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Definition BBM

1. Start a Brownian motion x in 0.
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Definition BBM

1. Start a Brownian motion x in 0.
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Definition BBM

2. After exponential holding time T particle splits into 2 offsprings.

3. Each performs independent Brownian motion starting at x(T).
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Definition BBM

4. The new particles are subject of the same splitting rule.
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Definition BBM

4. The new particles are subject of the same splitting rule.

3

[ 2 LAUECE

E

L. Hartung (Courant Institute) 1-6



Definition BBM

And after some time...

Picture by Matt Roberts, Bath
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Why are we interested in this process?

@ Prototype continuous spatial branching process
@ Connection to F-KPP equation

@ Extreme value theory for correlated Gaussian processes
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Variable speed BBM

Let A:[0,1] — [0,1] be increasing. Define
¥2(s) = tA(s/t).

Brownian motion with speed function Y2

B = Byas).
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Variable speed BBM

Let A:[0,1] — [0,1] be increasing. Define

¥2(s) = tA(s/t).

Brownian motion with speed function ¥?

B = Byas).

Variable speed BBM:

same splitting rules, but if a particle splits at time s < t:
law of movement independent copies of {BX — BX }i>,>s
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Example for Gaussian process labelled by tree

@ A time-homogeneous tree. Label
individuals at time t as

il(t), cee in(t)(t)-
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Example for Gaussian process labelled by tree

@ A time-homogeneous tree. Label
individuals at time t as
il(t), ey in(t)(t)-

@ Canonical tree-distance:
d(ig(t),ik(t)) = time of most recent
common ancestor of iy(t) and ix(t)

dix(£).i(1))
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Example for Gaussian process labelled by tree

@ A time-homogeneous tree. Label
individuals at time t as
il(t), ey in(t)(t)-

@ Canonical tree-distance:
d(ig(t),ik(t)) = time of most recent

common ancestor of iy(t) and ix(t)
@ For fixed time horizon t, define Gaussian

process, (xi(s), k < n(t),s < t), with

dix(£).i(1))

covariance

Exic(r)x;(s) = tA(t™ d(ix(r), ie(s)))

for A:[0,1] — [0, 1], increasing.
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Previous results

Previous results

In this talk we focus for clarity on the case of two-speed BBM, where

A(z)

slope 7'
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Previous results

Previous results

In this talk we focus for clarity on the case of two-speed BBM, where

Ax) Alz) [

Alx) = U%X+]Ix21/2(X—1/2)(U§—U%)

0_% + 0_% — 2 slope

Convergence of the maximum:

H < — —CVe_\/iy
tlITToP (k?;?é)xk(t) < m(t) —|—y> E [e ]

with
e m(t) = my,(t) depending on o1
@ C = ((01) a constant depending on o1

e V = V(o1) a random variable depending on o1
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Previous results

Typical results

Moreover:
° my,(t) = v2M(o1)t — 62(;\'[12) Int, where
Q

1 ifo2 <1
M(o1)=<{" ="
( 1) {m;az ifgf >1,

is continuous in o1

1, if 02 < 1,
c(oy) = {3, if o2 =1,
3(01+02), if O’%> 1,

is discontinuous at af =1.
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Previous results

Typical results

And the random variable:
@ V is the limit of the McKean martingale if 0'% <1

@ V is the limit of the derivative martingale if 0 > 1

and the constant:

o C=limyoo \/; =2 | o u(r,y+ V2r)e(V2Ha)y (1 — =2 dy, with
=V2(o2 — 1) if0? < 1, u solution of F — KPP

o C=limpoo \/gfooo u(r,y +V2r)eY¥ ydy, if 0? =1, u solution of
F — KPP
e More complicated, if 0% > 1.
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Main results

Closing in on the discontinuity

We have seen that various quantities behave discontinuously at the
borderline case A(x) = x.

