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The random XXZ quantum spin chain

The random XXZ quantum spin chain Hamiltonian
The infinite XXZ chain in a random field is given by the Hamiltonian

Hω =
∑
i∈Z

{
1
4
(
I − σz

i σ
z
i+1
)
− 1

4∆
(
σx

i σ
x
i+1 + σy

i σ
y
i+1
)}

+ λ
∑
i∈Z

ωiNi ,

acting on
⊗

i∈ZC2
i , C2

i = C2 for all i , where

1 σx , σy , σz are the Pauli matrices–σx
i , σ

y
i , σ

z
i act on C2

i ;

2 Ni = 1
2(1− σz

i ) =
(
0 0
0 1

)
i
is the local number operator at site i .

3 ∆ > 1 (Ising phase of the XXZ chain);
4 λ > 0 is the disorder parameter;
5 ω = {ωi}i∈Z are independent identically distributed random variables

whose probability distribution µ is absolutely continuous with a
bounded density, with {0, 1} ⊂ suppµ ⊂ [0, 1].

Hω is a self-adjoint operator on an appropriately defined Hilbert space H.
We have σ(Hω) = {0} ∪

[
1− 1

∆ ,∞
)

almost surely.
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The random XXZ quantum spin chain

XXZ chain Hamiltonian in finite intervals
Consider the finite interval [−L, L] = [−L, L] ∩ Z, L ∈ N, and set

H(L)
ω =

L−1∑
i=−L

{
1
4
(
I − σz

i σ
z
i+1
)
− 1

4∆
(
σx

i σ
x
i+1 + σy

i σ
y
i+1
)}

+ λ
L∑

i=−L
ωiNi

+ β(N−L +NL) on H(L) =
⊗

i∈[−L,L]
C2

i

We fix β ≥ 1
2(1− 1

∆ ) (e.g., take β = 1
2), so

σ(H(L)
ω ) = {0} ∪

{[
1− 1

∆ ,∞
)
∩ σ(H(L)

ω )
}
.

Unique ground state ψ0 = ψ
(L)
0 determined by Niψ0 = 0 for all i .

The spectrum of H(L) = H(L)
ω is almost surely simple, so that its

normalized eigenvectors can be labeled as ψE , E ∈ σ(H(L)).
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Droplet localization

The droplet spectrum
The droplet spectrum of the free (λ = 0) XXZ spin chain is given by

I1 =
[
1− 1

∆ , 2
(
1− 1

∆
))
.

We set
I1,δ =

[
1− 1

∆ , (2− δ)
(
1− 1

∆
)]

for 0 ≤ δ < 1.

Note that
I1,δ ( I1 if 0 < δ < 1.

Given an interval I, we set

σI(H(L)
ω ) = σ(H(L)

ω ) ∩ I,

and let
GI = {g : R→ C Borel measurable, |g | ≤ χI} .
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Droplet localization

Theorem (Localization in the droplet spectrum)

There exists a constant K > 0 with the following property:
If ∆ > 1, λ > 0, and 0 < δ < 1 satisfy

λ (δ(∆− 1))
1
2 min {1, (δ(∆− 1))} ≥ K ,

there exist constants C <∞ and m > 0 such that we have, uniformly in L,

E

 ∑
E∈σI1,δ (H(L))

‖NiψE‖ ‖NjψE‖

 ≤ Ce−m|i−j| for all i , j ∈ [−L, L],

and, as a consequence,

E

 sup
g∈GI1,δ

∥∥∥Nig(H(L))Nj
∥∥∥

1

 ≤ Ce−m|i−j| for all i , j ∈ [−L, L].

We will say that we have droplet localization in an interval I if the
conclusions of the theorem hold in the interval I.
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Droplet localization

Best possible interval for droplet localization
We proved droplet localization on intervals

I1,δ =
[
1− 1

∆ , (2− δ)
(
1− 1

∆
)]
⊂
[
1− 1

∆ , 2
(
1− 1

∆
))
.

Droplet localization for the random XXZ spin chain (in the sense of the
Theorem) is not possible outside the droplet spectrum.

Theorem

Suppose we have droplet localization in the interval I =
[
1− 1

∆ ,Θ
]
.

