all i, where
(1) $\sigma^{x}, \sigma^{y}, \sigma^{z}$ are the Pauli matrices- $\sigma_{i}^{x}, \sigma_{i}^{y}, \sigma_{i}^{z}$ act on \mathbb{C}_{i}^{2};
(2) $\mathcal{N}_{i}=\frac{1}{2}\left(1-\sigma_{i}^{z}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)_{i}$ is the local number operator at site i.

The random $X X Z$ quantum spin chain Hamiltonian

The infinite XXZ chain in a random field is given by the Hamiltonian

$$
H_{\omega}=\sum_{i \in \mathbb{Z}}\left\{\frac{1}{4}\left(I-\sigma_{i}^{z} \sigma_{i+1}^{z}\right)-\frac{1}{4 \Delta}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}\right)\right\}+\lambda \sum_{i \in \mathbb{Z}} \omega_{i} \mathcal{N}_{i},
$$

acting on $\bigotimes_{i \in \mathbb{Z}} \mathbb{C}_{i}^{2}, \mathbb{C}_{i}^{2}=\mathbb{C}^{2}$ for all i, where
(1) $\sigma^{x}, \sigma^{y}, \sigma^{z}$ are the Pauli matrices- $\sigma_{i}^{x}, \sigma_{i}^{y}, \sigma_{i}^{z}$ act on \mathbb{C}_{i}^{2};
(2) $\mathcal{N}_{i}=\frac{1}{2}\left(1-\sigma_{i}^{z}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)_{i}$ is the local number operator at site i.
(3) $\Delta>1$ (Ising phase of the $X X Z$ chain);

The random $X X Z$ quantum spin chain Hamiltonian

The infinite XXZ chain in a random field is given by the Hamiltonian

$$
H_{\omega}=\sum_{i \in \mathbb{Z}}\left\{\frac{1}{4}\left(I-\sigma_{i}^{z} \sigma_{i+1}^{z}\right)-\frac{1}{4 \Delta}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}\right)\right\}+\lambda \sum_{i \in \mathbb{Z}} \omega_{i} \mathcal{N}_{i}
$$

acting on $\bigotimes_{i \in \mathbb{Z}} \mathbb{C}_{i}^{2}, \mathbb{C}_{i}^{2}=\mathbb{C}^{2}$ for all i, where
(1) $\sigma^{x}, \sigma^{y}, \sigma^{z}$ are the Pauli matrices- $\sigma_{i}^{x}, \sigma_{i}^{y}, \sigma_{i}^{z}$ act on \mathbb{C}_{i}^{2};
(2) $\mathcal{N}_{i}=\frac{1}{2}\left(1-\sigma_{i}^{z}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)_{i}$ is the local number operator at site i.
(3) $\Delta>1$ (Ising phase of the XXZ chain);
(9) $\lambda>0$ is the disorder parameter;

The random $X X Z$ quantum spin chain Hamiltonian

The infinite XXZ chain in a random field is given by the Hamiltonian

$$
H_{\omega}=\sum_{i \in \mathbb{Z}}\left\{\frac{1}{4}\left(I-\sigma_{i}^{z} \sigma_{i+1}^{z}\right)-\frac{1}{4 \Delta}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}\right)\right\}+\lambda \sum_{i \in \mathbb{Z}} \omega_{i} \mathcal{N}_{i},
$$

acting on $\otimes_{i \in \mathbb{Z}} \mathbb{C}_{i}^{2}, \mathbb{C}_{i}^{2}=\mathbb{C}^{2}$ for all i, where
(1) $\sigma^{x}, \sigma^{y}, \sigma^{z}$ are the Pauli matrices- $\sigma_{i}^{x}, \sigma_{i}^{y}, \sigma_{i}^{z}$ act on \mathbb{C}_{i}^{2};
(2) $\mathcal{N}_{i}=\frac{1}{2}\left(1-\sigma_{i}^{z}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)_{i}$ is the local number operator at site i.
(3) $\Delta>1$ (Ising phase of the $X X Z$ chain);
(9) $\lambda>0$ is the disorder parameter;
(0) $\omega=\left\{\omega_{i}\right\}_{i \in \mathbb{Z}}$ are independent identically distributed random variables whose probability distribution μ is absolutely continuous with a bounded density, with $\{0,1\} \subset \operatorname{supp} \mu \subset[0,1]$.

The random $X X Z$ quantum spin chain Hamiltonian

The infinite XXZ chain in a random field is given by the Hamiltonian

$$
H_{\omega}=\sum_{i \in \mathbb{Z}}\left\{\frac{1}{4}\left(I-\sigma_{i}^{z} \sigma_{i+1}^{z}\right)-\frac{1}{4 \Delta}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}\right)\right\}+\lambda \sum_{i \in \mathbb{Z}} \omega_{i} \mathcal{N}_{i},
$$

acting on $\otimes_{i \in \mathbb{Z}} \mathbb{C}_{i}^{2}, \mathbb{C}_{i}^{2}=\mathbb{C}^{2}$ for all i, where
(1) $\sigma^{x}, \sigma^{y}, \sigma^{z}$ are the Pauli matrices- $\sigma_{i}^{x}, \sigma_{i}^{y}, \sigma_{i}^{z}$ act on \mathbb{C}_{i}^{2};
(2) $\mathcal{N}_{i}=\frac{1}{2}\left(1-\sigma_{i}^{z}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)_{i}$ is the local number operator at site i.
(3) $\Delta>1$ (Ising phase of the $X X Z$ chain);
(9) $\lambda>0$ is the disorder parameter;
(0) $\omega=\left\{\omega_{i}\right\}_{i \in \mathbb{Z}}$ are independent identically distributed random variables whose probability distribution μ is absolutely continuous with a bounded density, with $\{0,1\} \subset \operatorname{supp} \mu \subset[0,1]$.
H_{ω} is a self-adjoint operator on an appropriately defined Hilbert space \mathcal{H}.

The random $X X Z$ quantum spin chain Hamiltonian

The infinite XXZ chain in a random field is given by the Hamiltonian

$$
H_{\omega}=\sum_{i \in \mathbb{Z}}\left\{\frac{1}{4}\left(I-\sigma_{i}^{z} \sigma_{i+1}^{z}\right)-\frac{1}{4 \Delta}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}\right)\right\}+\lambda \sum_{i \in \mathbb{Z}} \omega_{i} \mathcal{N}_{i},
$$

acting on $\otimes_{i \in \mathbb{Z}} \mathbb{C}_{i}^{2}, \mathbb{C}_{i}^{2}=\mathbb{C}^{2}$ for all i, where
(1) $\sigma^{x}, \sigma^{y}, \sigma^{z}$ are the Pauli matrices- $\sigma_{i}^{x}, \sigma_{i}^{y}, \sigma_{i}^{z}$ act on \mathbb{C}_{i}^{2};
(2) $\mathcal{N}_{i}=\frac{1}{2}\left(1-\sigma_{i}^{z}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)_{i}$ is the local number operator at site i.
(3) $\Delta>1$ (Ising phase of the $X X Z$ chain);
(9) $\lambda>0$ is the disorder parameter;
(6) $\omega=\left\{\omega_{i}\right\}_{i \in \mathbb{Z}}$ are independent identically distributed random variables whose probability distribution μ is absolutely continuous with a bounded density, with $\{0,1\} \subset \operatorname{supp} \mu \subset[0,1]$.
H_{ω} is a self-adjoint operator on an appropriately defined Hilbert space \mathcal{H}.
We have $\sigma\left(H_{\omega}\right)=\{0\} \cup\left[1-\frac{1}{\Delta}, \infty\right)$ almost surely.

XXZ chain Hamiltonian in finite intervals

Consider the finite interval $[-L, L]=[-L, L] \cap \mathbb{Z}, L \in \mathbb{N}$, and set

$$
\begin{gathered}
H_{\omega}^{(L)}=\sum_{i=-L}^{L-1}\left\{\frac{1}{4}\left(I-\sigma_{i}^{z} \sigma_{i+1}^{z}\right)-\frac{1}{4 \Delta}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}\right)\right\}+\lambda \sum_{i=-L}^{L} \omega_{i} \mathcal{N}_{i} \\
+\beta\left(\mathcal{N}_{-L}+\mathcal{N}_{L}\right) \quad \text { on } \quad \mathcal{H}^{(L)}=\bigotimes_{i \in[-L, L]} \mathbb{C}_{i}^{2}
\end{gathered}
$$

XXZ chain Hamiltonian in finite intervals

Consider the finite interval $[-L, L]=[-L, L] \cap \mathbb{Z}, L \in \mathbb{N}$, and set

$$
\begin{gathered}
H_{\omega}^{(L)}=\sum_{i=-L}^{L-1}\left\{\frac{1}{4}\left(I-\sigma_{i}^{z} \sigma_{i+1}^{z}\right)-\frac{1}{4 \Delta}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}\right)\right\}+\lambda \sum_{i=-L}^{L} \omega_{i} \mathcal{N}_{i} \\
+\beta\left(\mathcal{N}_{-L}+\mathcal{N}_{L}\right) \quad \text { on } \quad \mathcal{H}^{(L)}=\bigotimes_{i \in[-L, L]} \mathbb{C}_{i}^{2}
\end{gathered}
$$

- We fix $\beta \geq \frac{1}{2}\left(1-\frac{1}{\Delta}\right)$ (e.g., take $\beta=\frac{1}{2}$), so

$$
\sigma\left(H_{\omega}^{(L)}\right)=\{0\} \cup\left\{\left[1-\frac{1}{\Delta}, \infty\right) \cap \sigma\left(H_{\omega}^{(L)}\right)\right\} .
$$

XXZ chain Hamiltonian in finite intervals

Consider the finite interval $[-L, L]=[-L, L] \cap \mathbb{Z}, L \in \mathbb{N}$, and set

$$
\begin{gathered}
H_{\omega}^{(L)}=\sum_{i=-L}^{L-1}\left\{\frac{1}{4}\left(I-\sigma_{i}^{z} \sigma_{i+1}^{z}\right)-\frac{1}{4 \Delta}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}\right)\right\}+\lambda \sum_{i=-L}^{L} \omega_{i} \mathcal{N}_{i} \\
+\beta\left(\mathcal{N}_{-L}+\mathcal{N}_{L}\right) \quad \text { on } \quad \mathcal{H}^{(L)}=\bigotimes_{i \in[-L, L]} \mathbb{C}_{i}^{2}
\end{gathered}
$$

- We fix $\beta \geq \frac{1}{2}\left(1-\frac{1}{\Delta}\right)$ (e.g., take $\beta=\frac{1}{2}$), so

$$
\sigma\left(H_{\omega}^{(L)}\right)=\{0\} \cup\left\{\left[1-\frac{1}{\Delta}, \infty\right) \cap \sigma\left(H_{\omega}^{(L)}\right)\right\} .
$$

- Unique ground state $\psi_{0}=\psi_{0}^{(L)}$ determined by $\mathcal{N}_{i} \psi_{0}=0$ for all i.

XXZ chain Hamiltonian in finite intervals

Consider the finite interval $[-L, L]=[-L, L] \cap \mathbb{Z}, L \in \mathbb{N}$, and set

$$
\begin{gathered}
H_{\omega}^{(L)}=\sum_{i=-L}^{L-1}\left\{\frac{1}{4}\left(I-\sigma_{i}^{z} \sigma_{i+1}^{z}\right)-\frac{1}{4 \Delta}\left(\sigma_{i}^{x} \sigma_{i+1}^{x}+\sigma_{i}^{y} \sigma_{i+1}^{y}\right)\right\}+\lambda \sum_{i=-L}^{L} \omega_{i} \mathcal{N}_{i} \\
+\beta\left(\mathcal{N}_{-L}+\mathcal{N}_{L}\right) \quad \text { on } \quad \mathcal{H}^{(L)}=\bigotimes_{i \in[-L, L]} \mathbb{C}_{i}^{2}
\end{gathered}
$$

- We fix $\beta \geq \frac{1}{2}\left(1-\frac{1}{\Delta}\right)$ (e.g., take $\beta=\frac{1}{2}$), so

$$
\sigma\left(H_{\omega}^{(L)}\right)=\{0\} \cup\left\{\left[1-\frac{1}{\Delta}, \infty\right) \cap \sigma\left(H_{\omega}^{(L)}\right)\right\} .
$$

- Unique ground state $\psi_{0}=\psi_{0}^{(L)}$ determined by $\mathcal{N}_{i} \psi_{0}=0$ for all i.
- The spectrum of $H^{(L)}=H_{\omega}^{(L)}$ is almost surely simple, so that its normalized eigenvectors can be labeled as $\psi_{E}, E \in \sigma\left(H^{(L)}\right)$.

