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As it is very well known, for disordered mod-

els of statistical mechanics, the celebrated

“replica trick” is based on the idea that the

annealed averages for replicated systems give

some information on the original system.

We give a new interpretation of the replica

trick in the general frame of interpolation

on the number of replicas, extending on the

traditional exploitation of the replica trick as

connected with analytic continuation toward

zero replicas, a procedure with controversial

meaning.



As an example of this new general strategy

we give some application concerning the na-

ture of the so called Almeida-Thouless line

in the Sherrington-Kirkpatrick model.

We consider simple disordered systems of

statistical mechanics, as the Sherrington-Kirkpatrick

spin-glass mean field model, and associated

models, and the Derrida Random Energy Model.

We consider N spin Ising configurations

σ : (1,2, . . . , N) 3 i→ σi = ±1.



There are 2N Ising configurations on N sites.
We are interested in the limit N →∞.

For each configuration σ we introduce ran-
dom variables σ → K(σ). In the simplest cases,
we can assume these 2N variables as Gaus-
sian, with zero averages, and covariances
given for example by

E(K(σ)K(σ′)) = q2
σσ′,

where q.. are the configuration overlaps de-
fined by

qσσ′ =
1

N

N∑
i=1

σiσ
′
i,



in the celebrated Sherrington-Kirkpatrick model.

Let us recall that this model was introduced

in the far 1975, and has been the subject of

intensive research. Thousands of papers are

dedicated to it.

On the other hand, in the case of Derrida

Random Energy Model, we define qσσ′ = 1 if

the two configurations are equal and qσσ′ = 0

if they are different, i.e. qσσ′ = δσσ′.



The random variables K(σ) are exploited to

define the energy associated to each config-

uration σ in the form

H(σ) = −
√
N

2
K(σ),

where the term
√
N is introduced for seri-

ous thermodynamic reasons, and
√

2 for pure

aesthetic reasons, as it will be shown in the

following.

In the well known Boltzmann-Gibbs scheme,



the partition function is

ZN(β) =
∑
σ

exp(−βH(σ)) =
∑
σ

exp(β

√
N

2
K(σ)),

where β is the inverse of the temperature.

We have performed the sum over all con-
figurations. Therefore, the partition func-
tion does depend only on the random noise
present in the K(σ)’s.

The (random) free energy is

−βFN(β) = logZN(β).



The rescaling
√
N in the definition of the en-

ergy is introduced in order to assure a good

thermodynamic behavior for the free energy

per site, in the limit N →∞.

In fact, it is not difficult to prove that the

limit

lim
N→∞

1

N
logZN(β)

does exist almost surely in the probability

space where all K(σ) are defined. We call

A(β) this limit, where any random character

has been lost.



It turns out that the limit A(β) can be cal-

culated also through the quenched averages

A(β) = lim
N→∞

1

N
E logZN(β),

where E is the average with respect to the

noise due to the K(σ)’s.

The equality between the probabilistic limit

and the quenched limit is due to a moderate

statistical fluctuation of the free energy in

the limit, which can be easily proved through

elementary interpolation methods.



There is a deep physical motivation at the

basis of the metallurgic terminology. In the

partition function ZN(β) we perform only the

sum over the σ’s, according to Boltzmann

prescriptions. Thefeore, the noise in the K(σ)’s

acts as external noise, which is not involved

in the thermodynamic equilibrium, but af-

fects thermodynamic equilibrium of the σ’.

Then, we take the log, and at the end the

average E.

Obviously we can take also the (annealed)

average, before taking the log, so that the



external noise does participate to the the
thermodynamic equilibrium

Ā(β) = lim
N→∞

1

N
logEZN(β).

This annealed expression is easily calculated

EZN(β) = E
∑
σ
.. =

∑
σ

E.. = exp(N(log 2+
1

4
β2)),

since for each σ we have

E exp(β

√
N

2
K(σ)) = exp(

1

2
β2N

2
E(K2(σ))) =

exp(
1

4
β2N).



