Maximum of branching random walk in random environment

Jirí Černý
University of Basel

with A. Drewitz (Köln)

August 27, 2018

Definition of the model

Random environment: $\left(\xi_{x}\right)_{x \in \mathbb{Z}}$ i.i.d. under \mathbb{P}, which is non-degenerate and elliptic,

$$
0 \leq c \leq \xi_{x} \leq C
$$

Branching random walk in RE: Given $\left(\xi_{x}\right)$,

- start with one particle at 0
- every particle performs a continuous time SRW on \mathbb{Z}
- when at x, every particle branches (binary) at rate ξ_{x}
- all particles move independently

Notation: P_{0}^{ξ} - quenched distribution of the BRWRE

Questions.

Questions.

- Behaviour of the fastest (right-most) particle.
- Relation to other models: PAM and randomized F-KPP equation.

Questions.

Questions.

- Behaviour of the fastest (right-most) particle.
- Relation to other models: PAM and randomized F-KPP equation.

Notation:

- $N_{t}=$ the set of particles at time t
- $\left(Y_{s}\right)_{s \leq t}$ trajectory of a particle $Y \in N_{t}$
- position of the maximal particle

$$
M_{t}=\max \left\{Y_{t}: Y \in N_{t}\right\}
$$

- $m_{t}=$ median of M_{t} under $\mathrm{P}_{0}^{\xi}($ random variable under $\mathbb{P})$

Homogeneous BRW/BBM

In the homogeneous situation a lot is known

- LLN: $\frac{M_{t}}{t} \xrightarrow{t \rightarrow \infty} v_{0}$ a.s.
- precise asymptotics

$$
m_{t}=v_{0} t-\frac{3}{2} c \log t+O(1)
$$

- tightness: $\left(M_{t}-m_{t}\right)_{t \geq 0}$ is tight
- point-process convergence: $\sum_{Y \in N_{t}} \delta_{Y_{t}-m_{t}}$ converges

'Failure’ of the first moment prediction:

Set $N^{\geq}(t, x)=\#\left\{Y \in N_{t}: Y_{t} \geq x\right\}$ and define

$$
\bar{m}_{t}=\sup \left\{x \in \mathbb{Z}: \mathrm{E}_{0} N^{\geq}(t, x) \geq \frac{1}{2}\right\} .
$$

Then

$$
\bar{m}_{t}=v_{0} t-\frac{1}{2} c \log t+O(1)
$$

Homogeneous branching random walk II

Relation to the discrete F-KPP equation:

$$
\begin{aligned}
\partial_{t} w(t, x) & =\Delta w(t, x)+w(t, x)(1-w(t, x)) \\
w(0, x) & =w_{0}(x)
\end{aligned}
$$

Is solved by

$$
w(t, x)=1-\mathrm{E}_{0}\left[\prod_{Y \in N_{t}}\left(1-w_{0}\left(x-Y_{t}\right)\right)\right]
$$

In particular, for $w_{0}=1_{-\mathbb{N}_{0}}$,

$$
w(t, x)=\mathrm{P}_{0}\left(M_{t} \geq x\right)
$$

Some other properties of the F-KPP equation.

- F-KPP equation has travelling wave solutions $w(t, x)=w_{v}(x-v t)$ for every $v \geq v_{0}$
- If $w_{0}=\mathbf{1}_{-\mathbb{N}_{0}}$, then $w\left(t, x+m_{t}\right) \rightarrow w_{v_{0}}(x)$

Previous results

Related models

- BRW in temporarily varying environment (Bovier-Kurkova, Bovier-Hartung, Fang-Zeitouni)
- BRW in temporarily random environment (Malein-Miłoś 2015)

Maximal particle of BRW

- Comets-Popov 2007: Shape theorem for BRWRE in \mathbb{Z}^{d} \Longrightarrow LLN for the maximal particle

Previous results: Parabolic Anderson model

PAM: linear PDE with random coefficients

$$
\begin{aligned}
\partial_{t} u(t, x) & =\Delta u(t, x)+\xi(x) u(t, x) \\
u(0, x) & =\mathbf{1}_{0}(x)
\end{aligned}
$$