Then
Θ ≤ 2

(
1− 1

∆
)
,

that is, we must have

I = I1,δ for some 0 ≤ δ < 1.
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Droplet localization

Comments

Basko, Aleiner and Altshuler (2006) suggested that some
manifestations of localization survive the passage to a true
many-body system. Their paper sparked extensive efforts in the
physics community to understand this phenomenon, known as
many-body localization (MBL).

There is a huge physics literature on MBL. Many papers on
disordered quantum spin chains.
The random XY quantum spin chain is explicitly solvable in terms of
the Anderson model. First exploited by K and Perez (1992). More
recent results by Stolz and his collaborators.
Results on the random XXZ quantum spin chain by Beaud and
Warzel (2017).
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Consequences of droplet localization

Preliminaries for consequences of droplet localization

� H = Hω will be a random XXZ spin chain satisfying droplet localization
in the interval I = I1,δ =

[
1− 1

∆ , (2− δ)
(
1− 1

∆
)]
.

� P(L)
B = χB(H(L)) for B ⊂ R, with P(L)

E = P(L)
{E} for E ∈ R.

� I0 =
[
0, (2− δ)(1− 1

∆ )
]
≈ {0} ∪ I =⇒ P(L)

I0 = P(L)
0 + P(L)

I .

� A local observable X with support J ⊂ [−L, L] is an operator on
⊗j∈JC2

j , considered as an operator on H(L) by acting as the identity on
spins not in J . We always take J to an interval. Supports of observables
are not uniquely defined.

� Given a local observable X , we will generally specify a support for X ,
denoted by SX = [sX , rX ]. We always assume ∅ 6= SX ⊂ [−L, L].

� If ` ≥ 1, we set SX ,` = (SX )` = [sX − `, rX + `] ∩ [−L, L].

� Given two local observables X ,Y we set dist(X ,Y ) = dist(SX ,SY ).
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Consequences of droplet localization

Time evolution in an energy window

The time evolution of a local observable X under H(L) is given by

τt(X ) = τ
(L)
t (X ) = eitH(L)Xe−itH(L) for t ∈ R.

Since we only have localization in the energy interval I, and hence also in
I0, we should only expect manifestations of dynamical localization in these
energy intervals.

Thus, given an energy interval J , we consider the sub-Hilbert space
RanP(L)

J , spanned by the the eigenstates of H(L) with energies in J , and
localize an observable X in the energy interval J by considering its
restriction to RanP(L)

J ,
XJ = P(L)

J XP(L)
J .

Clearly τt (XJ) = (τt (X ))J .
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Consequences of droplet localization

Non-spreading of information in the interval I0

Theorem
There exists C <∞, independent of L, such that for all local observables
X, t ∈ R and ` > 0, there is a local observable X`(t) = (X`(t))ω with
support SX ,`, satisfying

E
(
sup
t∈R

∥∥∥(X`(t)− τt (X ))I0

∥∥∥
1

)
≤ C‖X‖e−

1
16 m`.

XI = (XI0)I =⇒ the theorem holds with I substituted for I0.
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Consequences of droplet localization

Zero-velocity Lieb-Robinson bounds

Theorem
The following holds uniformly in L:

E
(
sup
t∈R
‖[τt (XI) ,YI ]‖1

)
≤ C‖X‖‖Y ‖e−

1
8 m dist(X ,Y ),

E
(
sup
t∈R
‖[τt (XI0) ,YI0 ]− (τt (X ) P0Y − YP0τt (X ))I‖1

)
(1)

≤ C‖X‖‖Y ‖e−
1
8 m dist(X ,Y ),

E
(
sup

t,s∈R
‖[[τt (XI0) , τs (YI0)] ,ZI0 ]‖1

)
≤ C‖X‖‖Y ‖‖Z‖e−

1
8 m min{dist(X ,Y ),dist(X ,Z),dist(Y ,Z)}.

Moreover, the estimate (1) is not true without the counterterms.
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E
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Consequences of droplet localization

Correlators
We define the truncated time evolution of an observable X in the energy
window I by (H = H(L)

ω ),
τ I

t (X ) = eitHI Xe−itHI , where HI = HPI .

