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OUTLINE:

• Glauber dynamics on graphs. setting

• Metastability. basic facts

• Complete graph. old stuff

• Erdős-Rényi random graph. new stuff



§ GLAUBER DYNAMICS ON GRAPHS

Let G = (V,E) be a connected graph. Ising spins are

attached to the vertices V and interact with each other

along the edges E.

1. The energy associated with the configuration σ =

(σi)i∈V ∈ X = {−1,+1}V is given by the Hamiltonian

H(σ) = −J
∑

(i,j)∈E
σiσj − h

∑
i∈V

σi

where J > 0 is the ferromagnetic interaction strength and

h > 0 is the external magnetic field.



2. Spins flip according to Glauber dynamics

∀σ ∈ X , ∀ j ∈ V : σ → σj at rate e−β[H(σj)−H(σ)]+

where σj is the configuration obtained from σ by flipping
the spin at vertex j, and β > 0 is the inverse temperature.

3. The Gibbs ensemble

P(σ) =
1

Z
e−βH(σ), σ ∈ X ,

is the reversible equilibrium of this dynamics.

4. Three sets of configurations play a central role:

M = metastable state

C = crossover sate

S = stable state.
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§ METASTABILITY

While the system resides in the valley around M, it makes

many unsuccessful attempts to cross over to the valley

around S. It manages to do so only after it reaches the set

C of saddle-point configurations, called critical droplets.

Key question: How long does Glauber dynamics
need to achieve the crossover from M to S?

Potential theory provides the answer!

Bovier, Eckhoff, Gayrard, Klein 2001–2004



Random Dynamics ⇐⇒ Electric Network

spin configurations → nodes
spin flips → links
transition rates → conductances

Metastable Crossover Time ⇐⇒ Effective Resistance



THEOREM: Bovier, Eckhoff, Gayrard, Klein 2001

Let PM denote the probability distribution on path space

of the Glauber dynamics starting at M. Let τS denote the

first hitting time of S. Then

EM(τS) =
1 + o(1)

Zcap(M,S)

with cap(M,S) the capacity of the pair (M,S).

Here, o(1) refers to a parameter regime where the system

is metastable, e.g. for low temperature or large volume.



The capacity can be expressed as the variational principle

cap(M,S) = inf
φ∈ΦM,S

1

Z

∑
σ,σ′∈X

e−β[H(σ)∨H(σ′)] [φ(σ′)− φ(σ)]2,

where

ΦM,S = {φ : X → [0,1]: φ(M) = 0, φ(S) = 1}.

The sum under the infimum is the Dirichlet form associated

with the dynamics.

Dirichlet



What makes this variational principle so powerful is that

upper and lower bounds on cap(M,S) can be obtained by

combining physical insight with a clever choice of

• test function φ
• truncation of X

The key idea is that in metastable regimes the
high-dimensional Dirichlet form is largely controlled
by the low-dimensional set of critical droplets.



§ COMPLETE GRAPH

Complete graph: Curie-Weiss



In the limit as N →∞, the free energy per vertex when the

magnetization is m equals

fβ,h(m) = −1
2m

2 − hm+ β−1I(m)

with

I(m) = 1
2(1 +m) log(1 +m) + 1

2(1−m) log(1−m).

m

fβ,h(m)

m− m+

z

−h

1−1

•

•
•



THEOREM: Bovier, Eckhoff, Gayrard, Klein 2001

On the complete graph with N vertices, for J = 1/N ,

h ∈ (0,Θ(β)) and β > 1,

EMN
(τSN) = K eNΓ[1 + o(1)], N →∞,

where MN ,SN are the sets of configurations for which the

magnetization tends to m−,m+,

Γ = β [fβ,h(z)− fβ,h(m−)]

K = πβ−1

√√√√1− z
1 + z

1

1−m2
−

1

[−f ′′β,h(z)]f ′′β,h(m−)

and

Θ(β) =
√

1− 1
β −

1
2β log

[
β

(
1 +

√
1− 1

β

)2
]
.
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The conditions on J, h, β are needed to ensure that the free

energy m 7→ fβ,h(m) has a double-well structure.

The proof uses a lumping technique typical for mean-field

models: for finite N the magnetization performs a random

walk on the 2
N -grid in [−1,1] in a potential close to fβ,h.

In the limit as N →∞, the system behaves like

Brownian motion in a double-well potential

analysed by Kramers 1940.



§ ERDŐS-RÉNYI RANDOM GRAPH

Erdős-Rényi random graph: edge percolation

Take the complete graph with N vertices and retain edges

with probability p ∈ (0,1).



THEOREM: dH, Jovanovski 2018

On the Erdős-Rényi random graph with N vertices, for

J = 1/N , h ∈ (0, pΘ(βp)) and β > 1/p,

EMN
(τSN) = O(N5) eNΓ(p), N →∞,

where Γ(p) is the same as Γ on the complete graph, but

with J = 1/N replaced by J = p/N .

The conditions on J, h, β are again needed to ensure that

the free energy m 7→ fβ,h,p(m) has a double-well structure.



Apart from a polynomial error term, the crossover time is the
same as on the complete graph with average interaction strength.

From the shape of Θ, we find that for β →∞ any h ∈ (0, p)

is metastable, while for β ↓ 1/p or p ↓ 0 no h is metastable.

The latter observation also explains why we do not consider

the non-dense Erdős-Rényi random graph with p = pN ↓ 0

as N →∞.



On the complete graph the prefactor is constant in N and

is computable. On the Erdős-Rényi random graph it is

more involved, and for now we only know that it is O(N5).

We do not expect the prefactor to be of order 1. It may

very well be random.

The prefactor is related to the entropy
of the set of critical droplets.



RANDOM MAGNETIC FIELD

An interesting model is where the randomness sits on the

vertices rather than on the edges, namely,

H(σ) = −
1

N

∑
1≤i,j≤N

σiσj −
∑

1≤i≤N
hiσi,

where hi, 1 ≤ i ≤ N , are i.i.d. random variables drawn from

a common probability distribution ν on R.

Bovier, Eckhoff, Gayrard, Klein 2001 ν discrete

Bianchi, Bovier, Ioffe 2009 + 2012 ν continuous

The prefactor turns out to be constant in N and to be a

somewhat involved function of ν.



Our model is harder because the interaction runs along the

set of edges, which has an intricate spatial structure.

Lumping technniques cannot be used (in the above papers the
magnetization is monitored on the level sets of the magnetic field).

Our proof relies on elaborate coupling techniques, together

with concentration estimates for the Erdős-Rényi random

graph.



FUTURE CHALLENGES

• Elucidate the nature of the prefactor, which should be

inversely proportional to the cardinality of the set of

critical droplets.

• What can be said in the sparse regime after a proper

scaling of the interaction strength?



RELATED WORK

Rough estimates for the average metastable crossover time

are known for the configuration model (a random graph

with prescribed degrees) when N, J, h are fixed and β →∞.

Dommers 2017

Dommers, dH, Jovanovski, Nardi 2017



TAKE-HOME MESSAGE

Prefactors of average metastable crossover times are delicate
objects for random graphs, because they depend in an intricate
manner on the underlying geometry.

Prefactors are controlled by the cardinality of the set of

critical droplets and may be random.

Very little is known so far

and much remains to be done!