The droplet spectrum

The droplet spectrum of the free $(\lambda=0) X X Z$ spin chain is given by

$$
I_{1}=\left[1-\frac{1}{\Delta}, 2\left(1-\frac{1}{\Delta}\right)\right) .
$$

The droplet spectrum

The droplet spectrum of the free $(\lambda=0) X X Z$ spin chain is given by

$$
I_{1}=\left[1-\frac{1}{\Delta}, 2\left(1-\frac{1}{\Delta}\right)\right) .
$$

We set

$$
I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right] \quad \text { for } \quad 0 \leq \delta<1
$$

The droplet spectrum

The droplet spectrum of the free $(\lambda=0) X X Z$ spin chain is given by

$$
I_{1}=\left[1-\frac{1}{\Delta}, 2\left(1-\frac{1}{\Delta}\right)\right) .
$$

We set

$$
I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right] \quad \text { for } \quad 0 \leq \delta<1
$$

Note that

$$
I_{1, \delta} \subsetneq I_{1} \quad \text { if } \quad 0<\delta<1
$$

The droplet spectrum

The droplet spectrum of the free $(\lambda=0) X X Z$ spin chain is given by

$$
I_{1}=\left[1-\frac{1}{\Delta}, 2\left(1-\frac{1}{\Delta}\right)\right) .
$$

We set

$$
I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right] \quad \text { for } \quad 0 \leq \delta<1
$$

Note that

$$
I_{1, \delta} \subsetneq I_{1} \quad \text { if } \quad 0<\delta<1
$$

Given an interval I, we set

$$
\sigma_{I}\left(H_{\omega}^{(L)}\right)=\sigma\left(H_{\omega}^{(L)}\right) \cap I
$$

The droplet spectrum

The droplet spectrum of the free $(\lambda=0) X X Z$ spin chain is given by

$$
I_{1}=\left[1-\frac{1}{\Delta}, 2\left(1-\frac{1}{\Delta}\right)\right) .
$$

We set

$$
I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right] \quad \text { for } \quad 0 \leq \delta<1
$$

Note that

$$
I_{1, \delta} \subsetneq I_{1} \quad \text { if } \quad 0<\delta<1
$$

Given an interval I, we set

$$
\sigma_{I}\left(H_{\omega}^{(L)}\right)=\sigma\left(H_{\omega}^{(L)}\right) \cap I,
$$

and let

$$
G_{I}=\left\{g: \mathbb{R} \rightarrow \mathbb{C} \text { Borel measurable, }|g| \leq \chi_{I}\right\}
$$

Theorem (Localization in the droplet spectrum)

Theorem (Localization in the droplet spectrum)

There exists a constant $K>0$ with the following property:

Theorem (Localization in the droplet spectrum)

There exists a constant $K>0$ with the following property: If $\Delta>1, \lambda>0$, and $0<\delta<1$ satisfy

$$
\lambda(\delta(\Delta-1))^{\frac{1}{2}} \min \{1,(\delta(\Delta-1))\} \geq K
$$

Theorem (Localization in the droplet spectrum)

There exists a constant $K>0$ with the following property:
If $\Delta>1, \lambda>0$, and $0<\delta<1$ satisfy

$$
\lambda(\delta(\Delta-1))^{\frac{1}{2}} \min \{1,(\delta(\Delta-1))\} \geq K
$$

there exist constants $C<\infty$ and $m>0$ such that we have, uniformly in L,

Theorem (Localization in the droplet spectrum)

There exists a constant $K>0$ with the following property:
If $\Delta>1, \lambda>0$, and $0<\delta<1$ satisfy

$$
\lambda(\delta(\Delta-1))^{\frac{1}{2}} \min \{1,(\delta(\Delta-1))\} \geq K
$$

there exist constants $C<\infty$ and $m>0$ such that we have, uniformly in L,

$$
\mathbb{E}\left(\sum_{E \in \sigma_{1, \delta}\left(H^{(L)}\right)}\left\|\mathcal{N}_{i} \psi_{E}\right\|\left\|\mathcal{N}_{j} \psi_{E}\right\|\right) \leq C e^{-m|i-j|} \text { for all } i, j \in[-L, L],
$$

Theorem (Localization in the droplet spectrum)

There exists a constant $K>0$ with the following property:
If $\Delta>1, \lambda>0$, and $0<\delta<1$ satisfy

$$
\lambda(\delta(\Delta-1))^{\frac{1}{2}} \min \{1,(\delta(\Delta-1))\} \geq K
$$

there exist constants $C<\infty$ and $m>0$ such that we have, uniformly in L,

$$
\mathbb{E}\left(\sum_{E \in \sigma_{1, \delta}\left(H^{(L)}\right)}\left\|\mathcal{N}_{i} \psi_{E}\right\|\left\|\mathcal{N}_{j} \psi_{E}\right\|\right) \leq C e^{-m|i-j|} \text { for all } i, j \in[-L, L]
$$

and, as a consequence,

$$
\mathbb{E}\left(\sup _{g \in G_{l, \delta}}\left\|\mathcal{N}_{i} g\left(H^{(L)}\right) \mathcal{N}_{j}\right\|_{1}\right) \leq C e^{-m|i-j|} \text { for all } i, j \in[-L, L] .
$$

Theorem (Localization in the droplet spectrum)

There exists a constant $K>0$ with the following property: If $\Delta>1, \lambda>0$, and $0<\delta<1$ satisfy

$$
\lambda(\delta(\Delta-1))^{\frac{1}{2}} \min \{1,(\delta(\Delta-1))\} \geq K
$$

there exist constants $C<\infty$ and $m>0$ such that we have, uniformly in L,

$$
\mathbb{E}\left(\sum_{E \in \sigma_{1, \delta}\left(H^{(L)}\right)}\left\|\mathcal{N}_{i} \psi_{E}\right\|\left\|\mathcal{N}_{j} \psi_{E}\right\|\right) \leq C e^{-m|i-j|} \text { for all } i, j \in[-L, L]
$$

and, as a consequence,

$$
\mathbb{E}\left(\sup _{g \in G_{l, \delta}}\left\|\mathcal{N}_{i} g\left(H^{(L)}\right) \mathcal{N}_{j}\right\|_{1}\right) \leq C e^{-m|i-j|} \text { for all } i, j \in[-L, L] .
$$

We will say that we have droplet localization in an interval / if the conclusions of the theorem hold in the interval I.

Best possible interval for droplet localization

We proved droplet localization on intervals

$$
I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right] \subset\left[1-\frac{1}{\Delta}, 2\left(1-\frac{1}{\Delta}\right)\right) .
$$

Best possible interval for droplet localization

We proved droplet localization on intervals

$$
I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right] \subset\left[1-\frac{1}{\Delta}, 2\left(1-\frac{1}{\Delta}\right)\right) .
$$

Droplet localization for the random XXZ spin chain (in the sense of the Theorem) is not possible outside the droplet spectrum.

Best possible interval for droplet localization

We proved droplet localization on intervals

$$
I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right] \subset\left[1-\frac{1}{\Delta}, 2\left(1-\frac{1}{\Delta}\right)\right) .
$$

Droplet localization for the random XXZ spin chain (in the sense of the Theorem) is not possible outside the droplet spectrum.

Theorem
Suppose we have droplet localization in the interval I $=\left[1-\frac{1}{\Delta}, \Theta\right]$.

Best possible interval for droplet localization

We proved droplet localization on intervals

$$
I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right] \subset\left[1-\frac{1}{\Delta}, 2\left(1-\frac{1}{\Delta}\right)\right) .
$$

Droplet localization for the random XXZ spin chain (in the sense of the Theorem) is not possible outside the droplet spectrum.

Theorem

Suppose we have droplet localization in the interval I $=\left[1-\frac{1}{\Delta}, \Theta\right]$. Then

$$
\Theta \leq 2\left(1-\frac{1}{\Delta}\right)
$$

Best possible interval for droplet localization

We proved droplet localization on intervals

$$
I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right] \subset\left[1-\frac{1}{\Delta}, 2\left(1-\frac{1}{\Delta}\right)\right) .
$$

Droplet localization for the random XXZ spin chain (in the sense of the Theorem) is not possible outside the droplet spectrum.

Theorem

Suppose we have droplet localization in the interval I $=\left[1-\frac{1}{\Delta}, \Theta\right]$. Then

$$
\Theta \leq 2\left(1-\frac{1}{\Delta}\right),
$$

that is, we must have

$$
I=I_{1, \delta} \quad \text { for some } \quad 0 \leq \delta<1
$$

Comments

- Basko, Aleiner and Altshuler (2006) suggested that some manifestations of localization survive the passage to a true many-body system. Their paper sparked extensive efforts in the physics community to understand this phenomenon, known as many-body localization (MBL).

Comments

- Basko, Aleiner and Altshuler (2006) suggested that some manifestations of localization survive the passage to a true many-body system. Their paper sparked extensive efforts in the physics community to understand this phenomenon, known as many-body localization (MBL).
- There is a huge physics literature on MBL. Many papers on disordered quantum spin chains.

Comments

- Basko, Aleiner and Altshuler (2006) suggested that some manifestations of localization survive the passage to a true many-body system. Their paper sparked extensive efforts in the physics community to understand this phenomenon, known as many-body localization (MBL).
- There is a huge physics literature on MBL. Many papers on disordered quantum spin chains.
- The random XY quantum spin chain is explicitly solvable in terms of the Anderson model.

Comments

- Basko, Aleiner and Altshuler (2006) suggested that some manifestations of localization survive the passage to a true many-body system. Their paper sparked extensive efforts in the physics community to understand this phenomenon, known as many-body localization (MBL).
- There is a huge physics literature on MBL. Many papers on disordered quantum spin chains.
- The random XY quantum spin chain is explicitly solvable in terms of the Anderson model. First exploited by K and Perez (1992).

Comments

- Basko, Aleiner and Altshuler (2006) suggested that some manifestations of localization survive the passage to a true many-body system. Their paper sparked extensive efforts in the physics community to understand this phenomenon, known as many-body localization (MBL).
- There is a huge physics literature on MBL. Many papers on disordered quantum spin chains.
- The random XY quantum spin chain is explicitly solvable in terms of the Anderson model. First exploited by K and Perez (1992). More recent results by Stolz and his collaborators.

Comments

- Basko, Aleiner and Altshuler (2006) suggested that some manifestations of localization survive the passage to a true many-body system. Their paper sparked extensive efforts in the physics community to understand this phenomenon, known as many-body localization (MBL).
- There is a huge physics literature on MBL. Many papers on disordered quantum spin chains.
- The random XY quantum spin chain is explicitly solvable in terms of the Anderson model. First exploited by K and Perez (1992). More recent results by Stolz and his collaborators.
- Results on the random XXZ quantum spin chain by Beaud and Warzel (2017).

Preliminaries for consequences of droplet localization

- $H=H_{\omega}$ will be a random XXZ spin chain satisfying droplet localization in the interval $I=I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right]$.

Preliminaries for consequences of droplet localization

- $H=H_{\omega}$ will be a random XXZ spin chain satisfying droplet localization in the interval $I=I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right]$.
- $P_{B}^{(L)}=\chi_{B}\left(H^{(L)}\right)$ for $B \subset \mathbb{R}$, with $P_{E}^{(L)}=P_{\{E\}}^{(L)}$ for $E \in \mathbb{R}$.

Preliminaries for consequences of droplet localization

- $H=H_{\omega}$ will be a random XXZ spin chain satisfying droplet localization in the interval $I=I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right]$.
- $P_{B}^{(L)}=\chi_{B}\left(H^{(L)}\right)$ for $B \subset \mathbb{R}$, with $P_{E}^{(L)}=P_{\{E\}}^{(L)}$ for $E \in \mathbb{R}$.
$\bullet I_{0}=\left[0,(2-\delta)\left(1-\frac{1}{\Delta}\right)\right] \approx\{0\} \cup I \quad \Longrightarrow \quad P_{I_{0}}^{(L)}=P_{0}^{(L)}+P_{I}^{(L)}$.

Preliminaries for consequences of droplet localization

- $H=H_{\omega}$ will be a random XXZ spin chain satisfying droplet localization in the interval $I=I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right]$.
- $P_{B}^{(L)}=\chi_{B}\left(H^{(L)}\right)$ for $B \subset \mathbb{R}$, with $P_{E}^{(L)}=P_{\{E\}}^{(L)}$ for $E \in \mathbb{R}$.
$\bullet I_{0}=\left[0,(2-\delta)\left(1-\frac{1}{\Delta}\right)\right] \approx\{0\} \cup I \quad \Longrightarrow \quad P_{I_{0}}^{(L)}=P_{0}^{(L)}+P_{I}^{(L)}$.
- A local observable X with support $J \subset[-L, L]$ is an operator on $\otimes_{j \in J} \mathbb{C}_{j}^{2}$, considered as an operator on $\mathcal{H}^{(L)}$ by acting as the identity on spins not in J. We always take J to an interval. Supports of observables are not uniquely defined.

Preliminaries for consequences of droplet localization

- $H=H_{\omega}$ will be a random XXZ spin chain satisfying droplet localization in the interval $I=I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right]$.
- $P_{B}^{(L)}=\chi_{B}\left(H^{(L)}\right)$ for $B \subset \mathbb{R}$, with $P_{E}^{(L)}=P_{\{E\}}^{(L)}$ for $E \in \mathbb{R}$.
$\bullet I_{0}=\left[0,(2-\delta)\left(1-\frac{1}{\Delta}\right)\right] \approx\{0\} \cup I \quad \Longrightarrow \quad P_{I_{0}}^{(L)}=P_{0}^{(L)}+P_{I}^{(L)}$.
- A local observable X with support $J \subset[-L, L]$ is an operator on $\otimes_{j \in J} \mathbb{C}_{j}^{2}$, considered as an operator on $\mathcal{H}^{(L)}$ by acting as the identity on spins not in J. We always take J to an interval. Supports of observables are not uniquely defined.

Given a local observable X, we will generally specify a support for X, denoted by $\mathcal{S}_{X}=\left[s_{X}, r_{X}\right]$. We always assume $\emptyset \neq \mathcal{S}_{X} \subset[-L, L]$.