The term log 2 comes from the final sum

over the σ’s.

The annealed expression is not correct in

general. In any case it is a rigorous upper

bound, uniform in N . In fact, from the con-

cavity of the log

E log .. ≤ logE..

we have

1

N
E logZN(β) ≤

1

N
logEZN(β) = log 2 +

1

4
β2,



preserved in the limit

A(β) = lim
N→∞

1

N
E logZN(β) ≤ log 2 +

1

4
β2.

We are interested in the explicit expression

for A(β), in the form of a variational princi-

ple. It will be a long journey.

Let us introduce the concept of replicas.

For s = 1,2, .. (s positive integer) the s-

replicated system has a configuration space



which is the s time product space of the orig-

inal system. Therefore, now the variables are

σai = ±1, i = 1,2, ..N, a = 1,2, .., s,

where the index i denoted the sites, and the

index a denotes the replicas. Therefore, now

overall there are sN sites.

The energy is now defined as the sum of

the energies for each single replica, with the

same randomness. The Boltzmann factor is



therefore factorized, and for the new parti-
tion function we have a simple product

Z̄s,N(β) =
∑
σ1

exp(β

√
N

2
K(σ1))

∑
σ2

exp(β

√
N

2
K(σ2))...

...
∑
σs

exp(β

√
N

2
K(σs)) = ZsN(β),

since every sum on the variables σ’s gives
the same contribution. Therefore the par-
tition function of the new system is simply
the product of identical terms correspond-
ing to the partition function of the original
nonreplicated system.



The free energy per site, and its quenched

average, of the replicated system is the same

as for the original system. In fact, the log-

arithm of a product is the sum of the loga-

rithms, each with the same contribution

log Z̄s,N = s logZN .

Therefore, trivially

1

sN
log Z̄s,N =

1

N
logZN .

However, if we take the annealed expres-

sions, we have a nontrivial dependence on



the number of replicas s. We are induced to

introduce an auxiliary function

φN(s, β) =
1

sN
logEZ̄s,N =

1

sN
logEZsN(β),

s = 1,2, ...,

with a deep motivation made explicit in the

following. Obviously, if s = 1 we have simply

the annealed case, considered above.

It is immediately possible to establish a small

industry in order to study the thermodynamic



limit N → ∞ di φN(s, β), with very interest-

ing results.

The limit, φ(s, β), does exist for any integer

s = 1,2, ..., and can be explicitely expressed

through a variational principle. We only give

the general structure. We have to specify

the order parameters, and the trial function.

Let us consider firstly the Sherrington-Kirkpatrick

model. For a given integer s, for each cou-

ple of replicas we introduce the system of

order parameters qab ≥ 0, a < b. There



are s(s − 1)/2 order parameters. The case
s = 1 does not require order parameters,
and the auxiliary function is given directly.
For s = 2 there is only one order parame-
ter q12. For s = 3 three order parameters
appear q12, q13, q23, and so on.

The trial function φ̃(s, β; q..), which we omit
to write explicitely here, is a function replica
symmetric in the qab’. If the replicas are per-
muted its value does not change. The vari-
ational principle states

lim
N→∞

φN(s, β) = φ(s, β) = sup
q..

φ̃(s, β; q..).



The variational principle enjoys a remarkable
property, as it is very well known. In fact,
the sup is realized for values of the order
parameters, where all q.. have the same value
q̄ ≥ 0. There is full replica symmetry for the
optimal values.

Replica symmetry allows to state the vari-
ational principle in a very simple form. In-
troduce the replica symmetric trial function
φRS(s, β; q̄), as a function of the trial order
parameter q̄ ≥ 0,

φ̃RS(s, β; q̄) =



log 2 +
1

s
log

∫
(cosh(β

√
q̄z))s dµ(z))+

β2

4
(1− 2q̄ − (s− 1)q̄2),

where dµ(z) is the unit Gaussian measure on

the real line. Then we have in the infinite

volume limit

lim
N→∞

φN(s, β) = φ(s, β) =

sup
q̄
φ̃RS(s, β; q̄) = φRS(s, β),

for integer values s = 1,2,3...