PAM gives the first moment of the BRWRE:

$$
u(t, x)=\mathrm{E}^{\xi}[N(t, x)]
$$

Lyapunov exponent: \mathbb{P}-a.s.

$$
\lambda(v)=\lim _{t \rightarrow \infty} \frac{1}{t} \log u(t,\lfloor t v\rfloor), \quad v \in \mathbb{R}
$$

Two important velocities:

- v_{0} : solution to $\lambda\left(v_{0}\right)=0, v_{0}>0$.
- $v_{c} \geq 0$: minimal v s.t. λ is strictly convex on $\left(v_{c}, \infty\right)$.

Breakpoint $=$ the front of the PAM

$$
\bar{m}_{t}=\sup \left\{x \in \mathbb{Z}: \mathrm{E}_{0}^{\xi} \sum_{y \geq x} u(t, y) \geq \frac{1}{2}\right\}
$$

Results for the BRWRE

Theorem (ČD'17)
Assume ξ is non-degenerate, elliptic and $v_{0}>v_{c}$. Then

- LLN (CP $\left.{ }^{\prime} 07\right): \frac{M_{t}}{t} \rightarrow v_{0}, \mathbb{P} \times \mathrm{P}_{0}^{\xi}$-a.s.
- FCLT for the breakpoint:

$$
\frac{\bar{m}_{n t}-v_{0} n t}{\sqrt{n}} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} \mathrm{BM}_{t}
$$

- approximation for the median: $\bar{m}_{t} \geq m_{t}$ and

$$
\limsup _{t \rightarrow \infty} \frac{\bar{m}_{t}-m_{t}}{\log t} \leq C, \quad \mathbb{P} \text {-a.s. }
$$

\Longrightarrow FCLT for the median

- approximation for the maximum: $\left|M_{t}-m_{t}\right| \lesssim C \log t$ \Longrightarrow FCLT for the maximum
- tightness: no proof yet

Implications for the PAM

Theorem

- CLT for the breakpoint
- For every $v>v_{c}$

$$
\frac{\log u(t, v t)-t \lambda(v)}{\sigma_{v} \sqrt{t}} \underset{t \rightarrow \infty}{\mathbb{P}} \mathcal{N}(0,1)
$$

Implication for the randomized F-KPP equation

Randomized F-KPP equation:

$$
\begin{aligned}
\partial_{t} w(t, x) & =\Delta w(t, x)+\xi(x) w(t, x)(1-w(t, x)) \\
w(0, x) & =w_{0}(x)
\end{aligned}
$$

Front of the solution:

$$
\hat{m}_{t}=\sup \{x \in \mathbb{Z}: w(t, x) \geq 1 / 2\}
$$

Previous results: Nolen 2012 gives CLT for \hat{m}_{t} for initial conditions such that the speed of the front is $>v_{0}$.

Implication for the randomized F-KPP equation

Randomized F-KPP equation:

$$
\begin{aligned}
\partial_{t} w(t, x) & =\Delta w(t, x)+\xi(x) w(t, x)(1-w(t, x)) \\
w(0, x) & =w_{0}(x)
\end{aligned}
$$

Front of the solution:

$$
\hat{m}_{t}=\sup \{x \in \mathbb{Z}: w(t, x) \geq 1 / 2\}
$$

Previous results: Nolen 2012 gives CLT for \hat{m}_{t} for initial conditions such that the speed of the front is $>v_{0}$.