Preliminaries for consequences of droplet localization

- $H=H_{\omega}$ will be a random XXZ spin chain satisfying droplet localization in the interval $I=I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right]$.
- $P_{B}^{(L)}=\chi_{B}\left(H^{(L)}\right)$ for $B \subset \mathbb{R}$, with $P_{E}^{(L)}=P_{\{E\}}^{(L)}$ for $E \in \mathbb{R}$.
$\bullet I_{0}=\left[0,(2-\delta)\left(1-\frac{1}{\Delta}\right)\right] \approx\{0\} \cup I \quad \Longrightarrow \quad P_{I_{0}}^{(L)}=P_{0}^{(L)}+P_{I}^{(L)}$.
- A local observable X with support $J \subset[-L, L]$ is an operator on $\otimes_{j \in J} \mathbb{C}_{j}^{2}$, considered as an operator on $\mathcal{H}^{(L)}$ by acting as the identity on spins not in J. We always take J to an interval. Supports of observables are not uniquely defined.
- Given a local observable X, we will generally specify a support for X, denoted by $\mathcal{S}_{X}=\left[s_{X}, r_{X}\right]$. We always assume $\emptyset \neq \mathcal{S}_{X} \subset[-L, L]$.
\bullet If $\ell \geq 1$, we set $\mathcal{S}_{X, \ell}=\left(\mathcal{S}_{X}\right)_{\ell}=\left[s_{X}-\ell, r_{X}+\ell\right] \cap[-L, L]$.

Preliminaries for consequences of droplet localization

- $H=H_{\omega}$ will be a random XXZ spin chain satisfying droplet localization in the interval $I=I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right]$.
- $P_{B}^{(L)}=\chi_{B}\left(H^{(L)}\right)$ for $B \subset \mathbb{R}$, with $P_{E}^{(L)}=P_{\{E\}}^{(L)}$ for $E \in \mathbb{R}$.
$\bullet I_{0}=\left[0,(2-\delta)\left(1-\frac{1}{\Delta}\right)\right] \approx\{0\} \cup I \quad \Longrightarrow \quad P_{I_{0}}^{(L)}=P_{0}^{(L)}+P_{I}^{(L)}$.
- A local observable X with support $J \subset[-L, L]$ is an operator on $\otimes_{j \in J} \mathbb{C}_{j}^{2}$, considered as an operator on $\mathcal{H}^{(L)}$ by acting as the identity on spins not in J. We always take J to an interval. Supports of observables are not uniquely defined.

Given a local observable X, we will generally specify a support for X, denoted by $\mathcal{S}_{X}=\left[s_{X}, r_{X}\right]$. We always assume $\emptyset \neq \mathcal{S}_{X} \subset[-L, L]$.

- If $\ell \geq 1$, we set $\mathcal{S}_{X, \ell}=\left(\mathcal{S}_{X}\right)_{\ell}=\left[s_{X}-\ell, r_{X}+\ell\right] \cap[-L, L]$.
- Given two local observables X, Y we set $\operatorname{dist}(X, Y)=\operatorname{dist}\left(\mathcal{S}_{X}, \mathcal{S}_{Y}\right)$.

Time evolution in an energy window

The time evolution of a local observable X under $H^{(L)}$ is given by

$$
\tau_{t}(X)=\tau_{t}^{(L)}(X)=\mathrm{e}^{i t H^{(L)}} X \mathrm{e}^{-i t H^{(L)}} \quad \text { for } \quad t \in \mathbb{R}
$$

Time evolution in an energy window

The time evolution of a local observable X under $H^{(L)}$ is given by

$$
\tau_{t}(X)=\tau_{t}^{(L)}(X)=\mathrm{e}^{i t H^{(L)}} X \mathrm{e}^{-i t H^{(L)}} \quad \text { for } \quad t \in \mathbb{R} .
$$

Since we only have localization in the energy interval I, and hence also in I_{0}, we should only expect manifestations of dynamical localization in these energy intervals.

Time evolution in an energy window

The time evolution of a local observable X under $H^{(L)}$ is given by

$$
\tau_{t}(X)=\tau_{t}^{(L)}(X)=\mathrm{e}^{i t H^{(L)}} X \mathrm{e}^{-i t H^{(L)}} \quad \text { for } \quad t \in \mathbb{R}
$$

Since we only have localization in the energy interval I, and hence also in I_{0}, we should only expect manifestations of dynamical localization in these energy intervals.

Thus, given an energy interval J, we consider the sub-Hilbert space Ran $P_{J}^{(L)}$, spanned by the the eigenstates of $H^{(L)}$ with energies in J, and localize an observable X in the energy interval J by considering its restriction to $\operatorname{Ran} P_{J}^{(L)}$,

$$
X_{J}=P_{J}^{(L)} X P_{J}^{(L)}
$$

Time evolution in an energy window

The time evolution of a local observable X under $H^{(L)}$ is given by

$$
\tau_{t}(X)=\tau_{t}^{(L)}(X)=\mathrm{e}^{i t H^{(L)}} X \mathrm{e}^{-i t H^{(L)}} \quad \text { for } \quad t \in \mathbb{R}
$$

Since we only have localization in the energy interval I, and hence also in I_{0}, we should only expect manifestations of dynamical localization in these energy intervals.

Thus, given an energy interval J, we consider the sub-Hilbert space Ran $P_{J}^{(L)}$, spanned by the the eigenstates of $H^{(L)}$ with energies in J, and localize an observable X in the energy interval J by considering its restriction to $\operatorname{Ran} P_{J}^{(L)}$,

Clearly

$$
\begin{aligned}
X_{J} & =P_{J}^{(L)} X P_{J}^{(L)} \\
\tau_{t}\left(X_{J}\right) & =\left(\tau_{t}(X)\right)_{J} .
\end{aligned}
$$

Non-spreading of information in the interval I_{0}

Non-spreading of information in the interval I_{0}

Theorem

There exists $C<\infty$, independent of L, such that for all local observables $X, t \in \mathbb{R}$ and $\ell>0$,

Non-spreading of information in the interval I_{0}

Theorem

There exists $C<\infty$, independent of L, such that for all local observables $X, t \in \mathbb{R}$ and $\ell>0$, there is a local observable $X_{\ell}(t)=\left(X_{\ell}(t)\right)_{\omega}$ with support $\mathcal{S}_{X, \ell}$,

Non-spreading of information in the interval I_{0}

Theorem

There exists $C<\infty$, independent of L, such that for all local observables $X, t \in \mathbb{R}$ and $\ell>0$, there is a local observable $X_{\ell}(t)=\left(X_{\ell}(t)\right)_{\omega}$ with support $\mathcal{S}_{X, \ell}$, satisfying

$$
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|\left(X_{\ell}(t)-\tau_{t}(X)\right)_{I_{0}}\right\|_{1}\right) \leq C\|X\| \mathrm{e}^{-\frac{1}{16} m \ell} .
$$

Non-spreading of information in the interval I_{0}

Theorem

There exists $C<\infty$, independent of L, such that for all local observables $X, t \in \mathbb{R}$ and $\ell>0$, there is a local observable $X_{\ell}(t)=\left(X_{\ell}(t)\right)_{\omega}$ with support $\mathcal{S}_{X, \ell}$, satisfying

$$
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|\left(X_{\ell}(t)-\tau_{t}(X)\right)_{I_{0}}\right\|_{1}\right) \leq C\|X\| \mathrm{e}^{-\frac{1}{16} m \ell} .
$$

$X_{I}=\left(X_{I_{0}}\right)_{I} \Longrightarrow$ the theorem holds with I substituted for I_{0}.

Zero-velocity Lieb-Robinson bounds

Zero-velocity Lieb-Robinson bounds

Theorem

The following holds uniformly in L:

Zero-velocity Lieb-Robinson bounds

Theorem

The following holds uniformly in L:

$$
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|\left[\tau_{t}\left(X_{l}\right), Y_{l}\right]\right\|_{1}\right) \leq C\|X\|\|Y\| \mathrm{e}^{-\frac{1}{8} m \operatorname{dist}(X, Y)}
$$

Zero-velocity Lieb-Robinson bounds

Theorem

The following holds uniformly in L:

$$
\begin{align*}
& \mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|\left[\tau_{t}\left(X_{l}\right), Y_{l}\right]\right\|_{1}\right) \leq C\|X\|\|Y\| \mathrm{e}^{-\frac{1}{8} m \operatorname{dist}(X, Y)}, \tag{1}\\
& \mathbb{E}\left(\sup _{t \in \mathbb{R}} \|\left[\tau_{t}\left(X_{l_{0}}\right), Y_{l_{0}}\right]-\right.\left.\left(\tau_{t}(X) P_{0} Y-Y P_{0} \tau_{t}(X)\right)_{l} \|_{1}\right) \\
& \leq C\|X\|\|Y\| \mathrm{e}^{-\frac{1}{8} m \operatorname{dist}(X, Y)},
\end{align*}
$$

Zero-velocity Lieb-Robinson bounds

Theorem

The following holds uniformly in L:

$$
\begin{gather*}
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|\left[\tau_{t}\left(X_{l}\right), Y_{l}\right]\right\|_{1}\right) \leq C\|X\|\|Y\| \mathrm{e}^{-\frac{1}{8} m \operatorname{dist}(X, Y)}, \tag{1}\\
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|\left[\tau_{t}\left(X_{l_{0}}\right), Y_{l_{0}}\right]-\left(\tau_{t}(X) P_{0} Y-Y P_{0} \tau_{t}(X)\right)_{l}\right\|_{1}\right) \\
\leq C\|X\|\|Y\| \mathrm{e}^{-\frac{1}{8} m \operatorname{dist}(X, Y)}, \\
\mathbb{E}\left(\sup _{t, s \in \mathbb{R}}\left\|\left[\left[\tau_{t}\left(X_{l_{0}}\right), \tau_{s}\left(Y_{l_{0}}\right)\right], Z_{l_{0}}\right]\right\|_{1}\right) \\
\leq C\|X\|\|Y\|\|Z\| \mathrm{e}^{-\frac{1}{8} m \min \{\operatorname{dist}(X, Y), \operatorname{dist}(X, Z), \operatorname{dist}(Y, Z)\}} .
\end{gather*}
$$

Zero-velocity Lieb-Robinson bounds

Theorem

The following holds uniformly in L:

$$
\begin{gather*}
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|\left[\tau_{t}\left(X_{l}\right), Y_{l}\right]\right\|_{1}\right) \leq C\|X\|\|Y\| \mathrm{e}^{-\frac{1}{8} m \operatorname{dist}(X, Y)}, \tag{1}\\
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|\left[\tau_{t}\left(X_{l_{0}}\right), Y_{l_{0}}\right]-\left(\tau_{t}(X) P_{0} Y-Y P_{0} \tau_{t}(X)\right)_{l}\right\|_{1}\right) \\
\leq C\|X\|\|Y\| \mathrm{e}^{-\frac{1}{8} m \operatorname{dist}(X, Y)}, \\
\mathbb{E}\left(\sup _{t, s \in \mathbb{R}}\left\|\left[\left[\tau_{t}\left(X_{I_{0}}\right), \tau_{s}\left(Y_{l_{0}}\right)\right], Z_{l_{0}}\right]\right\|_{1}\right) \\
\leq C\|X\|\|Y\|\|Z\| \mathrm{e}^{-\frac{1}{8} m \min \{\operatorname{dist}(X, Y), \operatorname{dist}(X, Z), \operatorname{dist}(Y, Z)\}} .
\end{gather*}
$$

Correlators

We define the truncated time evolution of an observable X in the energy window I by $\left(H=H_{\omega}^{(L)}\right)$,

$$
\tau_{t}^{\prime}(X)=\mathrm{e}^{i t H_{l}} X \mathrm{e}^{-i t H_{l}}, \quad \text { where } H_{l}=H P_{l} .
$$

Correlators

We define the truncated time evolution of an observable X in the energy window I by $\left(H=H_{\omega}^{(L)}\right)$,

$$
\tau_{t}^{\prime}(X)=\mathrm{e}^{i t H_{l}} X \mathrm{e}^{-i t H_{l}}, \quad \text { where } H_{l}=H P_{l} .
$$

Note that $\tau_{t}^{\prime}(X) \neq\left(\tau_{t}(X)\right)_{I}$, but $\quad\left(\tau_{t}^{\prime}(X)\right)_{I}=\left(\tau_{t}(X)\right)_{I}=\tau_{t}\left(X_{I}\right)$.