To analyse this singular behaviour more closely, we consider functions A
that depend on t, specifically,

ocl=0(t)=14+t, a>0

o3=o3(t)=1Ft%  a>0
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Main results

Closing in on the discontinuity

Theorem [B, H, '18] With the notation above, the following facts hold:
@ If a > 1/2, then everything is the same as in BBM (0% = 1)
Q Ifaec(0,1/2), 02 =1—1t"°,

>

1+4a
m(t)=v2t———Int
(1) W

» V is the derivative martingale
» C is the same as in BBM
Q@ Ifac(0,1/2), 02 =1+t
>
o1+o02  6(1—a)
m(t) = V2t — Int

» V is the derivative martingale
» Cis 2/+/m times the constant in BBM
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The phase diagram

Derivative martingale
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Main results

Ingredients of the proof

The proof is based on three basic ingredients:

© Localisation of the ancestors of extremal particles at the time of the
speed change

@ Tree recursions

© Tail asymptotics
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Localisation

Localisation: the t-independent case

Two-speed BBM
o1 <1

position

V2t
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Localisation

Localisation: the t-independent case

Two-speed BBM
o1 <1

position

V2t

t
V2o g

t
Vil
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Localisation

Localisation: the t-independent case

Two-speed BBM
o1 <1

position

V2t

t
V2o g

t
Vil
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Standard BBM

position

Two-speed BBM

o1 >1
position
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A barrier for (standard) BBM

A priori information on all paths (Lalley-Sellke)

[ + USRSt

L. Hartung (Courant Institute) 1-6



A barrier for (standard) BBM

A priori information on all paths (Lalley-Sellke)

With high probability

Vk < n(t)Vr <s<t:x(s) < V2s

position

VBt @ All particles have to stay essentially
below blue line

@ Path of maximal particle =~ Brownian
bridge 0 — /2t in time t staying
below straight line
= Path is =~ O(v/t) below barrier

[SIES
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Localisation

Localisation: 02 =1+t

At To reach height m(t) at
time t

barrier
v o(t*) e Stay below barrier
up to time t/2
e Be O(t) below
V2% at time §

ol ~9
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Localisation

Localisation: 07 =1 —t™

t
V23

To reach height m(t) at
Vatt /4 time t

sba:,ri%s @ Stay below barrier
IO(\/Z) up to time t/2

tl—a

e Be 2\/§:|:O(\/?)

below \/Eé at time
t/2

| o
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Localisation

Localisation: 02 =1 — t=@

t
V23

To reach height m(t) at
Vatt /4 time t

barrier

s /25 @ Stay below barrier

IO(\/Z) up to time t/2

tl—a

o Be 2\ﬁzle(\/?)

below \/Eé at time
t/2

| o

Localisation impose the size of the logarithmic corrections via
probabilities of Brownian bridges to satisfy barrier conditions!
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Tree recursions

Branching property

% (t) — >
P 1§T§af)1((t)xk(t) m(t) _y}

=P max o1xk(t/2) + oaxf(t/2) — m(t) > y | ,
e<nk(t/2)
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Asymptotics

Asymptotics

Lemma (Bramson '83)
For x = x(t) such that limyoo x(t)/t =0

P ( max xk(t) > x + \/§t> ~ Cxe V2xe™®/2t4=3/2  4qp 1 oo

k<n(t)

where C is a strictly positive constant.
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Asymptotics

Combining everything

P max, o1k (t/2) 4+ oaxf(t/2) — m(t) > y | ,
k<n(t/2
2<nk(t/2)
@ Use tail asymptotics.
@ Use localization.

@ Use the independence given through the branching property to put
the pieces together.
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Asymptotics

Concluding remarks

@ Analogous results for the extremal process: Same as in BBM
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Asymptotics

Concluding remarks

@ Analogous results for the extremal process: Same as in BBM

o Kistler and Schmidt have shown a transition form 1 to 3 with a
sequence of step functions with step length t~/(1=9) converging to
the straight line. Here extremal process remains Poisson for all o < 1.
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Asymptotics

Concluding remarks

@ Analogous results for the extremal process: Same as in BBM

o Kistler and Schmidt have shown a transition form 1 to 3 with a
sequence of step functions with step length t~/(1=9) converging to
the straight line. Here extremal process remains Poisson for all o < 1.

@ One can consider a lot of different sequences of functions A; that
converge to A(x) = x and obtain lots of different rescalings.

@ Gaussian processes considered as functions of the function A have a
very complex discontinuity at the identity function. BBM and other
log-correlated processes are natural borderlines.
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Asymptotics

Thank you for your attention!
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