Relation of BRWRE and rF-KPP:

$$
w(t, x)=\mathrm{P}_{x}^{\xi}\left[M_{t} \geq 0\right]
$$

solves rF-KPP with $w_{0}=\mathbf{1}_{-\mathbb{N}}$.
Theorem (CLT for the front)

$$
\frac{\hat{m}_{t}-v_{0} t}{\sigma \sqrt{t}} \underset{t \rightarrow \infty}{\mathbb{P}} \mathcal{N}(0,1)
$$

Tools and ideas I

First and second moment of $N(t, x)$ can be computed with help of Feynman-Kac representation, resp. many-to-one formula (Harris-Roberts '17, O. Gün-König-Sekulović '13),

$$
\begin{aligned}
& \mathrm{E}_{0}^{\xi}\left[\left|\left\{Y \in N_{t}: \varphi_{1}(r) \leq Y_{r} \leq \varphi_{2}(r) \forall r \in[0, t]\right\}\right|\right] \\
& \quad=E_{0}\left[\exp \left\{\int_{0}^{t} \xi\left(X_{r}\right) \mathrm{d} r\right\} ; \varphi_{1}(r) \leq X_{r} \leq \varphi_{2}(r) \forall r \in[0, t]\right]
\end{aligned}
$$

Tools and ideas I

First and second moment of $N(t, x)$ can be computed with help of Feynman-Kac representation, resp. many-to-one formula (Harris-Roberts '17, O. Gün-König-Sekulović '13),

$$
\begin{aligned}
& \quad \mathrm{E}_{0}^{\xi}\left[\left|\left\{Y \in N_{t}: \varphi_{1}(r) \leq Y_{r} \leq \varphi_{2}(r) \forall r \in[0, t]\right\}\right|\right] \\
& \quad=E_{0}\left[\exp \left\{\int_{0}^{t} \xi\left(X_{r}\right) \mathrm{d} r\right\} ; \varphi_{1}(r) \leq X_{r} \leq \varphi_{2}(r) \forall r \in[0, t]\right] \\
& \\
& \mathrm{E}_{0}^{\xi}\left[\left|\left\{Y \in N_{t}: \varphi_{1}(r) \leq Y_{r} \leq \varphi_{2}(r) \forall r \in[0, t]\right\}\right|^{2}\right] \\
& = \\
& E_{0}\left[\exp \left\{\int_{0}^{t} \xi\left(X_{r}\right) \mathrm{d} r\right\} ; \varphi_{1}(r) \leq X_{r} \leq \varphi_{2}(r) \forall r \in[0, t]\right] \\
& + \\
& 2 \int_{0}^{t} E_{0}\left[\exp \left\{\int_{0}^{s} \xi\left(X_{r}\right) \mathrm{d} r\right\} \xi\left(X_{s}\right) \mathbf{1}_{\varphi_{1}(r) \leq X_{r} \leq \varphi_{2}(r) \forall r \in[0, s]}\right. \\
& \left.\times\left(E_{X_{s}}\left[\exp \left\{\int_{0}^{t-s} \xi\left(X_{r}\right) \mathrm{d} r\right\} ; \varphi_{1}(r+s) \leq X_{r} \leq \varphi_{2}(r+s) \forall r \leq t-s\right]\right)^{2}\right] \mathrm{d} s
\end{aligned}
$$

Why the CLT?

With H_{i} denoting the hitting time of i, one has

$$
\begin{aligned}
& \mathrm{E}_{0}^{\xi} N(t, v t)=E_{0}\left[\exp \left\{\int_{0}^{t} \xi\left(X_{r}\right) \mathrm{d} r\right\} ; X_{t}=v t\right] \\
& =e^{-\eta t} E_{0}\left[\exp \left\{\int_{0}^{t}\left(\xi\left(X_{r}\right)+\eta\right) \mathrm{d} r\right\} ; X_{t}=v t\right] \\
& =e^{-\eta t} E_{0}\left[\exp \left\{\sum_{i=1}^{v t} \int_{H_{i-1}}^{H_{i}}\left(\xi\left(X_{r}\right)+\eta\right) \mathrm{d} r+\int_{H_{v t}}^{t}\left(\xi\left(X_{r}\right)+\eta\right) \mathrm{d} r\right\} ; X_{t}=v t\right]
\end{aligned}
$$

Pick $\eta=\eta(t, x)$ so that $X_{t}=x$ is a likely event to obtain

$$
=e^{-\eta t} \prod_{i=1}^{v t} E_{i-1}\left[\exp \left\{\int_{0}^{H_{i}}\left(\xi\left(X_{r}\right)+\eta\right) \mathrm{d} r\right\}\right] \times \text { error }
$$

Why the CLT?