Correlators

We define the truncated time evolution of an observable X in the energy window I by $\left(H=H_{\omega}^{(L)}\right)$,

$$
\tau_{t}^{\prime}(X)=\mathrm{e}^{i t H_{l}} X \mathrm{e}^{-i t H_{l}}, \quad \text { where } H_{l}=H P_{l} .
$$

Note that $\tau_{t}^{\prime}(X) \neq\left(\tau_{t}(X)\right)_{I}$, but $\quad\left(\tau_{t}^{\prime}(X)\right)_{I}=\left(\tau_{t}(X)\right)_{I}=\tau_{t}\left(X_{I}\right)$. The correlator operator of two observables X and Y in the energy window I is given by ($\bar{P}_{I}=1-P_{l}$)

$$
R_{l}(X, Y)=(X Y)_{I}-X_{I} Y_{I}=P_{I} X \bar{P}_{I} Y P_{l}
$$

Correlators

We define the truncated time evolution of an observable X in the energy window I by $\left(H=H_{\omega}^{(L)}\right)$,

$$
\tau_{t}^{\prime}(X)=\mathrm{e}^{i t H_{l}} X \mathrm{e}^{-i t H_{l}}, \quad \text { where } H_{l}=H P_{l} .
$$

Note that $\tau_{t}^{\prime}(X) \neq\left(\tau_{t}(X)\right)_{l}$, but $\quad\left(\tau_{t}^{\prime}(X)\right)_{I}=\left(\tau_{t}(X)\right)_{l}=\tau_{t}\left(X_{l}\right)$. The correlator operator of two observables X and Y in the energy window I is given by $\left(\bar{P}_{I}=1-P_{l}\right)$

$$
R_{l}(X, Y)=(X Y)_{l}-X_{l} Y_{l}=P_{l} X \bar{P}_{l} Y P_{l}
$$

If E is a simple eigenvalue with normalized eigenvector ψ_{E}, we have, with $R_{E}(X, Y)=R_{\{E\}}(X, Y)$,

$$
\operatorname{tr}\left(R_{E}(X, Y)\right)=\left\langle\psi_{E}, X Y \psi_{E}\right\rangle-\left\langle\psi_{E}, X \psi_{E}\right\rangle\left\langle\psi_{E}, Y \psi_{E}\right\rangle
$$

Correlators

We define the truncated time evolution of an observable X in the energy window I by $\left(H=H_{\omega}^{(L)}\right)$,

$$
\tau_{t}^{\prime}(X)=\mathrm{e}^{i t H_{l}} X \mathrm{e}^{-i t H_{l}}, \quad \text { where } H_{l}=H P_{l} .
$$

Note that $\tau_{t}^{\prime}(X) \neq\left(\tau_{t}(X)\right)_{I}$, but $\quad\left(\tau_{t}^{\prime}(X)\right)_{I}=\left(\tau_{t}(X)\right)_{I}=\tau_{t}\left(X_{I}\right)$. The correlator operator of two observables X and Y in the energy window I is given by $\left(\bar{P}_{I}=1-P_{I}\right)$

$$
R_{l}(X, Y)=(X Y)_{l}-X_{l} Y_{l}=P_{l} X \bar{P}_{l} Y P_{l}
$$

If E is a simple eigenvalue with normalized eigenvector ψ_{E}, we have, with $R_{E}(X, Y)=R_{\{E\}}(X, Y)$,

$$
\operatorname{tr}\left(R_{E}(X, Y)\right)=\left\langle\psi_{E}, X Y \psi_{E}\right\rangle-\left\langle\psi_{E}, X \psi_{E}\right\rangle\left\langle\psi_{E}, Y \psi_{E}\right\rangle .
$$

We are interested in quantities of the form $(K \subset I)$
$R_{K}\left(\tau_{t}^{\prime}(X), Y\right)=\left(\tau_{t}^{\prime}(X) Y\right)_{K}-\left(\tau_{t}^{\prime}(X)\right)_{K} Y_{K}=\left(\tau_{t}^{\prime}(X) Y\right)_{K}-\tau_{t}\left(X_{K}\right) Y_{K}$.

Dynamical exponential clustering

Theorem

For all local observables X and Y we have, uniformly in L,

Dynamical exponential clustering

Theorem

For all local observables X and Y we have, uniformly in L,

$$
\mathbb{E}\left(\sup _{t \in \mathbb{R}} \sum_{E \in \sigma_{l}\left(H^{(L)}\right)}\left|\operatorname{tr}\left(R_{E}\left(\tau_{t}^{\prime}(X), Y\right)\right)\right|\right) \leq C\|X\|\|Y\| \mathrm{e}^{-m \operatorname{dist}(X, Y)}
$$

Dynamical exponential clustering

Theorem

For all local observables X and Y we have, uniformly in L,

$$
\begin{aligned}
& \mathbb{E}\left(\sup _{t \in \mathbb{R}} \sum_{E \in \sigma_{l}\left(H^{(L)}\right)}\left|\operatorname{tr}\left(R_{E}\left(\tau_{t}^{\prime}(X), Y\right)\right)\right|\right) \leq C\|X\|\|Y\| \mathrm{e}^{-m \operatorname{dist}(X, Y)}, \\
& \mathbb{E}\left(\sup _{t \in \mathbb{R}} \sum_{E \in \sigma_{l}\left(H^{(L)}\right)}\left|\operatorname{tr}\left(R_{E}\left(\tau_{t}\left(X_{l}\right), Y_{l}\right)\right)\right|\right) \leq C\|X\|\|Y\| \mathrm{e}^{-m \operatorname{dist}(X, Y)},
\end{aligned}
$$

Dynamical exponential clustering

Theorem

For all local observables X and Y we have, uniformly in L,

$$
\begin{aligned}
& \mathbb{E}\left(\sup _{t \in \mathbb{R}} \sum_{E \in \sigma_{l}\left(H^{(L)}\right)}\left|\operatorname{tr}\left(R_{E}\left(\tau_{t}^{\prime}(X), Y\right)\right)\right|\right) \leq C\|X\|\|Y\| \mathrm{e}^{-m \operatorname{dist}(X, Y)}, \\
& \mathbb{E}\left(\sup _{t \in \mathbb{R}} \sum_{E \in \sigma_{l}\left(H^{(L)}\right)}\left|\operatorname{tr}\left(R_{E}\left(\tau_{t}\left(X_{l}\right), Y_{l}\right)\right)\right|\right) \leq C\|X\|\|Y\| \mathrm{e}^{-m \operatorname{dist}(X, Y)},
\end{aligned}
$$

and

$$
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left|\operatorname{tr}\left(R_{l}\left(\tau_{t}^{\prime}(X), Y\right)\right)\right|\right) \leq C\|X\|\|Y\| \mathrm{e}^{-m \operatorname{dist}(X, Y)} .
$$

General dynamical clustering

General dynamical clustering

Theorem

Fix an interval $K=\left[1-\frac{1}{\Delta}, \Theta\right] \subsetneq I_{1, \delta}$, and $\alpha \in(0,1)$.

General dynamical clustering

Theorem

Fix an interval $K=\left[1-\frac{1}{\Delta}, \Theta\right] \subsetneq I_{1, \delta}$, and $\alpha \in(0,1)$. There exists $\tilde{m}>0$, such that for all local observables X and Y we have, uniformly in L,

General dynamical clustering

Theorem

Fix an interval $K=\left[1-\frac{1}{\Delta}, \Theta\right] \subsetneq I_{1, \delta}$, and $\alpha \in(0,1)$. There exists $\tilde{m}>0$, such that for all local observables X and Y we have, uniformly in L,

$$
\begin{aligned}
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|R_{K}\left(\tau_{t}^{K}(X), Y\right)-\left(\tau_{t}^{K}(X) P_{0} Y+\tau_{t}^{K}(Y) P_{0} X\right)_{K}\right\|\right) \\
\leq C\left(1+\ln \left(\min \left\{\left|\mathcal{S}_{X}\right|,\left|\mathcal{S}_{Y}\right|\right\}\right)\right)\|X\|\|Y\| \mathrm{e}^{-\tilde{m}(\operatorname{dist}(X, Y))^{\alpha}} .
\end{aligned}
$$

General dynamical clustering

Theorem

Fix an interval $K=\left[1-\frac{1}{\Delta}, \Theta\right] \subsetneq I_{1, \delta}$, and $\alpha \in(0,1)$. There exists $\tilde{m}>0$, such that for all local observables X and Y we have, uniformly in L,

$$
\begin{aligned}
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|R_{K}\left(\tau_{t}^{K}(X), Y\right)-\left(\tau_{t}^{K}(X) P_{0} Y+\tau_{t}^{K}(Y) P_{0} X\right)_{K}\right\|\right) \\
\leq C\left(1+\ln \left(\min \left\{\left|\mathcal{S}_{X}\right|,\left|\mathcal{S}_{Y}\right|\right\}\right)\right)\|X\|\|Y\| \mathrm{e}^{-\tilde{m}(\operatorname{dist}(X, Y))^{\alpha}}
\end{aligned}
$$

Moreover, the estimate is not true without the counterterms.

General dynamical clustering

Theorem

Fix an interval $K=\left[1-\frac{1}{\Delta}, \Theta\right] \subsetneq I_{1, \delta}$, and $\alpha \in(0,1)$. There exists $\tilde{m}>0$, such that for all local observables X and Y we have, uniformly in L,

$$
\begin{aligned}
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|R_{K}\left(\tau_{t}^{K}(X), Y\right)-\left(\tau_{t}^{K}(X) P_{0} Y+\tau_{t}^{K}(Y) P_{0} X\right)_{K}\right\|\right) \\
\leq C\left(1+\ln \left(\min \left\{\left|\mathcal{S}_{X}\right|,\left|\mathcal{S}_{Y}\right|\right\}\right)\right)\|X\|\|Y\| \mathrm{e}^{-\tilde{m}(\operatorname{dist}(X, Y))^{\alpha}}
\end{aligned}
$$

Moreover, the estimate is not true without the counterterms.
While it is obvious where the first counterterm comes from, the same is not true of the second, where the time evolution seems to sit in the wrong place: it is $\tau_{t}^{K}(Y)$ and not $\tau_{t}^{K}(X)$.

General dynamical clustering

Theorem

Fix an interval $K=\left[1-\frac{1}{\Delta}, \Theta\right] \subsetneq I_{1, \delta}$, and $\alpha \in(0,1)$. There exists $\tilde{m}>0$, such that for all local observables X and Y we have, uniformly in L,

$$
\begin{aligned}
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|R_{K}\left(\tau_{t}^{K}(X), Y\right)-\left(\tau_{t}^{K}(X) P_{0} Y+\tau_{t}^{K}(Y) P_{0} X\right)_{K}\right\|\right) \\
\leq C\left(1+\ln \left(\min \left\{\left|\mathcal{S}_{X}\right|,\left|\mathcal{S}_{Y}\right|\right\}\right)\right)\|X\|\|Y\| \mathrm{e}^{-\tilde{m}(\operatorname{dist}(X, Y))^{\alpha}}
\end{aligned}
$$

Moreover, the estimate is not true without the counterterms.
While it is obvious where the first counterterm comes from, the same is not true of the second, where the time evolution seems to sit in the wrong place: it is $\tau_{t}^{K}(Y)$ and not $\tau_{t}^{K}(X)$. It turns out this term encodes information about the states above the energy window K, and the appearance of $\tau_{t}^{K}(Y)$ is related to the reduction of this data to P_{0}.

Particle number conservation

An important property of the XXZ chain is particle number conservation:

$$
\left[H^{(L)}, \mathcal{N}^{(L)}\right]=0, \quad \text { where } \quad \mathcal{N}^{(L)}=\sum_{i=-L}^{L} \mathcal{N}_{i}
$$

Particle number conservation

An important property of the XXZ chain is particle number conservation:

$$
\left[H^{(L)}, \mathcal{N}^{(L)}\right]=0, \quad \text { where } \quad \mathcal{N}^{(L)}=\sum_{i=-L}^{L} \mathcal{N}_{i}
$$

$\mathcal{N}^{(L)}$ is the total (down) spin number operator. Its eigenvalues are $N=0,1, \ldots, 2 L+1$, and $\mathcal{H}_{N}^{(L)}$, the N-particle sector (N-eigenspace), is spanned by the spin basis states with N down spins.

Particle number conservation

An important property of the XXZ chain is particle number conservation:

$$
\left[H^{(L)}, \mathcal{N}^{(L)}\right]=0, \quad \text { where } \quad \mathcal{N}^{(L)}=\sum_{i=-L}^{L} \mathcal{N}_{i}
$$

$\mathcal{N}^{(L)}$ is the total (down) spin number operator. Its eigenvalues are $N=0,1, \ldots, 2 L+1$, and $\mathcal{H}_{N}^{(L)}$, the N-particle sector (N-eigenspace), is spanned by the spin basis states with N down spins.
It follows that

$$
H^{(L)}=\bigoplus_{N=0}^{2 L+1} H_{N}^{(L)} \quad \text { with respect to } \quad \mathcal{H}^{(L)}=\bigoplus_{N=0}^{2 L+1} \mathcal{H}_{N}^{(L)}
$$

Schrödinger-type operators

$H_{N}^{(L)}$ is unitarily equivalent to an N-body discrete Schrödinger operator.

Schrödinger-type operators

$H_{N}^{(L)}$ is unitarily equivalent to an N-body discrete Schrödinger operator. Let $\quad \mathcal{X}_{N}=\left\{x \in \mathbb{Z}^{N}: x_{1}<x_{2}<\ldots<x_{N}\right\} \quad$ and $\quad \mathcal{X}_{N}^{(L)}=\mathcal{X}_{N} \cap[-L, L]^{N}$.

Schrödinger-type operators

$H_{N}^{(L)}$ is unitarily equivalent to an N-body discrete Schrödinger operator. Let $\quad \mathcal{X}_{N}=\left\{x \in \mathbb{Z}^{N}: x_{1}<x_{2}<\ldots<x_{N}\right\} \quad$ and $\quad \mathcal{X}_{N}^{(L)}=\mathcal{X}_{N} \cap[-L, L]^{N}$.

Then (in the sense of unitary equivalence)

$$
\begin{aligned}
& \mathcal{H}_{N}^{(L)} \cong \ell^{2}\left(\mathcal{X}_{N}^{(L)}\right) \quad\left(x_{1}<x_{2}<\ldots<x_{N} \quad \text { are the sites with down spins }\right) \\
& H_{N}^{(L)} \cong-\frac{1}{2 \Delta} \mathcal{L}_{N}^{(L)}+\left(1-\frac{1}{\Delta}\right) \widetilde{W}+\lambda V_{\omega}+\left(\beta-\frac{1}{2}\left(1-\frac{1}{\Delta}\right)\right) \chi^{(L)}
\end{aligned}
$$

Schrödinger-type operators

$H_{N}^{(L)}$ is unitarily equivalent to an N-body discrete Schrödinger operator. Let $\quad \mathcal{X}_{N}=\left\{x \in \mathbb{Z}^{N}: x_{1}<x_{2}<\ldots<x_{N}\right\} \quad$ and $\quad \mathcal{X}_{N}^{(L)}=\mathcal{X}_{N} \cap[-L, L]^{N}$.