Note that τ I
t (X ) 6= (τt (X ))I , but

(
τ I

t (X )
)

I
= (τt (X ))I = τt (XI).

The correlator operator of two observables X and Y in the energy window
I is given by (P̄I = 1− PI)

RI(X ,Y ) = (XY )I − XIYI = PIXP̄IYPI .

If E is a simple eigenvalue with normalized eigenvector ψE , we have, with
RE (X ,Y ) = R{E}(X ,Y ),

tr (RE (X ,Y )) = 〈ψE ,XYψE 〉 − 〈ψE ,XψE 〉 〈ψE ,YψE 〉.
We are interested in quantities of the form (K ⊂ I)

RK (τ I
t (X ) ,Y ) =

(
τ I

t (X ) Y
)

K
−
(
τ I

t (X )
)

K
YK =

(
τ I

t (X ) Y
)

K
−τt (XK ) YK .
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Consequences of droplet localization

Dynamical exponential clustering

Theorem
For all local observables X and Y we have, uniformly in L,

E

sup
t∈R

∑
E∈σI (H(L))

∣∣∣tr (RE (τ I
t (X ) ,Y )

)∣∣∣
 ≤ C‖X‖‖Y ‖e−m dist(X ,Y ),

E

sup
t∈R

∑
E∈σI (H(L))

|tr (RE (τt (XI) ,YI))|

 ≤ C‖X‖‖Y ‖e−m dist(X ,Y ),

and
E
(
sup
t∈R

∣∣∣tr (RI(τ I
t (X ) ,Y )

)∣∣∣) ≤ C‖X‖‖Y ‖e−m dist(X ,Y ).
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Consequences of droplet localization

General dynamical clustering

Theorem
Fix an interval K = [1− 1

∆ ,Θ] ( I1,δ, and α ∈ (0, 1).There exists m̃ > 0,
such that for all local observables X and Y we have, uniformly in L,

E
(
sup
t∈R

∥∥∥RK
(
τK

t (X ) ,Y
)
−
(
τK

t (X )P0Y + τK
t (Y ) P0X

)
K

∥∥∥)
≤ C (1 + ln (min {|SX | , |SY |})) ‖X‖‖Y ‖e−m̃(dist(X ,Y ))α .

Moreover, the estimate is not true without the counterterms.

While it is obvious where the first counterterm comes from, the same is
not true of the second, where the time evolution seems to sit in the wrong
place: it is τK

t (Y ) and not τK
t (X ). It turns out this term encodes

information about the states above the energy window K , and the
appearance of τK

t (Y ) is related to the reduction of this data to P0.
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Strategy for proving droplet localization

Particle number conservation

An important property of the XXZ chain is particle number conservation:

[H(L),N (L)] = 0, where N (L) =
L∑

i=−L
Ni .

N (L) is the total (down) spin number operator. Its eigenvalues are
N = 0, 1, . . . , 2L + 1, and H(L)

N , the N-particle sector (N-eigenspace), is
spanned by the spin basis states with N down spins.
It follows that

H(L) =
2L+1⊕
N=0

H(L)
N with respect to H(L) =

2L+1⊕
N=0
H(L)

N .
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Strategy for proving droplet localization

Schrödinger-type operators
H(L)

N is unitarily equivalent to an N-body discrete Schrödinger operator.

Let XN = {x ∈ ZN : x1 < x2 < . . . < xN} and X (L)
N = XN ∩ [−L, L]N .

Then (in the sense of unitary equivalence)

H(L)
N
∼= `2

(
X (L)

N

)
(x1 < x2 < . . . < xN are the sites with down spins)

H(L)
N
∼= − 1

2∆L
(L)
N +

(
1− 1

∆

)
W̃ + λVω +

(
β − 1

2(1− 1
∆ )
)
χ(L).

(
L(L)

N ψ
)

(x) =
∑

y∈X (L)
N , |x−y |1=1(ψ(y)− ψ(x)), the graph Laplacian.

W̃ (x) = 1 + # {j : xj+1 6= xj + 1} ∈ {1, 2, . . . ,N} for x ∈ XN ,
the number of clusters in x .
Vω(x) =

∑N
j=1 ωxj for x ∈ XN , a random potential.

