# From 1 to 6 in Branching Brownian Motion 

Lisa Hartung (joint with A. Bovier)

Courant Institute, NYU
Advances in Statistical Mechanics, CIRM, 27.08.2018


## Outline

(1) Definition variable speed BBM
(2) Previous results
(3) Closing in on the straight line
(9) Main results
(5) Ideas of proof

## Definition BBM

1. Start a Brownian motion $x$ in 0 .

## Definition BBM

1. Start a Brownian motion $x$ in 0 .


## Definition BBM

2. After exponential holding time $T$ particle splits into 2 offsprings.
3. Each performs independent Brownian motion starting at $\times(T)$.


## Definition BBM

4. The new particles are subject of the same splitting rule.

## Definition BBM

4. The new particles are subject of the same splitting rule.


## Definition BBM

And after some time...


Picture by Matt Roberts, Bath

## Why are we interested in this process?

- Prototype continuous spatial branching process
- Connection to F-KPP equation
- Extreme value theory for correlated Gaussian processes


## Variable speed BBM

Let $A:[0,1] \rightarrow[0,1]$ be increasing. Define

$$
\Sigma^{2}(s)=t A(s / t)
$$

Brownian motion with speed function $\Sigma^{2}$

$$
B_{s}^{\Sigma}=B_{\Sigma^{2}(s)} .
$$



## Variable speed BBM

Let $A:[0,1] \rightarrow[0,1]$ be increasing. Define

$$
\Sigma^{2}(s)=t A(s / t)
$$

Brownian motion with speed function $\Sigma^{2}$

$$
B_{s}^{\Sigma}=B_{\Sigma^{2}(s)} .
$$



## Variable speed BBM

Let $A:[0,1] \rightarrow[0,1]$ be increasing. Define

$$
\Sigma^{2}(s)=t A(s / t)
$$

Brownian motion with speed function $\Sigma^{2}$

$$
B_{s}^{\Sigma}=B_{\Sigma^{2}(s)} .
$$




Variable speed BBM:
same splitting rules, but if a particle splits at time $s<t$ : law of movement independent copies of $\left\{B_{r}^{\Sigma}-B_{s}^{\Sigma}\right\}_{t \geq r \geq s}$

## Example for Gaussian process labelled by tree

- A time-homogeneous tree. Label individuals at time $t$ as $\mathbf{i}_{1}(t), \ldots, \mathbf{i}_{n(t)}(t)$.


## Example for Gaussian process labelled by tree

- A time-homogeneous tree. Label individuals at time $t$ as $\mathbf{i}_{1}(t), \ldots, \mathbf{i}_{n(t)}(t)$.
- Canonical tree-distance: $d\left(\mathbf{i}_{\ell}(t), \mathbf{i}_{k}(t)\right) \equiv$ time of most recent common ancestor of $\mathbf{i}_{\ell}(t)$ and $\mathbf{i}_{k}(t)$



## Example for Gaussian process labelled by tree

- A time-homogeneous tree. Label individuals at time $t$ as $\mathbf{i}_{1}(t), \ldots, \mathbf{i}_{n(t)}(t)$.
- Canonical tree-distance: $d\left(\mathbf{i}_{\ell}(t), \mathbf{i}_{k}(t)\right) \equiv$ time of most recent common ancestor of $\mathbf{i}_{\ell}(t)$ and $\mathbf{i}_{k}(t)$
- For fixed time horizon $t$, define Gaussian process, $\left(x_{k}^{t}(s), k \leq n(t), s \leq t\right)$, with covariance

$$
\mathbb{E} x_{k}^{t}(r) x_{\ell}^{t}(s)=t A\left(t^{-1} d\left(\mathbf{i}_{k}(r), \mathbf{i}_{\ell}(s)\right)\right)
$$

for $A:[0,1] \rightarrow[0,1]$, increasing.



