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Definition of the model

Random environment: (ξx)x∈Z i.i.d. under P, which is non-degenerate
and elliptic,

0 ≤ c ≤ ξx ≤ C

Branching random walk in RE: Given (ξx),
I start with one particle at 0
I every particle performs a continuous time SRW on Z
I when at x, every particle branches (binary) at rate ξx
I all particles move independently

Notation: Pξ0 - quenched distribution of the BRWRE
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Questions.

Questions.
I Behaviour of the fastest (right-most) particle.
I Relation to other models: PAM and randomized F-KPP equation.

Notation:
I Nt = the set of particles at time t
I (Ys)s≤t trajectory of a particle Y ∈ Nt
I position of the maximal particle

Mt = max{Yt : Y ∈ Nt}

I mt = median of Mt under Pξ0 (random variable under P)
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Homogeneous BRW/BBM
In the homogeneous situation a lot is known

I LLN: Mt

t

t→∞−−−→ v0 a.s.
I precise asymptotics

mt = v0t−
3
2c log t+O(1)

I tightness: (Mt −mt)t≥0 is tight
I point-process convergence:

∑
Y ∈Nt δYt−mt converges

‘Failure’ of the first moment prediction:
Set N≥(t, x) = #{Y ∈ Nt : Yt ≥ x} and define

mt = sup{x ∈ Z : E0N
≥(t, x) ≥ 1

2}.

Then
mt = v0t−

1
2c log t+O(1)
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Homogeneous branching random walk II
Relation to the discrete F-KPP equation:

∂tw(t, x) = ∆w(t, x) + w(t, x)(1− w(t, x))
w(0, x) = w0(x)

Is solved by

w(t, x) = 1− E0

[ ∏
Y ∈Nt

(1− w0(x− Yt))
]

In particular, for w0 = 1−N0 ,

w(t, x) = P0(Mt ≥ x).

Some other properties of the F-KPP equation.
I F-KPP equation has travelling wave solutions w(t, x) = wv(x− vt)

for every v ≥ v0

I If w0 = 1−N0 , then w(t, x+mt)→ wv0(x)
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Previous results

Related models
I BRW in temporarily varying environment (Bovier-Kurkova,

Bovier-Hartung, Fang-Zeitouni)
I BRW in temporarily random environment (Malein-Mi loś 2015)

Maximal particle of BRW
I Comets-Popov 2007: Shape theorem for BRWRE in Zd

=⇒ LLN for the maximal particle
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Previous results: Parabolic Anderson model
PAM: linear PDE with random coefficients

∂tu(t, x) = ∆u(t, x) + ξ(x)u(t, x)
u(0, x) = 10(x)

PAM gives the first moment of the BRWRE:

u(t, x) = Eξ[N(t, x)]

Lyapunov exponent: P-a.s.

λ(v) = lim
t→∞

1
t

log u(t, btvc), v ∈ R.

Two important velocities:
I v0: solution to λ(v0) = 0, v0 > 0.
I vc ≥ 0: minimal v s.t. λ is strictly convex on (vc,∞).

Breakpoint = the front of the PAM

mt = sup
{
x ∈ Z : Eξ0

∑
y≥x

u(t, y) ≥ 1
2

}
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Results for the BRWRE

Theorem (ČD’17)
Assume ξ is non-degenerate, elliptic and v0 > vc. Then

I LLN (CP’07): Mt

t → v0, P× Pξ0-a.s.
I FCLT for the breakpoint:

mnt − v0nt√
n

P−−−−→
n→∞

BMt

I approximation for the median: mt ≥ mt and

lim sup
t→∞

mt −mt

log t ≤ C, P-a.s.

=⇒ FCLT for the median
I approximation for the maximum: |Mt −mt| . C log t

=⇒ FCLT for the maximum
I tightness: no proof yet
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Implications for the PAM

Theorem
I CLT for the breakpoint
I For every v > vc

log u(t, vt)− tλ(v)
σv
√
t

P−−−→
t→∞

N (0, 1).
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Implication for the randomized F-KPP equation
Randomized F-KPP equation:

∂tw(t, x) = ∆w(t, x) + ξ(x)w(t, x)(1− w(t, x))
w(0, x) = w0(x)

Front of the solution:

m̂t = sup{x ∈ Z : w(t, x) ≥ 1/2}

Previous results: Nolen 2012 gives CLT for m̂t for initial conditions
such that the speed of the front is > v0.