Then (in the sense of unitary equivalence)

$$
\begin{aligned}
& \mathcal{H}_{N}^{(L)} \cong \ell^{2}\left(\mathcal{X}_{N}^{(L)}\right) \quad\left(x_{1}<x_{2}<\ldots<x_{N} \quad \text { are the sites with down spins }\right) \\
& H_{N}^{(L)} \cong-\frac{1}{2 \Delta} \mathcal{L}_{N}^{(L)}+\left(1-\frac{1}{\Delta}\right) \widetilde{W}+\lambda V_{\omega}+\left(\beta-\frac{1}{2}\left(1-\frac{1}{\Delta}\right)\right) \chi^{(L)}
\end{aligned}
$$

- $\left(\mathcal{L}_{N}^{(L)} \psi\right)(x)=\sum_{y \in \mathcal{X}_{N}^{(L)},|x-y|_{1}=1}(\psi(y)-\psi(x))$, the graph Laplacian.

Schrödinger-type operators

$H_{N}^{(L)}$ is unitarily equivalent to an N-body discrete Schrödinger operator. Let $\quad \mathcal{X}_{N}=\left\{x \in \mathbb{Z}^{N}: x_{1}<x_{2}<\ldots<x_{N}\right\} \quad$ and $\quad \mathcal{X}_{N}^{(L)}=\mathcal{X}_{N} \cap[-L, L]^{N}$.

Then (in the sense of unitary equivalence)
$\mathcal{H}_{N}^{(L)} \cong \ell^{2}\left(\mathcal{X}_{N}^{(L)}\right) \quad\left(x_{1}<x_{2}<\ldots<x_{N} \quad\right.$ are the sites with down spins $)$
$H_{N}^{(L)} \cong-\frac{1}{2 \Delta} \mathcal{L}_{N}^{(L)}+\left(1-\frac{1}{\Delta}\right) \widetilde{W}+\lambda V_{\omega}+\left(\beta-\frac{1}{2}\left(1-\frac{1}{\Delta}\right)\right) \chi^{(L)}$.

- $\left(\mathcal{L}_{N}^{(L)} \psi\right)(x)=\sum_{y \in \mathcal{X}_{N}^{(L)},|x-y|_{1}=1}(\psi(y)-\psi(x))$, the graph Laplacian.
- $\widetilde{W}(x)=1+\#\left\{j: x_{j+1} \neq x_{j}+1\right\} \in\{1,2, \ldots, N\}$ for $x \in \mathcal{X}_{N}$, the number of clusters in x.

Schrödinger-type operators

$H_{N}^{(L)}$ is unitarily equivalent to an N-body discrete Schrödinger operator. Let $\quad \mathcal{X}_{N}=\left\{x \in \mathbb{Z}^{N}: x_{1}<x_{2}<\ldots<x_{N}\right\} \quad$ and $\quad \mathcal{X}_{N}^{(L)}=\mathcal{X}_{N} \cap[-L, L]^{N}$.

Then (in the sense of unitary equivalence)
$\mathcal{H}_{N}^{(L)} \cong \ell^{2}\left(\mathcal{X}_{N}^{(L)}\right) \quad\left(x_{1}<x_{2}<\ldots<x_{N} \quad\right.$ are the sites with down spins $)$
$H_{N}^{(L)} \cong-\frac{1}{2 \Delta} \mathcal{L}_{N}^{(L)}+\left(1-\frac{1}{\Delta}\right) \widetilde{W}+\lambda V_{\omega}+\left(\beta-\frac{1}{2}\left(1-\frac{1}{\Delta}\right)\right) \chi^{(L)}$.

- $\left(\mathcal{L}_{N}^{(L)} \psi\right)(x)=\sum_{y \in \mathcal{X}_{N}^{(L)},|x-y|_{1}=1}(\psi(y)-\psi(x))$, the graph Laplacian.
- $\widetilde{W}(x)=1+\#\left\{j: x_{j+1} \neq x_{j}+1\right\} \in\{1,2, \ldots, N\}$ for $x \in \mathcal{X}_{N}$, the number of clusters in x.
- $V_{\omega}(x)=\sum_{j=1}^{N} \omega_{x_{j}}$ for $x \in \mathcal{X}_{N}$, a random potential.

Schrödinger-type operators

$H_{N}^{(L)}$ is unitarily equivalent to an N-body discrete Schrödinger operator. Let $\quad \mathcal{X}_{N}=\left\{x \in \mathbb{Z}^{N}: x_{1}<x_{2}<\ldots<x_{N}\right\} \quad$ and $\quad \mathcal{X}_{N}^{(L)}=\mathcal{X}_{N} \cap[-L, L]^{N}$.

Then (in the sense of unitary equivalence)
$\mathcal{H}_{N}^{(L)} \cong \ell^{2}\left(\mathcal{X}_{N}^{(L)}\right) \quad\left(x_{1}<x_{2}<\ldots<x_{N} \quad\right.$ are the sites with down spins $)$
$H_{N}^{(L)} \cong-\frac{1}{2 \Delta} \mathcal{L}_{N}^{(L)}+\left(1-\frac{1}{\Delta}\right) \widetilde{W}+\lambda V_{\omega}+\left(\beta-\frac{1}{2}\left(1-\frac{1}{\Delta}\right)\right) \chi^{(L)}$.

- $\left(\mathcal{L}_{N}^{(L)} \psi\right)(x)=\sum_{y \in \mathcal{X}_{N}^{(L)},|x-y|_{1}=1}(\psi(y)-\psi(x))$, the graph Laplacian.
- $\widetilde{W}(x)=1+\#\left\{j: x_{j+1} \neq x_{j}+1\right\} \in\{1,2, \ldots, N\}$ for $x \in \mathcal{X}_{N}$, the number of clusters in x.
- $V_{\omega}(x)=\sum_{j=1}^{N} \omega_{x_{j}}$ for $x \in \mathcal{X}_{N}$, a random potential.
- $\chi^{(L)}=\chi_{-L}+\chi_{L}$, the left and right boundary terms.

Local number operators

$$
\text { Recall } \mathcal{N}_{i}=\left\{\begin{array}{ll}
1 & \text { if the spin at site } \mathrm{i} \text { is down } \\
0 & \text { otherwise }
\end{array}, \text { and } \mathcal{N}_{i}=\bigoplus_{N=0}^{2 L+1} \mathcal{N}_{i}^{(N)} .\right.
$$

Local number operators

Recall $\mathcal{N}_{i}=\left\{\begin{array}{ll}1 & \text { if the spin at site } i \text { is down } \\ 0 & \text { otherwise }\end{array}\right.$, and $\mathcal{N}_{i}=\bigoplus_{N=0}^{2 L+1} \mathcal{N}_{i}^{(N)}$.
Thus $\mathcal{N}_{i}^{(N)} \cong Q_{i}^{(N)}$, where $Q_{i}^{(N)}$ is the characteristic function of the set

$$
S_{i}:=\left\{u \in \mathcal{X}_{N}: u_{j}=i \text { for some } j \in\{1, \ldots, N\}\right\} .
$$

Local number operators

Recall $\mathcal{N}_{i}=\left\{\begin{array}{ll}1 & \text { if the spin at site } i \text { is down } \\ 0 & \text { otherwise }\end{array}\right.$, and $\mathcal{N}_{i}=\bigoplus_{N=0}^{2 L+1} \mathcal{N}_{i}^{(N)}$.
Thus $\mathcal{N}_{i}^{(N)} \cong Q_{i}^{(N)}$, where $Q_{i}^{(N)}$ is the characteristic function of the set

$$
S_{i}:=\left\{u \in \mathcal{X}_{N}: u_{j}=i \text { for some } j \in\{1, \ldots, N\}\right\} .
$$

Recall that the spectrum of $H_{N}^{(L)}$ is almost surely simple. Given a finite interval $I \subset \mathbb{R}$ and a pair of indices $i, j \in \mathbb{Z}$, let

$$
Q_{N}^{(L)}(i, j ; I)=\sum_{E \in \sigma\left(H_{N}^{(L)}\right) \cap I}\left\|Q_{i}^{(N)} \psi_{E}\right\|\left\|Q_{j}^{(N)} \psi_{E}\right\| .
$$

Local number operators

Recall $\mathcal{N}_{i}=\left\{\begin{array}{ll}1 & \text { if the spin at site } \mathrm{i} \text { is down } \\ 0 & \text { otherwise }\end{array}\right.$, and $\mathcal{N}_{i}=\bigoplus_{N=0}^{2 L+1} \mathcal{N}_{i}^{(N)}$.
Thus $\mathcal{N}_{i}^{(N)} \cong Q_{i}^{(N)}$, where $Q_{i}^{(N)}$ is the characteristic function of the set

$$
S_{i}:=\left\{u \in \mathcal{X}_{N}: u_{j}=i \text { for some } j \in\{1, \ldots, N\}\right\} .
$$

Recall that the spectrum of $H_{N}^{(L)}$ is almost surely simple. Given a finite interval $I \subset \mathbb{R}$ and a pair of indices $i, j \in \mathbb{Z}$, let

$$
Q_{N}^{(L)}(i, j ; I)=\sum_{E \in \sigma\left(H_{N}^{(L)}\right) \cap I}\left\|Q_{i}^{(N)} \psi_{E}\right\|\left\|Q_{j}^{(N)} \psi_{E}\right\| .
$$

It follows that

$$
\sum_{E \in \sigma\left(H^{(L)}\right) \cap I}\left\|\mathcal{N}_{i} \psi_{E}\right\|\left\|\mathcal{N}_{j} \psi_{E}\right\|=\sum_{N=1}^{\infty} Q_{N}^{(L)}(i, j ; I) \quad \text { almost surely. }
$$

Reformulation of droplet localization

Theorem

Fix $0<\delta<1$, and let $I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right]$.
There exists a constant $K>0$ with the following property: If

$$
\lambda \sqrt{\Delta-1} \min \{1,(\Delta-1)\} \geq K
$$

there exist constants $C<\infty$ and $m>0$ such that

$$
\sum_{N=1}^{\infty} \mathbb{E}\left(Q_{N}^{(L)}\left(i, j ; I_{1, \delta}\right)\right) \leq C e^{-m|i-j|} \text { for all }-L \leq i, j \leq L
$$

uniformly in L.

Reformulation of droplet localization

Theorem

Fix $0<\delta<1$, and let $I_{1, \delta}=\left[1-\frac{1}{\Delta},(2-\delta)\left(1-\frac{1}{\Delta}\right)\right]$.
There exists a constant $K>0$ with the following property: If

$$
\lambda \sqrt{\Delta-1} \min \{1,(\Delta-1)\} \geq K
$$

there exist constants $C<\infty$ and $m>0$ such that

$$
\sum_{N=1}^{\infty} \mathbb{E}\left(Q_{N}^{(L)}\left(i, j ; l_{1, \delta}\right)\right) \leq C e^{-m|i-j|} \text { for all }-L \leq i, j \leq L
$$

uniformly in L.
This reformulation reduces the proof of droplet localization in the droplet spectrum to establishing decay properties of the Green's functions associated with the random Schrödinger operators $H_{N}^{(L)}$.

Strategy for the proof of the theorem

The analysis is first done separately along the edge
$\mathcal{X}_{N, 1}=\left\{x \in \mathcal{X}_{N}: \widetilde{W}(x)=1\right\}=\left\{x=\left(x_{1}, x_{1}+1, \ldots, x_{1}+N-1\right): x_{1} \in \mathbb{Z}\right\}$
$\left(\mathcal{X}_{N, 1}^{(L)}=\mathcal{X}_{N, 1} \cap \mathcal{X}_{N}^{(L)}\right)$,

Strategy for the proof of the theorem

The analysis is first done separately along the edge

$$
\mathcal{X}_{N, 1}=\left\{x \in \mathcal{X}_{N}: \widetilde{W}(x)=1\right\}=\left\{x=\left(x_{1}, x_{1}+1, \ldots, x_{1}+N-1\right): x_{1} \in \mathbb{Z}\right\}
$$

$\left(\mathcal{X}_{N, 1}^{(L)}=\mathcal{X}_{N, 1} \cap \mathcal{X}_{N}^{(L)}\right)$, and within the bulk

$$
\overline{\mathcal{X}}_{N, 1}:=\mathcal{X}_{N} \backslash \mathcal{X}_{N, 1}=\left\{x \in \mathcal{X}_{N}: \widetilde{W}(x) \geq 2\right\} \quad\left(\overline{\mathcal{X}}_{N, 1}^{(L)}:=\overline{\mathcal{X}}_{N, 1} \cap \mathcal{X}_{N}^{(L)}\right)
$$

Strategy for the proof of the theorem

The analysis is first done separately along the edge

$$
\begin{aligned}
& \mathcal{X}_{N, 1}=\left\{x \in \mathcal{X}_{N}: \widetilde{W}(x)=1\right\}=\left\{x=\left(x_{1}, x_{1}+1, \ldots, x_{1}+N-1\right): x_{1} \in \mathbb{Z}\right\} \\
& \left(\mathcal{X}_{N, 1}^{(L)}=\mathcal{X}_{N, 1} \cap \mathcal{X}_{N}^{(L)}\right), \text { and within the bulk } \\
& \overline{\mathcal{X}}_{N, 1}:=\mathcal{X}_{N} \backslash \mathcal{X}_{N, 1}=\left\{x \in \mathcal{X}_{N}: \widetilde{W}(x) \geq 2\right\} \quad\left(\overline{\mathcal{X}}_{N, 1}^{(L)}:=\overline{\mathcal{X}}_{N, 1} \cap \mathcal{X}_{N}^{(L)}\right) .
\end{aligned}
$$

- In the bulk we use (purely deterministic) Combes-Thomas-type estimates.