## Previous results

In this talk we focus for clarity on the case of two-speed BBM, where


$$
A(x)=\sigma_{1}^{2} x+\mathbb{I}_{x \geq 1 / 2}(x-1 / 2)\left(\sigma_{2}^{2}-\sigma_{1}^{2}\right)
$$

$$
\sigma_{1}^{2}+\sigma_{2}^{2}=2
$$

## Previous results

In this talk we focus for clarity on the case of two-speed BBM, where



Convergence of the maximum:

$$
\lim _{t \uparrow \infty} \mathbb{P}\left(\max _{k \leq n(t)} x_{k}(t) \leq m(t)+y\right)=\mathbb{E}\left[\mathrm{e}^{-C V \mathrm{e}^{-\sqrt{2} y}}\right]
$$

with

- $m(t)=m_{\sigma_{1}}(t)$ depending on $\sigma_{1}$
- $C=C\left(\sigma_{1}\right)$ a constant depending on $\sigma_{1}$
- $V=V\left(\sigma_{1}\right)$ a random variable depending on $\sigma_{1}$


## Typical results

Moreover:

- $m_{\sigma_{1}}(t)=\sqrt{2} M\left(\sigma_{1}\right) t-\frac{c\left(\sigma_{1}\right)}{2 \sqrt{2}} \ln t$, where
(1)

$$
M\left(\sigma_{1}\right)= \begin{cases}1, & \text { if } \sigma_{1}^{2} \leq 1 \\ \frac{\sigma_{1}+\sigma_{2}}{2}, & \text { if } \sigma_{1}^{2} \geq 1\end{cases}
$$

is continuous in $\sigma_{1}$
(2)

$$
c\left(\sigma_{1}\right)= \begin{cases}1, & \text { if } \sigma_{1}^{2}<1 \\ 3, & \text { if } \sigma_{1}^{2}=1 \\ 3\left(\sigma_{1}+\sigma_{2}\right), & \text { if } \sigma_{1}^{2}>1\end{cases}
$$

is discontinuous at $\sigma_{1}^{2}=1$.

## Typical results

And the random variable:

- $V$ is the limit of the McKean martingale if $\sigma_{1}^{2}<1$
- $V$ is the limit of the derivative martingale if $\sigma_{1}^{2} \geq 1$ and the constant:
- $C \equiv \lim _{r \uparrow \infty} \sqrt{\frac{2}{\pi}} \mathrm{e}^{-\mathrm{a}^{2} r / 2} \int_{0}^{\infty} u(r, y+\sqrt{2} r) \mathrm{e}^{(\sqrt{2}+a) y}\left(1-\mathrm{e}^{-2 a y}\right) d y$, with $a=\sqrt{2}\left(\sigma_{2}-1\right)$ if $\sigma_{1}^{2}<1, u$ solution of $F-K P P$
- $C \equiv \lim _{r \uparrow \infty} \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} u(r, y+\sqrt{2} r) \mathrm{e}^{\sqrt{2} y} y d y$, if $\sigma_{1}^{2}=1, u$ solution of $F-K P P$
- More complicated, if $\sigma_{1}^{2}>1$.


## Closing in on the discontinuity

We have seen that various quantities behave discontinuously at the borderline case $A(x)=x$.
To analyse this singular behaviour more closely, we consider functions $A$ that depend on $t$, specifically,

$$
\begin{array}{ll}
\sigma_{1}^{2}=\sigma_{1}^{2}(t) \equiv 1 \pm t^{-\alpha}, & \alpha>0 \\
\sigma_{2}^{2}=\sigma_{2}^{2}(t) \equiv 1 \mp t^{-\alpha}, & \alpha>0
\end{array}
$$