There exists a deep and complex successive

development, conventionally called “replica

trick”, introduced by the pioneers of the study

of these systems. The first step is to ex-

tend the definition of the auxiliary function

φN(s, β), from the integers s = 1,2, ... to any

real value of s. For the sake of simplicity we

consider only the case s > 0.

This extension is easily obtained by noticing

that the very definition

φN(s, β) =
1

sN
logEZsN(β),



originally introduced only for integer values
of s, in the replica frame, has a perfect rig-
orous meaning also for any s > 0.

For the β derivative, we easily find

∂

∂β
φN(s, β) =

β

2
(1 + (s− 1) < q2

σσ′ >),

for an appropriately defined average <>, in-
volving two replicas

< q2
σσ′ >= E(Zs−2Ω(q2

σσ′))/E(Zs).

Here Ω is the Boltzmann-Gibbs average for
two replicas.



Notice the presence of the term (s− 1). Its

sign changes at s = 1. It is responsible of

many notable inversions. Superadditivity vs

subadditivity, inf vs sup, ....

The hope is that the experience accumulated

in the study of φN(s, β), and its limit φ(s, β),

for integer s, can produce some information

in the case of generic values s > 0.

What is the interest in generic values of s.

Here we have a first deep aspect of the “replica



trick”. As a matter of fact, we have in the

limit s→ 0

lim
s→0

φN(s, β) =
1

N
E logZN(β),

a very important relation which holds also in

the thermodynamic limit N →∞

lim
s→0

φ(s, β) = A(β).

Therefore, the auxiliary function φ, for very

small values of s, reduces to the expression of

the quenched free energy we are interested

in.



An intuitive proof can be given in few lines.

For small values of s we have

ZsN(β) = exp(s logZN) ' 1 + s logZN ,

and therefore

logEZsN ' log(1 + sE logZN) ' sE logZN .

No finger crossing is necessary. In the tra-

ditional treatment one considers the expres-

sion
ZsN − 1

Ns
,



which well reproduces logZN/N if the limit
s → 0 is taken firstly, but does lead surely
to disasters if it is the limit N → ∞ which
is taken firstly. Finger crossing is needed
in this case, in the hope that by proceeding
formally at the end something significant will
be achieved.

The extension of φN(s, β) to all values s > 0
is well motivated.

By a systematic exploitation of the interpo-
lation methods it is easy to establish the fol-
lowing important properties of φN(s, β).



It turns out that NφN(s, β) is subadditive in

N for s ≥ 1, and superadditive for s ≤ 1. The

thermodynamic limit N → ∞ follows in the

form

φ(s, β) = lim
N→∞

φN(s, β) =

= inf
N
φN(s, β),

for s ≥ 1, and

= sup
N

φN(s, β),

for s ≤ 1.



The functions φN(s, β) and φ(s, β) are mono-
tone nondecreasing in the parameter s

φ(s, β) ≤ φ(s′, β) for s ≤ s′.

The functions φN(s, β) and φ(s, β) are con-
vex in β, for any fixed value of s. Here
the proof is elementary (a simple calculation)
and does not involve subtle properties of the
Ghirlanda-Guerra identities.

The functions φN(s, β) and φ(s, β) are convex
in 1/s, for any value of β, as a consequence
of Holder inequality.



In order to explore the potentialities of the

“replica trick”, now we shift to the labora-

tory of the Random Energy Model. Here we

will show that a new interpretation of the

“trick”, not based on analytic continuation

for s → 0, gives the right order parameter,

the right trial function and the right varia-

tional principle, for any value of s, starting

only from the elementary variational princi-

ple at integer values s = 1,2,3, ....