χ(L) = χ−L + χL, the left and right boundary terms.
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Strategy for proving droplet localization

Local number operators

Recall Ni =
{
1 if the spin at site i is down
0 otherwise

, and Ni =
⊕2L+1

N=0 N
(N)
i .

Thus N (N)
i
∼= Q(N)

i , where Q(N)
i is the characteristic function of the set

Si := {u ∈ XN : uj = i for some j ∈ {1, . . . ,N}} .

Recall that the spectrum of H(L)
N is almost surely simple. Given a finite

interval I ⊂ R and a pair of indices i , j ∈ Z, let

Q(L)
N (i , j ; I) =

∑
E∈σ

(
H(L)

N

)
∩I

∥∥∥Q(N)
i ψE

∥∥∥ ∥∥∥Q(N)
j ψE

∥∥∥ .
It follows that∑

E∈σ(H(L))∩I
‖NiψE‖ ‖NjψE‖ =

∞∑
N=1

Q(L)
N (i , j ; I) almost surely.
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Strategy for proving droplet localization

Reformulation of droplet localization

Theorem

Fix 0 < δ < 1, and let I1,δ =
[
1− 1

∆ , (2− δ)
(
1− 1

∆
)]

.
There exists a constant K > 0 with the following property: If

λ
√

∆− 1min {1, (∆− 1)} ≥ K ,

there exist constants C <∞ and m > 0 such that
∞∑

N=1
E(Q(L)

N (i , j ; I1,δ)) ≤ Ce−m|i−j| for all − L ≤ i , j ≤ L,

uniformly in L.

This reformulation reduces the proof of droplet localization in the droplet
spectrum to establishing decay properties of the Green’s functions
associated with the random Schrödinger operators H(L)

N .
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Strategy for proving droplet localization

Strategy for the proof of the theorem
The analysis is first done separately along the edge

XN,1 =
{

x ∈ XN : W̃ (x) = 1
}

= {x = (x1, x1+1, . . . , x1+N−1) : x1 ∈ Z}

(X (L)
N,1 = XN,1 ∩ X

(L)
N ),

and within the bulk

X̄N,1 := XN \ XN,1 =
{

x ∈ XN : W̃ (x) ≥ 2
}

(X̄ (L)
N,1 := X̄N,1 ∩ X

(L)
N ).

In the bulk we use (purely deterministic) Combes-Thomas-type
estimates.
Along the edge we establish a fractional moment estimate.
These estimates are combined to derive localization on a pair of
“boxes”, as in an energy interval multiscale analysis, from which we
derive droplet localization.
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Strategy for proving droplet localization

Combes-Thomas-type estimates in the bulk

Theorem

Let z /∈ σ(H(L)
N ) and let∥∥∥W̃ 1

2 (H(L)
N − z)−1W̃

1
2
∥∥∥ ≤ 1

ηz
.

Then for all Φ,Ψ ⊂ X (L)
N we have∥∥∥χΦW̃

1
2 (H(L)

N − z)−1W̃
1
2χΨ

∥∥∥ ≤ 2
ηz

e− log(1+ ηz ∆
2 ) dist1(Φ,Ψ).

(dist1 is the distance in the | |1 norm.)
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Strategy for proving droplet localization

Fractional moment estimate on the edge

Theorem
There exists a constant K > 0 with the following property: If

λ
√

∆− 1min {1, (∆− 1)} ≥ K ,

there exist constants C = C(∆) <∞ and ξ = ξ(∆) > 0 (depending only
on ∆), such that

E
(∣∣∣∣〈δu,

(
H(L)

N − E − iε
)−1

δv

〉∣∣∣∣ 1
2
)
≤ C√

λ
e−ξ|u−v |∞ ,

for all N ∈ N, E ∈ I1,δ, ε ∈ R, and u, v ∈ X (L)
N,1.

Note that |u − v |∞ = |u1 − v1| for u, v ∈ X (L)
N,1.
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Some flavor of the proofs of consequences of droplet localization

Decomposition of local observables

Given a local observable X , we define projections P(X)
± by

P(X)
+ =

⊗
j∈SX

(1−Nj) and P(X)
− = 1− P(S)

+ .