Strategy for the proof of the theorem

The analysis is first done separately along the edge

$$
\begin{aligned}
& \mathcal{X}_{N, 1}=\left\{x \in \mathcal{X}_{N}: \widetilde{W}(x)=1\right\}=\left\{x=\left(x_{1}, x_{1}+1, \ldots, x_{1}+N-1\right): x_{1} \in \mathbb{Z}\right\} \\
& \left(\mathcal{X}_{N, 1}^{(L)}=\mathcal{X}_{N, 1} \cap \mathcal{X}_{N}^{(L)}\right), \text { and within the bulk } \\
& \overline{\mathcal{X}}_{N, 1}:=\mathcal{X}_{N} \backslash \mathcal{X}_{N, 1}=\left\{x \in \mathcal{X}_{N}: \widetilde{W}(x) \geq 2\right\} \quad\left(\overline{\mathcal{X}}_{N, 1}^{(L)}:=\overline{\mathcal{X}}_{N, 1} \cap \mathcal{X}_{N}^{(L)}\right) .
\end{aligned}
$$

- In the bulk we use (purely deterministic) Combes-Thomas-type estimates.
- Along the edge we establish a fractional moment estimate.

Strategy for the proof of the theorem

The analysis is first done separately along the edge

$$
\mathcal{X}_{N, 1}=\left\{x \in \mathcal{X}_{N}: \widetilde{W}(x)=1\right\}=\left\{x=\left(x_{1}, x_{1}+1, \ldots, x_{1}+N-1\right): x_{1} \in \mathbb{Z}\right\}
$$

$\left(\mathcal{X}_{N, 1}^{(L)}=\mathcal{X}_{N, 1} \cap \mathcal{X}_{N}^{(L)}\right)$, and within the bulk
$\overline{\mathcal{X}}_{N, 1}:=\mathcal{X}_{N} \backslash \mathcal{X}_{N, 1}=\left\{x \in \mathcal{X}_{N}: \widetilde{W}(x) \geq 2\right\} \quad\left(\overline{\mathcal{X}}_{N, 1}^{(L)}:=\overline{\mathcal{X}}_{N, 1} \cap \mathcal{X}_{N}^{(L)}\right)$.

- In the bulk we use (purely deterministic) Combes-Thomas-type estimates.
- Along the edge we establish a fractional moment estimate.
- These estimates are combined to derive localization on a pair of "boxes", as in an energy interval multiscale analysis, from which we derive droplet localization.

Combes-Thomas-type estimates in the bulk

Theorem

Let $z \notin \sigma\left(H_{N}^{(L)}\right)$ and let

$$
\left\|\widetilde{W}^{\frac{1}{2}}\left(H_{N}^{(L)}-z\right)^{-1} \widetilde{W}^{\frac{1}{2}}\right\| \leq \frac{1}{\eta_{z}}
$$

Then for all $\Phi, \Psi \subset \mathcal{X}_{N}^{(L)}$ we have

$$
\left\|\chi_{\Phi} \widetilde{W}^{\frac{1}{2}}\left(H_{N}^{(L)}-z\right)^{-1} \widetilde{W}^{\frac{1}{2}} \chi_{\psi}\right\| \leq \frac{2}{\eta_{z}} \mathrm{e}^{-\log \left(1+\frac{\eta_{z} \Delta}{2}\right) \operatorname{dist}_{1}(\Phi, \Psi)}
$$

(dist ${ }_{1}$ is the distance in the $\left|\left.\right|_{1}\right.$ norm.)

Combes-Thomas-type estimates in the bulk

Theorem

Let $z \notin \sigma\left(H_{N}^{(L)}\right)$ and let

$$
\left\|\widetilde{W}^{\frac{1}{2}}\left(H_{N}^{(L)}-z\right)^{-1} \widetilde{W}^{\frac{1}{2}}\right\| \leq \frac{1}{\eta_{z}}
$$

Then for all $\Phi, \Psi \subset \mathcal{X}_{N}^{(L)}$ we have

$$
\left\|\chi_{\Phi} \widetilde{W}^{\frac{1}{2}}\left(H_{N}^{(L)}-z\right)^{-1} \widetilde{W}^{\frac{1}{2}} \chi_{\psi}\right\| \leq \frac{2}{\eta_{z}} \mathrm{e}^{-\log \left(1+\frac{\eta_{z} \Delta}{2}\right) \operatorname{dist}_{1}(\Phi, \Psi)}
$$

(dist ${ }_{1}$ is the distance in the $\left|\left.\right|_{1}\right.$ norm.)

Fractional moment estimate on the edge

Theorem

There exists a constant $K>0$ with the following property: If

$$
\lambda \sqrt{\Delta-1} \min \{1,(\Delta-1)\} \geq K
$$

Fractional moment estimate on the edge

Theorem

There exists a constant $K>0$ with the following property: If

$$
\lambda \sqrt{\Delta-1} \min \{1,(\Delta-1)\} \geq K
$$

there exist constants $C=C(\Delta)<\infty$ and $\xi=\xi(\Delta)>0$ (depending only on Δ),

Fractional moment estimate on the edge

Theorem

There exists a constant $K>0$ with the following property: If

$$
\lambda \sqrt{\Delta-1} \min \{1,(\Delta-1)\} \geq K
$$

there exist constants $C=C(\Delta)<\infty$ and $\xi=\xi(\Delta)>0$ (depending only on Δ), such that

$$
\mathbb{E}\left(\left|\left\langle\delta_{u},\left(H_{N}^{(L)}-E-i \epsilon\right)^{-1} \delta_{v}\right\rangle\right|^{\frac{1}{2}}\right) \leq \frac{C}{\sqrt{\lambda}} \mathrm{e}^{-\xi|u-v|_{\infty}}
$$

for all $N \in \mathbb{N}, E \in I_{1, \delta}, \epsilon \in \mathbb{R}$, and $u, v \in \mathcal{X}_{N, 1}^{(L)}$.

Fractional moment estimate on the edge

Theorem

There exists a constant $K>0$ with the following property: If

$$
\lambda \sqrt{\Delta-1} \min \{1,(\Delta-1)\} \geq K
$$

there exist constants $C=C(\Delta)<\infty$ and $\xi=\xi(\Delta)>0$ (depending only on Δ), such that

$$
\mathbb{E}\left(\left|\left\langle\delta_{u},\left(H_{N}^{(L)}-E-i \epsilon\right)^{-1} \delta_{v}\right\rangle\right|^{\frac{1}{2}}\right) \leq \frac{C}{\sqrt{\lambda}} \mathrm{e}^{-\xi|u-v|_{\infty}}
$$

for all $N \in \mathbb{N}, E \in I_{1, \delta}, \epsilon \in \mathbb{R}$, and $u, v \in \mathcal{X}_{N, 1}^{(L)}$.
Note that $|u-v|_{\infty}=\left|u_{1}-v_{1}\right|$ for $u, v \in \mathcal{X}_{N, 1}^{(L)}$.

Decomposition of local observables

Decomposition of local observables

Given a local observable X, we define projections $P_{ \pm}^{(X)}$ by

$$
P_{+}^{(X)}=\bigotimes_{j \in \mathcal{S}_{X}}\left(1-\mathcal{N}_{j}\right) \quad \text { and } \quad P_{-}^{(X)}=1-P_{+}^{(S)}
$$

Decomposition of local observables

Given a local observable X, we define projections $P_{ \pm}^{(X)}$ by

$$
P_{+}^{(X)}=\bigotimes_{j \in \mathcal{S}_{X}}\left(1-\mathcal{N}_{j}\right) \quad \text { and } \quad P_{-}^{(X)}=1-P_{+}^{(S)}
$$

Note that $P_{0}=\bigotimes_{j \in[-L, L]}\left(1-\mathcal{N}_{j}\right)$, so $P_{-}^{(X)} P_{0}=P_{0} P_{-}^{(X)}=0$, and $P_{-}^{(X)} \leq \sum_{i \in \mathcal{S}_{X}} \mathcal{N}_{i}$.

Decomposition of local observables

Given a local observable X, we define projections $P_{ \pm}^{(X)}$ by

$$
P_{+}^{(X)}=\bigotimes_{j \in \mathcal{S}_{X}}\left(1-\mathcal{N}_{j}\right) \quad \text { and } \quad P_{-}^{(X)}=1-P_{+}^{(S)}
$$

Note that $P_{0}=\bigotimes_{j \in[-L, L]}\left(1-\mathcal{N}_{j}\right)$, so $P_{-}^{(X)} P_{0}=P_{0} P_{-}^{(X)}=0$, and $P_{-}^{(X)} \leq \sum_{i \in \mathcal{S}_{X}} \mathcal{N}_{i}$.

We have $X=\sum_{a, b \in\{+,-\}} X^{a, b}$, where $\quad X^{a, b}=P_{a}^{(X)} X P_{b}^{(X)}$.

Decomposition of local observables

Given a local observable X, we define projections $P_{ \pm}^{(X)}$ by

$$
P_{+}^{(X)}=\bigotimes_{j \in \mathcal{S}_{X}}\left(1-\mathcal{N}_{j}\right) \quad \text { and } \quad P_{-}^{(X)}=1-P_{+}^{(S)}
$$

Note that $P_{0}=\bigotimes_{j \in[-L, L]}\left(1-\mathcal{N}_{j}\right)$, so $P_{-}^{(X)} P_{0}=P_{0} P_{-}^{(X)}=0$, and $P_{-}^{(X)} \leq \sum_{i \in \mathcal{S}_{X}} \mathcal{N}_{i}$.

We have $X=\sum_{a, b \in\{+,-\}} X^{a, b}$, where $\quad X^{a, b}=P_{a}^{(X)} X P_{b}^{(X)}$. Moreover, since $P_{+}^{(X)}$ is a rank one projection on $\mathcal{H}_{\mathcal{S}_{X}}$, we must have

$$
X^{+,+}=\zeta_{x} P_{+}^{(X)}, \quad \text { where } \quad \zeta_{x} \in \mathbb{C},\left|\zeta_{x}\right| \leq\|X\|
$$

Decomposition of local observables

Given a local observable X, we define projections $P_{ \pm}^{(X)}$ by

$$
P_{+}^{(X)}=\bigotimes_{j \in \mathcal{S}_{X}}\left(1-\mathcal{N}_{j}\right) \quad \text { and } \quad P_{-}^{(X)}=1-P_{+}^{(S)}
$$

Note that $P_{0}=\bigotimes_{j \in[-L, L]}\left(1-\mathcal{N}_{j}\right)$, so $P_{-}^{(X)} P_{0}=P_{0} P_{-}^{(X)}=0$, and $P_{-}^{(X)} \leq \sum_{i \in \mathcal{S}_{X}} \mathcal{N}_{i}$.

We have $\quad X=\sum_{a, b \in\{+,-\}} X^{a, b}$, where $\quad X^{a, b}=P_{a}^{(X)} X P_{b}^{(X)}$. Moreover, since $P_{+}^{(X)}$ is a rank one projection on $\mathcal{H}_{\mathcal{S}_{X}}$, we must have

$$
X^{+,+}=\zeta_{X} P_{+}^{(X)}, \quad \text { where } \quad \zeta_{x} \in \mathbb{C},\left|\zeta_{x}\right| \leq\|X\|
$$

In particular,

$$
\left(X-\zeta_{X}\right)^{+,+}=0 \quad \text { and } \quad\left\|X-\zeta_{x}\right\| \leq 2\|X\|
$$

so we can assume $\quad X^{+,+}=0$ in the proofs.

Droplet localization for general local observables

Droplet localization is defined in terms of the local number operators \mathcal{N}_{i}. For proving the theorems we need to apply it to general local observables. Lemma
Let X, Y be local observables, $\ell \geq 1$. Then

$$
\begin{aligned}
& \mathbb{E}\left(\sup _{g \in G_{I_{0}}}\left\|P_{-}^{(X)} g(H) P_{-}^{(Y)}\right\|_{1}\right) \leq C \mathrm{e}^{-m \operatorname{dist}(X, Y)} \\
& \mathbb{E}\left(\left\|P_{-}^{(Y)} P_{-}^{(X)} P_{I_{0}}\right\|_{1}\right) \leq C \mathrm{e}^{-\frac{1}{2} m \operatorname{dist}(X, Y)} \\
& \mathbb{E}\left(\sup _{I \in G_{l}}\left\|P_{-}^{(X)} g(H) P_{+}^{\left(\mathcal{S}_{X, \ell}\right)}\right\|_{1}\right) \leq C \mathrm{e}^{-m \ell} \\
& \mathbb{E}\left(\sup _{g \in G_{l}}\left\|P_{+}^{\left(\mathcal{S}_{Y, \ell}^{c}\right)} g(H) P_{+}^{\left(\mathcal{S}_{X, \ell}^{c}\right)}\right\|_{1}\right) \leq C \mathrm{e}^{-m(\operatorname{dist}(X, Y)-2 \ell)}
\end{aligned}
$$

Estimates with Fourier transforms

The following lemma is an adaptation of an argument of Hastings, which combines the Lieb-Robinson bound with estimates on Fourier transforms.

