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The difference between one-sided and two-sided
points of view.

One-sided versus two-sided.
Stochastic Systems (Processes) .
Two flavours:
Time, discrete.
(Dynamical Systems, asymmetric description).
Past and future, one-sided (SRB).
versus
Space, discrete, here one-dimensional.
(Mathematical Physics, symmetric description).
Left and right, two-sided (DLR).
Question:
When are both descriptions equivalent?
When not equivalent?



Introduction:
Simple background.
Markov modeling (for the short-sighted..)
Time:
Probability and Statistics (Markov chains).
Future independent of past, given the present.
Ergodic Theory, Dynamical Systems.
Ahistoric, forget history.
(Henry Ford: All history is bunk...)



Space:
Statistical (Mathematical) Physics.
Markov: Inside independent of outside,
given the border.
(Take control of your borders..)
Forget about everywhere else.
2-state Markov chains
-timelike-
versus
1-dimensional, nearest neighbour, spin
(e.g. Ising) models
-spacelike-.



Probability measures on e.g.
two-symbol sequences,
configuration space Ω = {−,+}Z .
Theorem:
(well-known, see e.g.
Wikipedia lemma ”Markov Property”,
see further Georgii).
Stationary Markov chains, i.e.
invariant Markov measures on histories,
and n.n. Gibbs measures,
in dimension 1,
are the same objects.
(Brascamp,Spitzer,...)
Warning: This is about objects (measures)
on infinite time/space.



Question:
If we try to be a bit more far-sighted
and change independent to
weakly dependent(continuous, almost Markov),
does this sameness remain true?
(Fernández, Gallo, Maillard, Verbitskiy, Redig,
Pollicott, Walters...)



Answers:
With extra regularity conditions: Yes.
(SRB, Thermodynamic Formalism..).
Without those: NO!
Neither class includes the other.
One direction known (since 2011),
(Fernández, Gallo, Maillard)
other direction new (here).



Time version:
Class of Stochastic Processes,
rediscovered repeatedly,
under a variety of names:
( g -measures=
Chains of Infinite Order=
Chains with Complete Connections=
Uniform Martingales/Random Markov
Processes).
(Keane 70’s, Harris 50’s,
Onicescu-Mihoc and Doeblin-Fortet 30’s,
Kalikow 90’s).
Studied in Ergodic Theory, Probability.



Spatial version:
Gibbs (=DLR) measures
= Gibbs = ” almost” Markov random fields.
Discovered independently,
in East (mathematics)
and West (physics),
(Dobrushin, Lanford-Ruelle 60’s).
Mathematical Physics.
Here two-state -Bernoulli- variables,
(= Ising spins:)
ωi = ±, for all i ∈ Z .
(Can be much more general.)
Warning:
DLR Gibbs 6= SRB Gibbs.



Gibbs measures:
Let G be an infinite graph, here Z .
Configuration space:
Space of sequences: Ω = {−,+}G .
Probability measures on Ω,
labeleled by interactions.
An interaction is a collection of functions,
ΦX (ω), dependent on {−,+}X ,
where the X are subsets of G .
Let Λ be a finite subset of G .
We write ΩΛ = {−,+}Λ.



Energy (Hamiltonian)

HΦ,τ
Λ (ω) =

∑
X∩Λ 6=∅ΦX (ωΛτΛc ).

Sum of interaction energy terms.
A measure µ is Gibbs iff:
(A version of) the
conditional probabilities of
finite-volume configurations,
given the outside configuration, satisfies:
µ(ωΛ|τΛc ) = 1

Zτ
Λ

exp−
∑

X∩Λ 6=∅ΦX (ωΛτΛc ).

for ALL configurations ω,
boundary conditions τ
and finite volumes Λ.



Gibbsian form.
Rigorous version of
”µ = 1

Z exp−H”,
Gibbs canonical ensemble.
Larger energy means
exponentially smaller probability.
Nearest-neighbour interaction means that
Φ(X ) = 0,
except when X = {i , i + 1} or X = i ,
for some i ∈ Z .
A Gibbs measure for a nearest-neighbour
model satisfies a
spatial Markov property:
µ(ω{1,....n}|τ{1....n}c ) = µ(ω{1....n}|τ0τn+1).
Conditioned on the border spins,
at 0 and n + 1,
inside and outside are independent.



A two-state Markov chain is again
a measure on the same sequence space Ω.
Now it has to satisfy the ” ordinary”
(timelike) Markov property:
µ(ω{1...n}|τ{−∞,....,0}) = µ(ω{1...n}|τ0).
One can describe this via a product
of 2-by-2 stochastic matrices P
with non-zero entries:
P(k , l) = P(ωi = k → ωi+1 = l).
Here k , l = ± and i is any site (=time) in Z .
There is a one-to-one connection between
stationary (time-invariant)
2-state Markov Chains
and (space-translation-invariant) nearest-neighbor
Ising Gibbs measures.



Continuity (=almost Markov = quasilocality).
Product topology:
Two sequences are close if they are
equal on a large enough finite interval.
Topology metrisable,
metric e.g. by:
d(ω, ω′) = 2−|n|,
where n is the site with
minimal distance from origin such that
ωn 6= ω′n.
A function is continuous,
if it depends weakly on sites far away
and mostly on what happens not too far,
(or not too long ago)
whatever it is.