Note that P0 =
⊗

j∈[−L,L] (1−Nj), so P(X)
− P0 = P0P(X)

− = 0, and
P(X)
− ≤

∑
i∈SX
Ni .

We have X =
∑

a,b∈{+,−} X a,b, where X a,b = P(X)
a XP(X)

b .

Moreover, since P(X)
+ is a rank one projection on HSX , we must have

X +,+ = ζX P(X)
+ , where ζX ∈ C, |ζX | ≤ ‖X‖.

In particular,

(X − ζX )+,+ = 0 and ‖X − ζX‖ ≤ 2 ‖X‖ ,

so we can assume X +,+ = 0 in the proofs.
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Some flavor of the proofs of consequences of droplet localization

Droplet localization for general local observables
Droplet localization is defined in terms of the local number operators Ni .
For proving the theorems we need to apply it to general local observables.
Lemma
Let X ,Y be local observables, ` ≥ 1. Then

E
(

sup
g∈GI0

∥∥∥P(X)
− g(H)P(Y )

−

∥∥∥
1

)
≤ Ce−m dist(X ,Y )

E
(∥∥∥P(Y )

− P(X)
− PI0

∥∥∥
1

)
≤ Ce−

1
2 m dist(X ,Y )

E
(
sup
I∈GI

∥∥∥∥P(X)
− g(H)P(SX ,`)

+

∥∥∥∥
1

)
≤ Ce−m`

E
(
sup
g∈GI

∥∥∥∥P
(
Sc

Y ,`

)
+ g(H)P

(
Sc

X ,`

)
+

∥∥∥∥
1

)
≤ Ce−m(dist(X ,Y )−2`)
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Some flavor of the proofs of consequences of droplet localization

Estimates with Fourier transforms
The following lemma is an adaptation of an argument of Hastings , which
combines the Lieb-Robinson bound with estimates on Fourier transforms.

Lemma
Let α ∈ (0, 1), and consider a function f ∈ C∞c (R) such that∣∣∣f̂ (t)

∣∣∣ ≤ Cf e−mf |t|α for all |t| ≥ 1.
Then for all local observables X and Y we have, uniformly in L,∥∥∥∥Xf (H)Y −

∫
R

e−irHY τr (X ) f̂ (r) dr
∥∥∥∥

≤ C1 ‖X‖ ‖Y ‖
(
1 + ‖f̂ ‖1

)
e−m1(dist(X ,Y ))α .

Xf (H)Y −
∫
R

e−irHY τr (X ) f̂ (r) dr =
∫
R

e−irH [τr (X ) ,Y ]f̂ (r) dr .

The commutator is estimated by the Lieb-Robinson bound for small t.
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Some flavor of the proofs of consequences of droplet localization

Lemma
Let K = [Θ0,Θ2] and f ∈ C∞c (R) with supp f ⊂ [af , bf ].

Then for all
local observables X and Y we have∫

R

(
e−irHY τr (X )

)
K

f̂ (r) dr =
∫
R

(
e−irHY {PKf } τr (X )

)
K

f̂ (r) dr ,

where
Kf = K + K − supp f ⊂ [2Θ0 − bf , 2Θ2 − af ].

For E ,E ′ ∈ K we have

PE

(∫
R

e−irHY τr (X ) f̂ (r) dr
)

PE ′ = PE Yf (E + E ′ − H)XPE ′

= PE YPKf f (E + E ′ − H)XPE ′ = PE

(∫
R

e−irHY {PKf } τr (X ) f̂ (r) dr
)

PE ′ .
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Some flavor of the proofs of consequences of droplet localization

Interval for droplet localization- Sketch of proof

To prove: Droplet localization in I =
[
1− 1

∆ ,Θ1
]

=⇒ Θ1 ≤ 2
(
1− 1

∆
)
.