Estimates with Fourier transforms

The following lemma is an adaptation of an argument of Hastings, which combines the Lieb-Robinson bound with estimates on Fourier transforms.

Lemma
Let $\alpha \in(0,1)$, and consider a function $f \in C_{c}^{\infty}(\mathbb{R})$ such that

$$
|\hat{f}(t)| \leq C_{f} \mathrm{e}^{-m_{f}|t|^{\alpha}} \quad \text { for all } \quad|t| \geq 1
$$

Estimates with Fourier transforms

The following lemma is an adaptation of an argument of Hastings, which combines the Lieb-Robinson bound with estimates on Fourier transforms.

Lemma
Let $\alpha \in(0,1)$, and consider a function $f \in C_{c}^{\infty}(\mathbb{R})$ such that

$$
|\hat{f}(t)| \leq C_{f} \mathrm{e}^{-m_{f}|t|^{\alpha}} \quad \text { for all } \quad|t| \geq 1
$$

Then for all local observables X and Y we have, uniformly in L,

Estimates with Fourier transforms

The following lemma is an adaptation of an argument of Hastings, which combines the Lieb-Robinson bound with estimates on Fourier transforms.

Lemma
Let $\alpha \in(0,1)$, and consider a function $f \in C_{c}^{\infty}(\mathbb{R})$ such that

$$
|\hat{f}(t)| \leq C_{f} \mathrm{e}^{-m_{f}|t|^{\alpha}} \quad \text { for all } \quad|t| \geq 1
$$

Then for all local observables X and Y we have, uniformly in L,

$$
\begin{aligned}
& \left\|X f(H) Y-\int_{\mathbb{R}} \mathrm{e}^{-i r H} Y \tau_{r}(X) \hat{f}(r) \mathrm{d} r\right\| \\
& \quad \leq C_{1}\|X\|\|Y\|\left(1+\|\hat{f}\|_{1}\right) \mathrm{e}^{-m_{1}(\operatorname{dist}(X, Y))^{\alpha}} .
\end{aligned}
$$

Estimates with Fourier transforms

The following lemma is an adaptation of an argument of Hastings, which combines the Lieb-Robinson bound with estimates on Fourier transforms.

Lemma
Let $\alpha \in(0,1)$, and consider a function $f \in C_{c}^{\infty}(\mathbb{R})$ such that

$$
|\hat{f}(t)| \leq C_{f} \mathrm{e}^{-m_{f}|t|^{\alpha}} \quad \text { for all } \quad|t| \geq 1
$$

Then for all local observables X and Y we have, uniformly in L,

$$
\begin{aligned}
& \left\|X f(H) Y-\int_{\mathbb{R}} \mathrm{e}^{-i r H} Y \tau_{r}(X) \hat{f}(r) \mathrm{d} r\right\| \\
& \quad \leq C_{1}\|X\|\|Y\|\left(1+\|\hat{f}\|_{1}\right) \mathrm{e}^{-m_{1}(\operatorname{dist}(X, Y))^{\alpha}}
\end{aligned}
$$

$$
X f(H) Y-\int_{\mathbb{R}} \mathrm{e}^{-i r H} Y \tau_{r}(X) \hat{f}(r) \mathrm{d} r=\int_{\mathbb{R}} \mathrm{e}^{-i r H}\left[\tau_{r}(X), Y\right] \hat{f}(r) \mathrm{d} r
$$

Estimates with Fourier transforms

The following lemma is an adaptation of an argument of Hastings, which combines the Lieb-Robinson bound with estimates on Fourier transforms.

Lemma
Let $\alpha \in(0,1)$, and consider a function $f \in C_{c}^{\infty}(\mathbb{R})$ such that

$$
|\hat{f}(t)| \leq C_{f} \mathrm{e}^{-m_{f}|t|^{\alpha}} \quad \text { for all } \quad|t| \geq 1
$$

Then for all local observables X and Y we have, uniformly in L,

$$
\begin{aligned}
& \left\|X f(H) Y-\int_{\mathbb{R}} \mathrm{e}^{-i r H} Y \tau_{r}(X) \hat{f}(r) \mathrm{d} r\right\| \\
& \quad \leq C_{1}\|X\|\|Y\|\left(1+\|\hat{f}\|_{1}\right) \mathrm{e}^{-m_{1}(\operatorname{dist}(X, Y))^{\alpha}} .
\end{aligned}
$$

$$
X f(H) Y-\int_{\mathbb{R}} \mathrm{e}^{-i r H} Y \tau_{r}(X) \hat{f}(r) \mathrm{d} r=\int_{\mathbb{R}} \mathrm{e}^{-i r H}\left[\tau_{r}(X), Y\right] \hat{f}(r) \mathrm{d} r
$$

The commutator is estimated by the Lieb-Robinson bound for small t.

$$
p f \subset\left[a_{f},\right.
$$

Lemma

Let $K=\left[\Theta_{0}, \Theta_{2}\right]$ and $f \in C_{c}^{\infty}(\mathbb{R})$ with supp $f \subset\left[a_{f}, b_{f}\right]$. Then for all local observables X and Y we have

$$
\int_{\mathbb{R}}\left(\mathrm{e}^{-i r H} Y \tau_{r}(X)\right)_{K} \hat{f}(r) \mathrm{d} r=\int_{\mathbb{R}}\left(\mathrm{e}^{-i r H} Y\left\{P_{K_{f}}\right\} \tau_{r}(X)\right)_{K} \hat{f}(r) \mathrm{d} r,
$$

Lemma

Let $K=\left[\Theta_{0}, \Theta_{2}\right]$ and $f \in C_{c}^{\infty}(\mathbb{R})$ with supp $f \subset\left[a_{f}, b_{f}\right]$. Then for all local observables X and Y we have

$$
\int_{\mathbb{R}}\left(\mathrm{e}^{-i r H} Y \tau_{r}(X)\right)_{K} \hat{f}(r) \mathrm{d} r=\int_{\mathbb{R}}\left(\mathrm{e}^{-i r H} Y\left\{P_{K_{f}}\right\} \tau_{r}(X)\right)_{K} \hat{f}(r) \mathrm{d} r
$$

where

$$
K_{f}=K+K-\operatorname{supp} f \subset\left[2 \Theta_{0}-b_{f}, 2 \Theta_{2}-a_{f}\right] .
$$

Lemma

Let $K=\left[\Theta_{0}, \Theta_{2}\right]$ and $f \in C_{c}^{\infty}(\mathbb{R})$ with supp $f \subset\left[a_{f}, b_{f}\right]$. Then for all local observables X and Y we have

$$
\int_{\mathbb{R}}\left(\mathrm{e}^{-i r H} Y \tau_{r}(X)\right)_{K} \hat{f}(r) \mathrm{d} r=\int_{\mathbb{R}}\left(\mathrm{e}^{-i r H} Y\left\{P_{K_{f}}\right\} \tau_{r}(X)\right)_{K} \hat{f}(r) \mathrm{d} r
$$

where

$$
K_{f}=K+K-\operatorname{supp} f \subset\left[2 \Theta_{0}-b_{f}, 2 \Theta_{2}-a_{f}\right] .
$$

For $E, E^{\prime} \in K$ we have

$$
\begin{aligned}
& P_{E}\left(\int_{\mathbb{R}} \mathrm{e}^{-i r H} Y \tau_{r}(X) \hat{f}(r) \mathrm{d} r\right) P_{E^{\prime}}=P_{E} Y f\left(E+E^{\prime}-H\right) X P_{E^{\prime}} \\
& =P_{E} Y P_{K_{f}} f\left(E+E^{\prime}-H\right) X P_{E^{\prime}}=P_{E}\left(\int_{\mathbb{R}} \mathrm{e}^{-i r H} Y\left\{P_{K_{f}}\right\} \tau_{r}(X) \hat{f}(r) \mathrm{d} r\right) P_{E^{\prime}} .
\end{aligned}
$$

Interval for droplet localization－Sketch of proof

To prove：Droplet localization in $I=\left[1-\frac{1}{\Delta}, \Theta_{1}\right] \Longrightarrow \Theta_{1} \leq 2\left(1-\frac{1}{\Delta}\right)$ ．
\qquad ＿

號

\qquad
\qquad正

都 －

Interval for droplet localization- Sketch of proof

To prove: Droplet localization in $I=\left[1-\frac{1}{\Delta}, \Theta_{1}\right] \Longrightarrow \Theta_{1} \leq 2\left(1-\frac{1}{\Delta}\right)$. Sketch of proof: Let $\Theta_{0}=1-\frac{1}{\Delta}$ and suppose $\Theta_{1}>2 \Theta_{0}$. Let $K=\left[\Theta_{0}, \Theta_{2}\right]$, where $\Theta_{0}<\Theta_{2}<\Theta_{1}$, and $\varepsilon=\min \left\{\Theta_{1}-2 \Theta_{2}, \Theta_{0}\right\}>0$.

Interval for droplet localization- Sketch of proof

To prove: Droplet localization in $I=\left[1-\frac{1}{\Delta}, \Theta_{1}\right] \Longrightarrow \Theta_{1} \leq 2\left(1-\frac{1}{\Delta}\right)$. Sketch of proof: Let $\Theta_{0}=1-\frac{1}{\Delta}$ and suppose $\Theta_{1}>2 \Theta_{0}$. Let $K=\left[\Theta_{0}, \Theta_{2}\right]$, where $\Theta_{0}<\Theta_{2}<\Theta_{1}$, and $\varepsilon=\min \left\{\Theta_{1}-2 \Theta_{2}, \Theta_{0}\right\}>0$. Fix a Gevrey class function h such that

$$
0 \leq h \leq 1, \text { supp } h \subset(-\varepsilon, \varepsilon), h(0)=1, \text { and }|\hat{h}(t)| \leq C \mathrm{e}^{-c|t|^{\frac{1}{2}}}
$$

Interval for droplet localization- Sketch of proof

To prove: Droplet localization in $I=\left[1-\frac{1}{\Delta}, \Theta_{1}\right] \Longrightarrow \Theta_{1} \leq 2\left(1-\frac{1}{\Delta}\right)$. Sketch of proof: Let $\Theta_{0}=1-\frac{1}{\Delta}$ and suppose $\Theta_{1}>2 \Theta_{0}$. Let $K=\left[\Theta_{0}, \Theta_{2}\right]$, where $\Theta_{0}<\Theta_{2}<\Theta_{1}$, and $\varepsilon=\min \left\{\Theta_{1}-2 \Theta_{2}, \Theta_{0}\right\}>0$. Fix a Gevrey class function h such that

$$
0 \leq h \leq 1, \operatorname{supp} h \subset(-\varepsilon, \varepsilon), h(0)=1, \text { and }|\hat{h}(t)| \leq C \mathrm{e}^{-c|t|^{\frac{1}{2}}}
$$

Note that $P_{0}=h(H)$.

Interval for droplet localization- Sketch of proof

To prove: Droplet localization in $I=\left[1-\frac{1}{\Delta}, \Theta_{1}\right] \Longrightarrow \Theta_{1} \leq 2\left(1-\frac{1}{\Delta}\right)$. Sketch of proof: Let $\Theta_{0}=1-\frac{1}{\Delta}$ and suppose $\Theta_{1}>2 \Theta_{0}$. Let $K=\left[\Theta_{0}, \Theta_{2}\right]$, where $\Theta_{0}<\Theta_{2}<\Theta_{1}$, and $\varepsilon=\min \left\{\Theta_{1}-2 \Theta_{2}, \Theta_{0}\right\}>0$. Fix a Gevrey class function h such that

$$
0 \leq h \leq 1, \operatorname{supp} h \subset(-\varepsilon, \varepsilon), h(0)=1, \text { and }|\hat{h}(t)| \leq C \mathrm{e}^{-c|t|^{\frac{1}{2}}}
$$

Note that $P_{0}=h(H)$.
Let X, Y be local observables with $X^{+,+}=Y^{+,+}=0$. The Lemmas yield

$$
\begin{aligned}
\left\|\left(X P_{0} Y\right)_{K}\right\| & =\left\|(X h(H) Y)_{K}\right\| \\
& \leq C\|X\|\|Y\| \mathrm{e}^{-m_{1}(\operatorname{dist}(X, Y))^{\frac{1}{2}}}+C^{\prime} \sup _{r \in \mathbb{R}}\left\|\left(Y P_{\kappa_{h}} \tau_{r}(X)\right)_{K}\right\|,
\end{aligned}
$$

where $K_{h} \subset\left[2 \Theta_{0}-\varepsilon, 2 \Theta_{2}+\varepsilon\right] \subset\left[\Theta_{0}, \Theta_{1}\right]=I$.

We can prove $\mathbb{E}\left(\sup _{r \in \mathbb{R}}\left\|\left(Y P_{K_{h}} \tau_{r}(X)\right)_{K}\right\|\right) \leq C\|X\|\| \| \mathrm{e}^{-\frac{1}{8} m \operatorname{dist}(X, Y),}$

$$
\begin{array}{l}\text { Abel Klein } \\ \text { Localization in the random } X X Z \text { quantum spin chain }\end{array}
$$

\square

$$
\leq C\|X\|\|Y\| \mathrm{e}^{-\frac{1}{8} m \operatorname{dist}(X, Y)}
$$

\qquad $+$

$$
\mathbb{E}\left(\sup _{r \in \mathbb{R}}\left\|\left(Y P_{K_{h}} \tau_{r}(X)\right)_{K}\right\|\right) \leq C\|X\|\|Y\| \mathrm{e}^{-\frac{1}{8} m \operatorname{dist}(X, Y)}
$$

We can prove

We can prove

[^0]\qquad
\qquad -

ـ

We can prove

Some flavor of the proofs of consequences of droplet localization
We can prove

$$
\mathbb{E}\left(\sup _{r \in \mathbb{R}}\left\|\left(Y P_{K_{h}} \tau_{r}(X)\right)_{K}\right\|\right) \leq C\|X\|\|Y\| \mathrm{e}^{-\frac{1}{8} m \operatorname{dist}(X, Y)}
$$

so we conclude that

$$
\mathbb{E}\left(\left\|\left(X P_{0} Y\right)_{K}\right\|\right) \leq C\|X\|\|Y\| \mathrm{e}^{-m_{2}(\operatorname{dist}(X, Y))^{\frac{1}{2}}}
$$

\qquad
so we code that
－ \qquad
\square
\square
\square
\square

 （
保
.