Processes (time):
µ(σ0 = ω0|ωZ−) = g(ω0ωZ−),
with g -function continuous.
Probability of getting ω0, given the past.
Continuous dependence on the past.
Continuity studied since the 30’s
(Doeblin-Fortet).
Claim!?:
Continuity implies uniqueness (Harris(50’s)).
Mistake in proof pointed out by Keane (70’s).
Counterexamples due to Bramson-Kalikow (90’s).
Sharper criterion Berger-Hoffman-Sidoravicius (2003-2017).



Gibbs measures:
Continuity of conditional probabilities
corresponds to summability of interactions.∑

0∈X ||ΦX || <∞.
Continuous dependence on outside
beyond the border.
(Quasilocality).
No action at a distance.
(No observable influence from behind the moon)
Plus: ”non-nullness”.
Any finite change in the -infinite- system
costs a finite amount of energy.
Any configuration in finite domain
occurs with finite probability,
whatever is happening outside.
Gibbs measures satisfy (equivalently) a
finite-energy condition.
Equivalence holds (Kozlov-Sullivan):
Finite-energy + continuity = Gibbs.



Our Counterexample:
(Gibbs, non-g-measure).
Gibbs measures for Dyson models.
Low temperatures.
Long-range Ising models.
Ferromagnetic pair interactions.
Φi ,j(ω) = −J|i − j |−αωiωj .
Interesting regime 1 < α ≤ 2.
Phase transition for large J,
at low temperatures:
There exist then two different
Gibbs measures,
for the same interaction,
called µ+ and µ−, for such Φ.
Spatially continuous conditional probabilities.
Warning:
Impossible for Markov Chains or Fields,
always uniqueness.



Claim:
At low T and for α∗ < α < 2
Dyson Gibbs measures are not g-measures.
Here technical condition α∗ = 3− ln 3

ln 2 .
Proof uses technically rather hard Input,
perturbative, cluster expansions, from others,
giving the α∗ condition,
plus three simple Observations.



Input:
Interface result for Dyson models
(Cassandro,Merola,Picco,Rozikov).
Take interval [−L,+L],
all spins to the left are minus,
all spins to the right are plus.
Then there is an interface point IF, such that:
1) To the left of the interface
we are in the minus phase (µ−),
to the right of the interface
we are in the plus phase (µ+).
2) With overwhelming probability the location
of the interface is at most O(L

α
2 ) from the center.

...−−−−−m....|IF|+ m.....|+ + + + + ...



Observation 1:
If I change all spins left of a
length-N interval of minuses,
the effect from the left
on the central O(L) interval
is bounded by O(LN1−α),
thus small for N large.
Consequence:
A large interval of minuses (size N)
will have a moderately large (size L)
interval of minus phase on both sides.
Interfaces are pushed away.



Observation 2:
If I decouple a comparatively small interval,
of size L1 = o(L),
in the beginning of my minus-phase interval,
this hardly changes the interface location.
(Cost of IF shift by εL is larger, namely O(L2−α).
Shown by Cassandro et al.)



Observation 3:
If I make in this L1 interval
an alternating configuration
+-+-+-+-+-...
then the total energy (influence)
on its complement
is bounded by the double sum∑

i=1....L1,j>L1
(|j − i |−α − |j + 1− i |−α)=∑

i=1....L1,j>L1
(O(|j − i |−(α+1))=∑

i=1....L1
O(|i |−α)

which is bounded, uniformly in L1.
Therefore finite, small effect.



Remark:
Effect only at positive temperature.
Entropic Repulsion.
A large alternating interval,
preceded by a MUCH
larger interval of minuses,
cannot shield the influence
of this homogeneous minus interval.
But this means precisely that
the conditional probability of finding a plus (or a minus),
at a given site, conditioned on an alternating past,
is not continuous.
Thus two-sided continuity
occurring at the same time
as one-sided discontinuity.



Alternating configuration is discontinuity point,
due to cancellations of pluses and minuses.
Set of discontinuity points may have measure zero, but
nonremovable.
...−−−−−+−+−+− X (- N, altL intervals)
versus
...+ + + +−+−+−+− X (+N, altL intervals)
Expected value of X differs,
by more than cst,
uniformly in L and N(L).
Direct influence from Deep Past.



Analogies with higher-dimensional
Gibbs measures.
Analogy g -measures:
Global Markov property.
Conditioning on infinite-volume
(like half-line) events.
There are Markov fields
which are not Globally Markov.
Other analogy:
There are Markov fields which depend
discontinuously on lexicographic past.



Open Question (Bethuelsen-Conache),
trigger: Schonmann projection
(one-dimensional marginal,
of 2d Ising measures).
Entropic repulsion in one or two directions?
Is it a g-measure?
Partial results so far, suggesting different behaviour.
Non-Gibbs, possibly g-measure.



Conclusion:
Two-sided continuous dependence
-spacelike- does not imply
one-sided continuous dependence
-timelike.
Summary:
Controlling borders is NOT the same as
control of history,
except for the shortsighted.



A.v.E. with R. Bissacot, E. Endo (Sao Paulo),
A. Le Ny (Paris).
arXiv 1705.03156, Comm. Math. Phys., to appear.



Further questions:
1) Get rid of the technical restriction on α, and large n.n.term,
with Bissacot, Endo, Kimura, Ruszel.
(Kimura, Littin-Picco)
2) Understand α = 2 case.
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