We show that in this case replica symme-

try is minimally broken. The deep reason



for spontaneous replica symmetry breaking

arises quite naturally.

Let us recall the expressions of the parti-

tion function and the auxiliary function in

the Random Energy Model

ZN(β) =
∑
σ

exp(β

√
N

2
J(σ)),

E(J(σ)J(σ′)) = δσσ′,

φN(s, β) =
1

Ns
logE(ZN(β)s).



Recall that at s = 1 we have the annealed
value

φ(1, β) = log 2 +
1

4
β2.

Let us establish the variational principle for
integer values of s.

We have

φN(s, β) =
1

Ns
logE(ZN(β)s) =

1

Ns
logE

∑
σai

exp(β

√
N

2
(J(σ1) + ..+ J(σs))).



Now we can exchange freely the E and the∑
. Therefore we are led to the calculation

of

E exp(β

√
N

2
(J(σ1) + ..+ J(σs))) =

= exp(
1

2
β2N

2
E(J(σ1) + ..+ J(σs))2).

It turns out that

E(J(σ1) + ..+ J(σs))2 = s+ 2
∑
a<b

δab,

where the first term s comes from the diag-
onal terms in the square, while δab = 1 if the



configurations σa and σb are equal, and zero

otherwise, 1 ≤ a < b ≤ s.

By collecting all terms we have

φN(s, β) =
1

4
β2+

1

Ns
log

∑
σai

exp(
1

2
Nβ2 ∑

a<b

δab).

Now we split all possible configurations for

the σ variables into the sum of K bubbles,

K = 1,2, ..., s, each made of sr replicas, with

r = 1, ...,K, sr ≥ 1,
∑
r sr = s, in such a way



that the σ’s are all equal in each bubble, and
all different for different bubbles.

The order parameters are therefore K, s1, ..., sK.
For each of these specifications the

∑
a<b in

the exponent reduces to∑
a<b

δab =
∑
r

1

2
sr(sr − 1),

while the residual
∑
σ gives 2NK.

Clearly in the infinite volume limit φN(s, β)
will be bigger that each contributing term,
and equal to the highest one.



By collecting all information, we have the
order parameters K, s1, ..., sK, and the trial
functional

φ̃(s, β;K, s1, ..., sK) =

=
1

4
β2 +

β2

2s

∑
r

1

2
sr(sr − 1) +

K

s
log 2 =

=
β2

4s

∑
r
s2
r +

K

s
log 2,

so that

φ(s, β) = sup
K,s1,...,sK

(
β2

4s

∑
r
s2
r +

K

s
log 2).



In the trial functional the first term has the

meaning of an energy, the second is the en-

tropy. The variational principle is an entropy

principle. The entropy is maximum with the

constraint of a given energy.

The sup is easily found. We considere the

two extremal cases, K = 1, s1 = s, K =

s, sr = 1, r = 1, ..., s, and immediately check

that the supK,s1,...,sK can be found by consid-

ering only the sup between the two extremal

cases.



For K = 1, when all δ.. = 1, the value of
the trial function is β2

4 s+ 1
s log 2. For K = s,

when all δ.. = 0 the value is β2

4 + log 2.

We see that there are transition points β2
c (s) =

4 log 2
s , such that

φ(s, β) = log 2 +
β2

4
,

for β ≤ βc(s), and

φ(s, β) =
1

s
log 2 +

β2

4
s,

for β ≥ βc(s).



The replica symmetry is never broken. The

overlaps are all zero in the first region and all

one in the second region. Remember that we

are considering for the moment only integer

values s = 1,2, ....

Now we come to the main point. We show

that the variational principle at integer s,

gives a strong hint at what sould be the vari-

ational principle for all s > 0. This is our

interpretation of the “trick”.