## Closing in on the discontinuity

Theorem [B, H, '18] With the notation above, the following facts hold:
(1) If $\alpha \geq 1 / 2$, then everything is the same as in $\operatorname{BBM}\left(\sigma_{1}^{2}=1\right)$
(2) If $\alpha \in(0,1 / 2), \sigma_{1}^{2}=1-t^{-\alpha}$,

$$
m(t)=\sqrt{2} t-\frac{1+4 \alpha}{2 \sqrt{2}} \ln t
$$

- $V$ is the derivative martingale
- $C$ is the same as in $B B M$
(3) If $\alpha \in(0,1 / 2), \sigma_{1}^{2}=1+t^{-\alpha}$,

$$
m(t)=\sqrt{2} t \frac{\sigma_{1}+\sigma_{2}}{2}-\frac{6(1-\alpha)}{2 \sqrt{2}} \ln t
$$

- $V$ is the derivative martingale
- $C$ is $2 / \sqrt{\pi}$ times the constant in $B B M$


## The phase diagram



## Ingredients of the proof

The proof is based on three basic ingredients:
(1) Localisation of the ancestors of extremal particles at the time of the speed change
(2) Tree recursions
(3) Tail asymptotics

## Localisation: the $t$-independent case



## Localisation: the $t$-independent case



## Localisation: the $t$-independent case



## A barrier for (standard) BBM

A priori information on all paths (Lalley-Sellke)

## A barrier for (standard) BBM

A priori information on all paths (Lalley-Sellke)
With high probability

$$
\forall k \leq n(t) \forall r<s \leq t: x_{k}(s)<\sqrt{2} s
$$



- All particles have to stay essentially below blue line
- Path of maximal particle $\approx$ Brownian bridge $0 \rightarrow \sqrt{2} t$ in time $t$ staying below straight line
$\Rightarrow$ Path is $\approx O(\sqrt{t})$ below barrier

Localisation: $\sigma_{1}^{2}=1+t^{-\alpha}$


To reach height $m(t)$ at time $t$

- Stay below barrier up to time $t / 2$
- $\operatorname{Be} O\left(t^{\alpha}\right)$ below $\sqrt{2} \frac{t}{2}$ at time $\frac{t}{2}$

Localisation: $\sigma_{1}^{2}=1-t^{-\alpha}$


Localisation: $\sigma_{1}^{2}=1-t^{-\alpha}$


Localisation impose the size of the logarithmic corrections via probabilities of Brownian bridges to satisfy barrier conditions!

## Branching property



## Asymptotics

## Lemma (Bramson '83)

For $x=x(t)$ such that $\lim _{t \uparrow \infty} x(t) / t=0$

$$
\mathbb{P}\left(\max _{k \leq n(t)} x_{k}(t)>x+\sqrt{2} t\right) \sim C x \mathrm{e}^{-\sqrt{2} x} e^{-x^{2} / 2 t} t^{-3 / 2}, \quad \text { as } t \uparrow \infty
$$

where $C$ is a strictly positive constant.

## Combining everything

$$
\mathbb{P}\left[\max _{\substack{k \leq n(t / 2) \\ \ell \leq n^{k}(t / 2)}} \sigma_{1} x_{k}(t / 2)+\sigma_{2} x_{\ell}^{k}(t / 2)-m(t) \geq y\right]
$$

- Use tail asymptotics.
- Use localization.
- Use the independence given through the branching property to put the pieces together.


## Concluding remarks

- Analogous results for the extremal process: Same as in BBM


## Concluding remarks

- Analogous results for the extremal process: Same as in BBM
- Kistler and Schmidt have shown a transition form 1 to 3 with a sequence of step functions with step length $t^{-1 /(1-\alpha)}$ converging to the straight line. Here extremal process remains Poisson for all $\alpha<1$.


## Concluding remarks

- Analogous results for the extremal process: Same as in BBM
- Kistler and Schmidt have shown a transition form 1 to 3 with a sequence of step functions with step length $t^{-1 /(1-\alpha)}$ converging to the straight line. Here extremal process remains Poisson for all $\alpha<1$.
- One can consider a lot of different sequences of functions $A_{t}$ that converge to $A(x)=x$ and obtain lots of different rescalings.
- Gaussian processes considered as functions of the function $A$ have a very complex discontinuity at the identity function. BBM and other log-correlated processes are natural borderlines.


## Thank you for your attention!