Sketch of proof: Let Θ0 = 1− 1
∆ and suppose Θ1 > 2Θ0. Let

K = [Θ0,Θ2], where Θ0 < Θ2 < Θ1, and ε = min {Θ1 − 2Θ2,Θ0} > 0.
Fix a Gevrey class function h such that

0 ≤ h ≤ 1, supp h ⊂ (−ε, ε), h(0) = 1, and
∣∣∣ĥ(t)

∣∣∣ ≤ Ce−c|t|
1
2

Note that P0 = h(H).
Let X ,Y be local observables with X +,+ = Y +,+ = 0. The Lemmas yield

‖(XP0Y )K‖ = ‖(Xh(H)Y )K‖

≤ C ‖X‖ ‖Y ‖ e−m1(dist(X ,Y ))
1
2 + C ′ sup

r∈R

∥∥(YPKhτr (X ))K
∥∥ ,

where Kh ⊂ [2Θ0 − ε, 2Θ2 + ε] ⊂ [Θ0,Θ1] = I.
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Some flavor of the proofs of consequences of droplet localization

We can prove

E
(
sup
r∈R

∥∥(YPKhτr (X ))K
∥∥) ≤ C ‖X‖ ‖Y ‖ e−

1
8 m dist(X ,Y ),

so we conclude that

E (‖(XP0Y )K‖) ≤ C ‖X‖ ‖Y ‖ e−m2(dist(X ,Y ))
1
2 .

In particular, it follows that we have, uniformly in L,

E
(∥∥∥(σx

i P(L)
0 σx

j

)
K

∥∥∥) ≤ Ce−m2(|i−j|)
1
2 for all i , j ∈ [−L, L]. (2)

But we can show that for all i , j ∈ Z with |i − j | ≥ RK , we have

E
(
lim inf
L→∞

∥∥∥(σx
i P(L)

0 σx
j

)
K

∥∥∥) ≥ γK > 0. (3)

(2) and (3) give a contradiction =⇒ Θ1 ≤ 2Θ0.
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Some flavor of the proofs of consequences of droplet localization

Non-spreading of information- Sketch of proof
To prove: Given a local observables X , t ∈ R and ` > 0, there is a local
observable X`(t) = (X`(t))ω with support SX ,` satisfying

E
(
sup
t∈R

∥∥∥(X`(t)− τt (X ))I0

∥∥∥
1

)
≤ C‖X‖e−

1
16 m`.

Sketch of proof: Let SX = [sX , rX ], recall SX ,` = [sX − `, rX + `], and set

O = [−L, L] \ SX , `2
= [−L, sX − `

2) ∪ (rX + `
2 , L]

T = SX ,` ∩ O = [sX − `, sX − `
2) ∪ (rX + `

2 , rX + `]

We first prove that

E
(
sup
t∈R

∥∥∥∥(P(O)
+ τt (XI0) P(O)

+ − τt (X )
)

I0

∥∥∥∥
1

)
≤ C‖X‖e−

1
16 m`.
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Some flavor of the proofs of consequences of droplet localization

We now observe that for all observables Z we have

P(O)
+ ZP(O)

+ = Z̃P(O)
+ = P(O)

+ Z̃ ,

where Z̃ is an observable with SZ̃ = SX , `2
and ‖Z̃‖ ≤ ‖Z‖.

We conclude that

E
(
sup
t∈R

∥∥∥∥∥
(

P(O)
+ τ̃t (XI0)− τt (X )

)
I0

∥∥∥∥∥
1

)
≤ C‖X‖e−

1
16 m`.

Since P(O)
+ τ̃t (XI0) does not have support in SX ,`, we now define

X`(t) = P(T )
+ τ̃t (XI0) for t ∈ R,

an observable with support in SX , `2
∪ T = SX ,`, and prove

E
(
sup
t∈R

∥∥∥∥∥
(

P(O)
+ τ̃t (XI0)− X`(t)

)
I0

∥∥∥∥∥
1

)
≤ C ‖X‖ e−

1
4 m`.

Abel Klein Localization in the random XXZ quantum spin chain



Some flavor of the proofs of consequences of droplet localization

We now observe that for all observables Z we have

P(O)
+ ZP(O)

+ = Z̃P(O)
+ = P(O)

+ Z̃ ,

where Z̃ is an observable with SZ̃ = SX , `2
and ‖Z̃‖ ≤ ‖Z‖.