Consider the values taken by the trial func-
tion

φ̃(s, β;K, s1, ..., sK) =
β2

4s

∑
r
s2
r +

K

s
log 2,

for various specifications of the order param-
eters K, s1, ..., sK.

Let us start from the simple inequality

1

K

∑
r
s2
r ≥ (

1

K

∑
r
sr)

2 = (
s

K
)2,

so that
1

s

∑
r
s2
r ≥

s

K
.



Therefore, by defining s/K = m, so that 1 ≤
m ≤ s, we have the estimate

φ̃(s, β;K, s1, ..., sK) ≥
1

m
log 2 +

β2

4
m.

This expression is really remarkable. It sug-

gests to consider the convex trial function

for the order parameter m

0 < m→ φ̃(m,β) =
1

m
log 2 +

β2

4
m,

independent of s, and such that, at least for



integer values of s

φ(s, β) = sup
1≤m≤s

(
1

m
log 2 +

β2

4
m).

The trial function is independent of s, only
the range of the variational parameter m is
taken to depend on s. It is impressive to see
that the variational values of φ̃(s, β;K, s1, ..., sK)
for different integer values of s, but at the
same β, do still have as a common lower
bound the same reduced trial function φ̃(m,β),
only the range for m may change, according
to s.



Therefore, the order parameter m and the

reduced trial function φ̃(m,β) are suggested,

in the present interpretation of the “trick”,

by the variational values of the complete trial

function φ̃(s, β;K, s1, ..., sK). The variational

parameters (K, s1, ..., sK), which strongly de-

pend on the value of s, are collapsed to a

unique essential variational parameter m.

The suggestion of the “trick” is proficuous.

In fact, through some work, one can easily

prove the following Theorem.



For the order parameter m > 0, introduce
the convex trial function

φ̃(m,β) =
1

m
log 2 +

β2

4
m.

Then, we have in the infinite volume limit for
the auxiliary function φ(s, β) for any s ≥ 0 the
following variational principle:

φ(s, β) = sup
1≤m≤s

φ̃(m,β),

for s ≥ 1, and

φ(s, β) = inf
s≤m≤1

φ̃(m,β),

for 0 ≤ s ≤ 1.



The inversion from a sup to an inf, by cross-

ing the s = 1 line is completely analogous to

the mentioned inversion from subadditivity

to superadditivity.

Since φ̃(m,β) is convex, the sup for s ≥ 1

can be reached only at the boundaries m =

1 or m = s, and the replica symmetry can

not be broken. On the other hand, when

s < 1, it can happen that the minimum for

φ̃(m,β) is in the interval s ≤ m ≤ 1, and

replica symmetry is broken.



Globally the space (s, β), for s ≥ 0 is split
into three regions. For s ≥ 1 we are always
in the replica symmetric case. For β < βc(s),
with β2

c (s) = 4 log 2
s , we have

φ(s, β) = log 2 +
β2

4
.

From
∂

∂β
φN(s, β) =

β

2
(1 + (s− 1) < δσσ′ >),

we see that here < δσσ′ >= 0 in the limit.
For β > βc(s) we have

φ(s, β) =
1

s
log 2 +

β2

4
s,



and here < δσσ′ >= 1 in the limit.

These results extend the given expression

from the case s integer, to any s ≥ 0. Notice

that the line at βc(s) is a first order transi-

tion line. The function φ(s, β) is continuous,

as it should be, because of the convexity in

β. But its derivative in β has a sudden jump.

For s < 1 the situation is more complicated.

There are two second order transition lines,

the first at βc = 2
√

log 2, the second at β′c(s) =



2
√

log 2/s. The two merge at s = 1, but in

general βc < β′c(s).

For β ≤ βc, replica symmetry holds,

φ(s, β) = log 2 +
β2

4
,

and < δσσ′ >= 0.

For β ≥ β′c(s), replica symmetry is restored

in the form

φ(s, β) =
1

s
log 2 +

β2

4
s,



but now < δσσ′ >= 1.