\square ．

We can prove

$$
\mathbb{E}\left(\sup _{r \in \mathbb{R}}\left\|\left(Y P_{K_{h}} \tau_{r}(X)\right)_{K}\right\|\right) \leq C\|X\|\|Y\| \mathrm{e}^{-\frac{1}{8} m \operatorname{dist}(X, Y)}
$$

so we conclude that

$$
\mathbb{E}\left(\left\|\left(X P_{0} Y\right)_{K}\right\|\right) \leq C\|X\|\|Y\| \mathrm{e}^{-m_{2}(\operatorname{dist}(X, Y))^{\frac{1}{2}}}
$$

In particular, it follows that we have, uniformly in L,

$$
\begin{equation*}
\mathbb{E}\left(\left\|\left(\sigma_{i}^{\times} P_{0}^{(L)} \sigma_{j}^{\times}\right)_{K}\right\|\right) \leq C \mathrm{e}^{-m_{2}(|i-j|)^{\frac{1}{2}}} \quad \text { for all } \quad i, j \in[-L, L] . \tag{2}
\end{equation*}
$$

We can prove

$$
\mathbb{E}\left(\sup _{r \in \mathbb{R}}\left\|\left(Y P_{K_{h}} \tau_{r}(X)\right)_{K}\right\|\right) \leq C\|X\|\|Y\| \mathrm{e}^{-\frac{1}{8} m \operatorname{dist}(X, Y)}
$$

so we conclude that

$$
\mathbb{E}\left(\left\|\left(X P_{0} Y\right)_{K}\right\|\right) \leq C\|X\|\|Y\| \mathrm{e}^{-m_{2}(\operatorname{dist}(X, Y))^{\frac{1}{2}}}
$$

In particular, it follows that we have, uniformly in L,

$$
\begin{equation*}
\mathbb{E}\left(\left\|\left(\sigma_{i}^{\times} P_{0}^{(L)} \sigma_{j}^{\times}\right)_{K}\right\|\right) \leq C \mathrm{e}^{-m_{2}(|i-j|)^{\frac{1}{2}}} \quad \text { for all } \quad i, j \in[-L, L] . \tag{2}
\end{equation*}
$$

But we can show that for all $i, j \in \mathbb{Z}$ with $|i-j| \geq R_{K}$, we have

$$
\begin{equation*}
\mathbb{E}\left(\liminf _{L \rightarrow \infty}\left\|\left(\sigma_{i}^{\times} P_{0}^{(L)} \sigma_{j}^{\times}\right)_{K}\right\|\right) \geq \gamma_{K}>0 \tag{3}
\end{equation*}
$$

We can prove

$$
\mathbb{E}\left(\sup _{r \in \mathbb{R}}\left\|\left(Y P_{K_{h}} \tau_{r}(X)\right)_{K}\right\|\right) \leq C\|X\|\|Y\| \mathrm{e}^{-\frac{1}{8} m \operatorname{dist}(X, Y)}
$$

so we conclude that

$$
\mathbb{E}\left(\left\|\left(X P_{0} Y\right)_{K}\right\|\right) \leq C\|X\|\|Y\| \mathrm{e}^{-m_{2}(\operatorname{dist}(X, Y))^{\frac{1}{2}}}
$$

In particular, it follows that we have, uniformly in L,

$$
\begin{equation*}
\mathbb{E}\left(\left\|\left(\sigma_{i}^{\times} P_{0}^{(L)} \sigma_{j}^{\times}\right)_{K}\right\|\right) \leq C \mathrm{e}^{-m_{2}(|i-j|)^{\frac{1}{2}}} \quad \text { for all } \quad i, j \in[-L, L] . \tag{2}
\end{equation*}
$$

But we can show that for all $i, j \in \mathbb{Z}$ with $|i-j| \geq R_{K}$, we have

$$
\begin{equation*}
\mathbb{E}\left(\liminf _{L \rightarrow \infty}\left\|\left(\sigma_{i}^{\times} P_{0}^{(L)} \sigma_{j}^{\times}\right)_{K}\right\|\right) \geq \gamma_{K}>0 \tag{3}
\end{equation*}
$$

(2) and (3) give a contradiction $\quad \Longrightarrow \quad \Theta_{1} \leq 2 \Theta_{0}$.

Non-spreading of information- Sketch of proof

To prove: Given a local observables $X, t \in \mathbb{R}$ and $\ell>0$, there is a local observable $X_{\ell}(t)=\left(X_{\ell}(t)\right)_{\omega}$ with support $\mathcal{S}_{X, \ell}$ satisfying

$$
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|\left(X_{\ell}(t)-\tau_{t}(X)\right)_{I_{0}}\right\|_{1}\right) \leq C\|X\| \mathrm{e}^{-\frac{1}{16} m \ell} .
$$

Non-spreading of information- Sketch of proof

To prove: Given a local observables $X, t \in \mathbb{R}$ and $\ell>0$, there is a local observable $X_{\ell}(t)=\left(X_{\ell}(t)\right)_{\omega}$ with support $\mathcal{S}_{X, \ell}$ satisfying

$$
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|\left(X_{\ell}(t)-\tau_{t}(X)\right)_{I_{0}}\right\|_{1}\right) \leq C\|X\| \mathrm{e}^{-\frac{1}{16} m \ell}
$$

Sketch of proof: Let $\mathcal{S}_{X}=\left[s_{X}, r_{X}\right]$, recall $\mathcal{S}_{X, \ell}=\left[s_{X}-\ell, r_{X}+\ell\right]$, and set

$$
\begin{aligned}
& \mathcal{O}=[-L, L] \backslash \mathcal{S}_{X, \frac{\ell}{2}}=\left[-L, s_{X}-\frac{\ell}{2}\right) \cup\left(r_{X}+\frac{\ell}{2}, L\right] \\
& \mathcal{T}=\mathcal{S}_{X, \ell} \cap \mathcal{O}=\left[s_{X}-\ell, s_{X}-\frac{\ell}{2}\right) \cup\left(r_{X}+\frac{\ell}{2}, r_{X}+\ell\right]
\end{aligned}
$$

Non-spreading of information- Sketch of proof

To prove: Given a local observables $X, t \in \mathbb{R}$ and $\ell>0$, there is a local observable $X_{\ell}(t)=\left(X_{\ell}(t)\right)_{\omega}$ with support $\mathcal{S}_{X, \ell}$ satisfying

$$
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|\left(X_{\ell}(t)-\tau_{t}(X)\right)_{I_{0}}\right\|_{1}\right) \leq C\|X\| \mathrm{e}^{-\frac{1}{16} m \ell} .
$$

Sketch of proof: Let $\mathcal{S}_{X}=\left[s_{X}, r_{X}\right]$, recall $\mathcal{S}_{X, \ell}=\left[s_{X}-\ell, r_{X}+\ell\right]$, and set

$$
\begin{aligned}
& \mathcal{O}=[-L, L] \backslash \mathcal{S}_{X, \frac{\ell}{2}}=\left[-L, s_{X}-\frac{\ell}{2}\right) \cup\left(r_{X}+\frac{\ell}{2}, L\right] \\
& \mathcal{T}=\mathcal{S}_{X, \ell} \cap \mathcal{O}=\left[s_{X}-\ell, s_{X}-\frac{\ell}{2}\right) \cup\left(r_{X}+\frac{\ell}{2}, r_{X}+\ell\right]
\end{aligned}
$$

We first prove that

$$
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|\left(P_{+}^{(\mathcal{O})} \tau_{t}\left(X_{1_{0}}\right) P_{+}^{(\mathcal{O})}-\tau_{t}(X)\right)_{I_{0}}\right\|_{1}\right) \leq C\|X\| \mathrm{e}^{-\frac{1}{16} m \ell} .
$$

We now observe that for all observables Z we have

$$
P_{+}^{(\mathcal{O})} Z P_{+}^{(\mathcal{O})}=\tilde{Z} P_{+}^{(\mathcal{O})}=P_{+}^{(\mathcal{O})} \tilde{Z}
$$

where \tilde{Z} is an observable with $\mathcal{S}_{\tilde{Z}}=\mathcal{S}_{X, \frac{\ell}{2}}$ and $\|\tilde{Z}\| \leq\|Z\|$.

We now observe that for all observables Z we have

$$
P_{+}^{(\mathcal{O})} Z P_{+}^{(\mathcal{O})}=\tilde{Z} P_{+}^{(\mathcal{O})}=P_{+}^{(\mathcal{O})} \tilde{Z}
$$

where \tilde{Z} is an observable with $\mathcal{S}_{\tilde{Z}}=\mathcal{S}_{X, \frac{\ell}{2}}$ and $\|\tilde{Z}\| \leq\|Z\|$. We conclude that

$$
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|\left(P_{+}^{(\mathcal{O})} \widetilde{\tau_{t}\left(X_{I_{0}}\right)}-\tau_{t}(X)\right)_{I_{0}}\right\|_{1}\right) \leq C\|X\| \mathrm{e}^{-\frac{1}{16} m \ell} .
$$

We now observe that for all observables Z we have

$$
P_{+}^{(\mathcal{O})} Z P_{+}^{(\mathcal{O})}=\tilde{Z} P_{+}^{(\mathcal{O})}=P_{+}^{(\mathcal{O})} \tilde{Z}
$$

where \tilde{Z} is an observable with $\mathcal{S}_{\tilde{Z}}=\mathcal{S}_{X, \frac{\ell}{2}}$ and $\|\tilde{Z}\| \leq\|Z\|$.
We conclude that

$$
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|\left(P_{+}^{(\mathcal{O})} \widetilde{\tau_{t}\left(X_{1_{0}}\right)}-\tau_{t}(X)\right)_{I_{0}}\right\|_{1}\right) \leq C\|X\| \mathrm{e}^{-\frac{1}{16} m \ell}
$$

Since $P_{+}^{(\mathcal{O})} \widetilde{\tau_{t}\left(X_{l_{0}}\right)}$ does not have support in $\mathcal{S}_{X, \ell}$, we now define

$$
X_{\ell}(t)=P_{+}^{(\mathcal{T})} \widetilde{\tau_{t}\left(X_{l_{0}}\right)} \quad \text { for } \quad t \in \mathbb{R}
$$

an observable with support in $\mathcal{S}_{X, \frac{\ell}{2}} \cup \mathcal{T}=\mathcal{S}_{X, \ell,}$

We now observe that for all observables Z we have

$$
P_{+}^{(\mathcal{O})} Z P_{+}^{(\mathcal{O})}=\tilde{Z} P_{+}^{(\mathcal{O})}=P_{+}^{(\mathcal{O})} \tilde{Z}
$$

where \tilde{Z} is an observable with $\mathcal{S}_{\tilde{Z}}=\mathcal{S}_{X, \frac{\ell}{2}}$ and $\|\tilde{Z}\| \leq\|Z\|$.
We conclude that

$$
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|\left(P_{+}^{(\mathcal{O})} \widetilde{\tau_{t}\left(X_{1_{0}}\right)}-\tau_{t}(X)\right)_{I_{0}}\right\|_{1}\right) \leq C\|X\| \mathrm{e}^{-\frac{1}{16} m \ell}
$$

Since $P_{+}^{(\mathcal{O})} \widetilde{\tau_{t}\left(X_{l_{0}}\right)}$ does not have support in $\mathcal{S}_{X, \ell}$, we now define

$$
X_{\ell}(t)=P_{+}^{(\mathcal{T})} \widetilde{\tau_{t}\left(X_{l_{0}}\right)} \quad \text { for } \quad t \in \mathbb{R}
$$

an observable with support in $\mathcal{S}_{X, \frac{\ell}{2}} \cup \mathcal{T}=\mathcal{S}_{X, \ell}$, and prove

$$
\mathbb{E}\left(\sup _{t \in \mathbb{R}}\left\|\left(P_{+}^{(\mathcal{O})} \widetilde{\tau_{t}\left(X_{I_{0}}\right)}-X_{\ell}(t)\right)_{I_{0}}\right\|_{1}\right) \leq C\|X\| \mathrm{e}^{-\frac{1}{4} m \ell}
$$

(國 A. Elgart, A. Klein and G. Stolz, Many-body localization in the droplet spectrum of the random XXZ quantum spin chain, J. Funct. Anal. 275 (2018), 211-258. doi:10.1016/j.jfa.2017.11.001
A. Elgart, A. Klein and G. Stolz, Droplet localization in the random XXZ model and its manifestations, J. Phys. A: Math. Theor. 51 (2018), 01LT02. doi:10.1088/1751-8121/aa9739

眉 A. Elgart, A. Klein and G. Stolz, Manifestations of dynamical localization in the disordered XXZ spin chain, Comm. Math. Phys. 361 (2018), 1083-1113. doi:10.1007/s00220-018-3132-x

[^0]: \qquad