We conclude that

E
(
sup
t∈R

∥∥∥∥∥
(

P(O)
+ τ̃t (XI0)− τt (X )

)
I0

∥∥∥∥∥
1

)
≤ C‖X‖e−

1
16 m`.

Since P(O)
+ τ̃t (XI0) does not have support in SX ,`, we now define

X`(t) = P(T )
+ τ̃t (XI0) for t ∈ R,

an observable with support in SX , `2
∪ T = SX ,`, and prove

E
(
sup
t∈R

∥∥∥∥∥
(

P(O)
+ τ̃t (XI0)− X`(t)

)
I0

∥∥∥∥∥
1

)
≤ C ‖X‖ e−

1
4 m`.

Abel Klein Localization in the random XXZ quantum spin chain



Some flavor of the proofs of consequences of droplet localization

We now observe that for all observables Z we have

P(O)
+ ZP(O)

+ = Z̃P(O)
+ = P(O)

+ Z̃ ,

where Z̃ is an observable with SZ̃ = SX , `2
and ‖Z̃‖ ≤ ‖Z‖.

We conclude that

E
(
sup
t∈R

∥∥∥∥∥
(

P(O)
+ τ̃t (XI0)− τt (X )

)
I0

∥∥∥∥∥
1

)
≤ C‖X‖e−

1
16 m`.

Since P(O)
+ τ̃t (XI0) does not have support in SX ,`, we now define

X`(t) = P(T )
+ τ̃t (XI0) for t ∈ R,

an observable with support in SX , `2
∪ T = SX ,`,

and prove

E
(
sup
t∈R

∥∥∥∥∥
(

P(O)
+ τ̃t (XI0)− X`(t)

)
I0

∥∥∥∥∥
1

)
≤ C ‖X‖ e−

1
4 m`.

Abel Klein Localization in the random XXZ quantum spin chain



Some flavor of the proofs of consequences of droplet localization

We now observe that for all observables Z we have

P(O)
+ ZP(O)

+ = Z̃P(O)
+ = P(O)

+ Z̃ ,

where Z̃ is an observable with SZ̃ = SX , `2
and ‖Z̃‖ ≤ ‖Z‖.

We conclude that

E
(
sup
t∈R

∥∥∥∥∥
(

P(O)
+ τ̃t (XI0)− τt (X )

)
I0

∥∥∥∥∥
1

)
≤ C‖X‖e−

1
16 m`.

Since P(O)
+ τ̃t (XI0) does not have support in SX ,`, we now define

X`(t) = P(T )
+ τ̃t (XI0) for t ∈ R,

an observable with support in SX , `2
∪ T = SX ,`, and prove

E
(
sup
t∈R

∥∥∥∥∥
(

P(O)
+ τ̃t (XI0)− X`(t)

)
I0

∥∥∥∥∥
1

)
≤ C ‖X‖ e−

1
4 m`.

Abel Klein Localization in the random XXZ quantum spin chain



References

A. Elgart, A. Klein and G. Stolz, Many-body localization in the
droplet spectrum of the random XXZ quantum spin chain, J. Funct.
Anal. 275 (2018), 211–258. doi:10.1016/j.jfa.2017.11.001

A. Elgart, A. Klein and G. Stolz, Droplet localization in the random
XXZ model and its manifestations, J. Phys. A: Math. Theor. 51
(2018), 01LT02. doi:10.1088/1751-8121/aa9739

A. Elgart, A. Klein and G. Stolz, Manifestations of dynamical
localization in the disordered XXZ spin chain, Comm. Math. Phys.
361 (2018), 1083–1113. doi:10.1007/s00220-018-3132-x

Abel Klein Localization in the random XXZ quantum spin chain

http://dx.doi.org/10.1016/j.jfa.2017.11.001
http://dx.doi.org/10.1088/1751-8121/aa9739
http://dx.doi.org/10.1007/s00220-018-3132-x

	The random XXZ quantum spin chain
	Droplet localization
	Consequences of droplet localization
	Strategy for proving droplet localization
	Some flavor of the proofs of consequences of droplet localization
	References