In the region βc ≤ β ≤ β′c(s) replica symmetry
is broken, and we have

φ(s, β) = β
√

log 2,

independently of s.

Now the formula
∂

∂β
φN(s, β) =

β

2
(1 + (s− 1) < δσσ′ >),

gives

< δσσ′ >=
1

1− s
(1−

2
√

log2

β
),



with a smooth interpolation between the value
< δσσ′ >= 0 at β = βc, and < δσσ′ >= 1 at
β = β′c(s).

We can see that replica symmetry breaking
is not connected to a difficulty in the ana-
lytic continuation of the replica symmetric
solution.

In fact let us take β > βc and a large value
of s, where

φ(s, β) =
1

s
log 2 +

β2

4
s.



At fixed β, there is no problem in the analytic
continuation of this expression to all values
of s > 0 well inside the region of symmetry
breaking, for s < sc = 2

√
log 2/β. However,

for s < sc, the equation

φ(s, β) =
1

s
log 2 +

β2

4
s

can no longer be true for a very simple rea-
son.

In fact, at fixed β, the function

1

s
log 2 +

β2

4
s



is decreasing, with decreasing s, up to the

point s = sc, where there is an inversion,

and the function starts to increase with de-

creasing s.

Notice that the derivative

∂

∂s
(
1

s
log 2 +

β2

4
s) = −

1

s2
log 2 +

β2

4
is positive in s for s ≥ sc, becomes zero at

s = sc, and becomes negative in s for s ≤ sc.

Since φ(s, β) must be increasing in s, we



surely have

φ(s, β) ≤ (
1

sc
log 2 +

β2

4
sc).

As a matter of fact equality holds here, since

for s = sc = 2
√

log 2/β we have exactly

1

sc
log 2 +

β2

4
sc = β

√
log2.

We say that in this case that replica symme-

try is minimally broken. Replica symmetry

holds everywhere, with the exception of the



region where this can not be true. Then,

necessarily

φ(s, β) = φ(sc(β), β).

This ends our discussion of the “replica trick”

for the Random Energy Model. We have

seen how to reach the right order parame-

ter, and the right trial function, through a

direct inspection of the variational behavior

of the trial function for the system at integer

values of s.



A straightforward extension of this interpre-
tation of the “trick” for the Sherrington-
Kirkpatrick model, seems to point out to a
minimal replica symmetry breaking also in
this case. But the situation is open, and will
be considered in some other occasion. In any
case, if the replica symmetric solution has an
inversion point for some value of s = sc, then
a new upper bound is easily established for
the auxiliary function for all values of s ≤ sc,
and in particular at s = 0.

We give a simple but unexpected example
about the so called Almeida-Thouless line for



the Sherrington-Kirkpatrck model in external

field. Let us sketch the argument.

Consider the simplest case, where the parti-

tion function is a function of two parameters

x ≥ 0, t ≥ 0, connected with the strength of

a one body and two body interaction respec-

tively

ZN(x, t) =
∑
σ

exp(
√
t

√
N

2
K(σ) +

√
x

N∑
i=1

Jiσi),

where the Ji are independent unit Gaussian

random variables.



It is very well know that there is a large

replica symmetric region in the x, t plane.

Consider x0 ≥ 0, and the order parameter

q̄ =
∫

tanh2(
√
x0z) dµ(z).

Consider the flow lines

x(t) = x0 − q̄t,

for 0 ≤ t ≤ tm = x0/q̄. These lines do not in-

tersect for different values of x0. Therefore,

for any value of x, t, there is a unique value

of x0, such that x, t are on its flow line.



Introduce the replica symmetric function

ARS(x, t) = log 2+
∫

log cosh(
√
x0z) dµ(z)+

t

4
(1−q̄)2.