With H_{i} denoting the hitting time of i, one has

$$
\begin{aligned}
& \mathrm{E}_{0}^{\xi} N(t, v t)=E_{0}\left[\exp \left\{\int_{0}^{t} \xi\left(X_{r}\right) \mathrm{d} r\right\} ; X_{t}=v t\right] \\
& =e^{-\eta t} E_{0}\left[\exp \left\{\int_{0}^{t}\left(\xi\left(X_{r}\right)+\eta\right) \mathrm{d} r\right\} ; X_{t}=v t\right] \\
& =e^{-\eta t} E_{0}\left[\exp \left\{\sum_{i=1}^{v t} \int_{H_{i-1}}^{H_{i}}\left(\xi\left(X_{r}\right)+\eta\right) \mathrm{d} r+\int_{H_{v t}}^{t}\left(\xi\left(X_{r}\right)+\eta\right) \mathrm{d} r\right\} ; X_{t}=v t\right]
\end{aligned}
$$

Pick $\eta=\eta(t, x)$ so that $X_{t}=x$ is a likely event to obtain

$$
=e^{-\eta t} \prod_{i=1}^{v t} E_{i-1}\left[\exp \left\{\int_{0}^{H_{i}}\left(\xi\left(X_{r}\right)+\eta\right) \mathrm{d} r\right\}\right] \times \text { error }
$$

Problem: $\eta(t, x)$ is actually $\eta(t, x, \xi)$

Tools and ideas: homogeneous case

To understand the behaviour of the maximum one needs

- a precise large deviation estimate

$$
P_{0}\left[X_{t} \sim v t\right]=\frac{c}{\sqrt{t}} e^{-I(v) t}(1+o(1))
$$

- Ballot theorem

$$
P_{0}\left[X_{t} \sim v t, X_{s} \leq v s \forall s \leq t\right] \asymp \frac{1}{t} P_{0}\left[X_{t} \sim v t\right]
$$

Tools and ideas: random case

To understand the behaviour of the maximum one needs

- a precise large deviation estimate

$$
\left.E_{0}\left[e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} ; X_{t} \sim v t\right]\right] \asymp \frac{c}{\sqrt{t}} e^{-I^{\xi}(v, t)}
$$

- Ballot theorem

$$
\begin{array}{r}
E_{0}\left[e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{ds}} ; X_{t} \sim \bar{m}_{t}, X_{s} \leq \bar{m}_{s} \forall s \leq t\right] \\
\quad \asymp \frac{1}{t^{\gamma}} E_{0}\left[e^{\int_{0}^{t} \xi\left(X_{s}\right) \mathrm{d} s} ; X_{t} \in[v t-1, v t]\right]
\end{array}
$$

The Ballot theorem in random environment

B_{t} and W_{t} be two independent Brownian motions, variances $\sigma_{B}^{2}, \sigma_{W}^{2}$. Question. Understand the behaviour of

$$
F(t)=P\left[B_{s}+1 \geq W_{s} \forall s \leq t \mid W\right]
$$

The Ballot theorem in random environment

B_{t} and W_{t} be two independent Brownian motions, variances $\sigma_{B}^{2}, \sigma_{W}^{2}$. Question. Understand the behaviour of

$$
F(t)=P\left[B_{s}+1 \geq W_{s} \forall s \leq t \mid W\right]
$$

Theorem (Malein-Miłoś, 2015)

$$
\lim _{t \rightarrow \infty} \frac{\log F(t)}{\log t}=-\gamma\left(\sigma_{B}, \sigma_{W}\right), \quad W-\text { a.s. }
$$

for some $\gamma\left(\sigma_{B}, \sigma_{W}\right)>\frac{1}{2}$.

Thank you