Relation of BRWRE and rF-KPP:

w(t, x) = Pξx[Mt ≥ 0]

solves rF-KPP with w0 = 1−N.

Theorem (CLT for the front)

m̂t − v0t

σ
√
t

P−−−→
t→∞

N (0, 1).
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Tools and ideas I

First and second moment of N(t, x) can be computed with help of
Feynman-Kac representation, resp. many-to-one formula (Harris-Roberts
’17, O. Gün-König-Sekulović ’13),

Eξ0
[∣∣{Y ∈ Nt : ϕ1(r) ≤ Yr ≤ ϕ2(r) ∀r ∈ [0, t]

}∣∣]
= E0

[
exp

{∫ t

0
ξ(Xr) dr

}
;ϕ1(r) ≤ Xr ≤ ϕ2(r) ∀r ∈ [0, t]

]

Eξ0
[∣∣{Y ∈ Nt : ϕ1(r) ≤ Yr ≤ ϕ2(r) ∀r ∈ [0, t]

}∣∣2]
= E0

[
exp
{∫ t

0
ξ(Xr) dr

}
;ϕ1(r) ≤ Xr ≤ ϕ2(r) ∀r ∈ [0, t]

]
+ 2
∫ t

0
E0

[
exp
{∫ s

0
ξ(Xr) dr

}
ξ(Xs)1ϕ1(r)≤Xr≤ϕ2(r) ∀r∈[0,s]

×
(
EXs

[
exp
{∫ t−s

0
ξ(Xr) dr

}
;ϕ1(r + s) ≤ Xr ≤ ϕ2(r + s) ∀r ≤ t− s

])2]
ds.
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Why the CLT?

With Hi denoting the hitting time of i, one has

Eξ0N(t, vt) = E0

[
exp

{∫ t

0
ξ(Xr) dr

}
;Xt = vt

]
= e−ηtE0

[
exp

{∫ t

0
(ξ(Xr) + η) dr

}
;Xt = vt

]
= e−ηtE0

[
exp

{ vt∑
i=1

∫ Hi

Hi−1

(ξ(Xr) + η) dr +
∫ t

Hvt

(ξ(Xr) + η) dr
}

;Xt = vt

]
Pick η = η(t, x) so that Xt = x is a likely event to obtain

= e−ηt
vt∏
i=1

Ei−1

[
exp

{∫ Hi

0
(ξ(Xr) + η) dr

}]
× error

Problem: η(t, x) is actually η(t, x, ξ)
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Tools and ideas: homogeneous case

To understand the behaviour of the maximum one needs
I a precise large deviation estimate

P0
[
Xt ∼ vt

]
= c√

t
e−I(v)t(1 + o(1))

I Ballot theorem

P0
[
Xt ∼ vt,Xs ≤ vs∀s ≤ t

]
� 1
t
P0
[
Xt ∼ vt

]
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Tools and ideas: random case

To understand the behaviour of the maximum one needs
I a precise large deviation estimate

E0
[
e

∫ t
0
ξ(Xs) ds;Xt ∼ vt]

]
� c√

t
e−I

ξ(v,t)

I Ballot theorem

E0
[
e

∫ t
0
ξ(Xs) ds;Xt ∼ mt, Xs ≤ ms ∀s ≤ t

]
� 1
tγ
E0
[
e

∫ t
0
ξ(Xs) ds;Xt ∈ [vt− 1, vt]

]
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The Ballot theorem in random environment

Bt and Wt be two independent Brownian motions, variances σ2
B , σ2

W .
Question. Understand the behaviour of

F (t) = P
[
Bs + 1 ≥Ws ∀s ≤ t

∣∣W ]

Theorem (Malein-Mi loś, 2015)

lim
t→∞

logF (t)
log t = −γ(σB , σW ), W − a.s.

for some γ(σB , σW ) > 1
2 .
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Thank you
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