By standard interpolation techniques it is im-
mediately shown that in the infinite volume
limit for A(x, t) = limN→∞N

−1E logZN(x, t)
there is the inequality

A(x, t) ≤ ARS(x, t),

in general, while in the replica symmetric re-
gion equality holds.

It is universally believed that replica symme-
try holds up to the Almeida-Thouless line, in



the region

0 ≤ t ≤ tAT ,

where tAT is defined so that

tAT

∫ 1

cosh4(
√
x0z)

dµ(z) = 1.

On the other hand, our interpretation of the
replica trick, gives the suggestion that replica
symmetry is broken for a smaller value 0 ≤
t ≤ tc < tAT , in general.

In fact for this model the replica symmetric
solution φRS(s;x, t) has an inversion in s, i.e.,



its derivative in s becomes negative for some
value of s = sc(x, t), provided t > tc. The
best way to be convinced about this fact is
to calculate

∂

∂s
φRS(s;x, t)

at s = 0 and find that it is negative.

Through a straightforward forward calcula-
tion one can see the following.

Introduce the one step symmetry breaking
trial function, corresponding to the order pa-
rameter [0,1] 3 q → x(q) ∈ [0,1] defined by



x(q) = m for 0 ≤ q ≤ q̄, and x(q) = 1 for

0 < q ≤ 1,

φ̃(x, t;m, q̄) =

log 2 +
1

m
log

∫
(cosh(

√
x0z))m dµ(z))+

β2

4
(1− 2q̄ − (m− 1)q̄2).

Then it is immediately seen that

∂

∂s
φRS(s;x, t)



at s = 0 equals

∂

∂m
φ̃(x, t;m, q̄)

at m = 0.

Notice that φ̃(x, t;m, q̄) at m = 0 is equal to
ARS(x, t). By the well known broken replica
bounds the inequality

A(x, t) ≤ φ̃(x, t;m, q̄)

holds. Therefore, if

∂

∂m
φ̃(x, t;m, q̄)



is negative at m = 0, then surely

A(x, t) < ARS(x, t),

and replica symmetry is broken.

We see that once the right trial φ̃(x, t;m, q̄)
is attempted, then the broken replica bounds
alone can give the replica symmetry break-
ing. But it is the replica trick which suggests
the right trial.

We are left with the calculation of
∂

∂m
φ̃(x, t;m, q̄)



at m = 0.

To this purpose, let us start from the defini-
tion of φ̃(x, t;m, q̄) given above.

Notice that

(cosh(
√
x0z))m = em log cosh =

1 +m log cosh +
1

2
m2(log cosh)2 + r3,

where r3 is an error of order O(m3). There-
fore ∫

(cosh(
√
x0z))m dµ(z) =



1 +m
∫

log cosh +
1

2
m2

∫
(log cosh)2 + r3.

By taking into account that

log(1 + x) = x−
1

2
x2 + r3,

we have

log
∫

(cosh(
√
x0z))m =

m
∫

log cosh +
1

2
m2(

∫
(log cosh)2−(

∫
log cosh)2)+r3.

By substituting into the definition of φ̃(x, t;m, q̄),
we find

φ̃(x, t;m, q̄) = ARS(x, t)+m(
1

2
∆2−

1

4
tq̄2)+r2,



where ∆2 is the variance

∆2 =
∫

(log cosh(
√
x0z))2 dµ(z)−

(
∫

log cosh(
√
x0z)) dµ(z))2.

We have calculated φ̃ up to the first order in
m. We see that the m derivative at m = 0
becomes negative if t > tc, where tc is defined
by

tc = 2∆2/q̄2.

It is immediate to see that tc < tAT in gen-
eral. For example, at small x0, we can easily



calculate the first terms in the asymptotic

developments

tAT = 1 + 2x0 − 3x2
0 + r3,

tc = 1 + 2x0 −
14

3
x2

0 + r3,

which give tc < tAT for small positive values

of x0.

Further additional work will be necessary to

fully understand the nature of the transition.


