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Consider M independent, uniformly distributed, half-spaces Hk; with 0 2 @Hk: How
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Gardner�s formula, �rst derived (non-rigorously) by Gardner-Derrida:
Theorem (Gardner-Derrida, Mézard, Talagrand). If � is small enough, then
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where Z is a standard Gaussian, � the Gaussian distribution function, and r = r (�)

and q = q (�) solve
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p
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' the standard normal density.



Remark: Gardner-Derrida claim (based on replica computation) that the formula is
correct up to

�� := sup f� > 0 : f (�) > 0g < 1;

and that # = 0 a.s. for � > ��:

Remark: For no � > 0 is it true that f (�) equals
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N
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�
= (1� �) log 2:

Talagrand: Consider u : R ! [�1;1); with some upper bound (square increase is
not allowed), and with i.i.d. standard Gaussians (Jik)i�N; k�M
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The half-space case is u (x) := �11x<0: For general u; one has
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and the replica symmetric formula for f (�; u) := limN!1N�1 logZN;�;u is
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again with q = E th2 (
p
�rZ) ; r = E 2q

�p
qZ
�
: Talagrand �rst proves the result

for smooth u by a perturbative method, and then uses a complicated approximation
for u = �11x<0.
Remark:  q is smooth for non-smooth u:

The problem comes up in connection with the memory capacity in neural nets, in
particular the perceptron, but it is also related to other models, e.g. in compressed
sensing.



Standard second moment method: one tries to prove, for a sequence fZNg of
random partition functions, that

EZ2N � const� (EZN)2

in which case one obtains, with a self-averaging property

lim
N!1

1

N
logZN = fann := lim

N!1
1

N
logEZN

which evidently cannot work in our case. Also for the Sherrington-Kirkpatrick model
with non-vanishing external �eld:
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#
; h 6= 0;

For no � > 0; h 6= 0; one has f = fann:



Morita argument: �nd a �proper� sequence of �-�elds GN and prove

E
�
Z2N

���GN� � CNE (ZN j GN)2 ;

CN = eo(N), and limN!1N�1 logE (ZN j GN) = f . Then f = limN!1N�1 logZN :
For the SK and the perceptron, take GN = � (mi : i � N) ; where mi := h�ii :
Thouless-Anderson-Palmer equations. For SK:
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Onsager correction

1CCCA :
Heuristic derivation by belief propagation (at high temperature)
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For the perceptron, TAP equations were �rst derived by Mézard: Best also by belief
propagation (see Mézard 2017 for the Hop�eld model). Formally, one relates the mi

to
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D
u0 (Sk)

E
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where q comes from the �xed point equation above.

For q 2 (0; 1) ;  q is smooth regardless if u is: The equations make sense for non-
smooth u.



The proper way to construct directly TAP solutions (in high temperature) for SK was
done in my 2015 CMP paper. The method can be adapted for the perceptron: joint
work with Shuta Nakaijma, Kyoto University.
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The time shift for the Onsager corrections were �observed�before my paper by Donoho
& Montanari for compressed sensing algorithms, and they checked the e¤ectivity nu-
merically.



Theorem Assume supx
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under a condition resembling the de Almeida�Thouless condition for SK:
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i2 � 1:
The dependence of the iterates m[t] and n[t] on

�
Jij
�
can precisely be described

(which would not be the case without the time shift of the Onsager correction).



For �xed t; and N !1; there is a representation
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with inductively de�ned 
i; �i 2 R, random variables �[s]i ; �
[s]
i which asymptoti-

cally (N ! 1) are Gaussian, and matrices
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They have the following covariances:
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where �[s] 2 RN are from the m[s] by Gram-Schmidt, and  [s] the same in RM : The
J [t] are obtained from J with a series of rank one corrections:

J
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Two crucial points:

� The AT-condition is satis�ed i¤ the �rst partsN�1=2P�N
k=1 J
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ikn
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disappear asymptotically (N !1 �rst, and then t!1). This is due to com-
bined properties of J [t] and n[t];m[t]: From this one derives the above theorem.

� The J [t] stays �close� to J; as N !1; for instance if x 2 RN then the vector
Y := xJ [t] has a covariance matrix of rank N � t+ 1:

The key idea for the free energy is to tilt the coin tossing measure p0 (�) := 2�N ; to
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and to writeX
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plus an estimate of the second moment. Et := E (�j Gt) :



The SK is simpler (and done): After a simple computation (and some approximations),

one gets with �̂i = �i �m
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with q satisfying q = E th2
�
h+ �

p
qZ
�
: If

P
� � � � = eo(N), we are done (for the

�rst moment).

Assume wrongly that Jij, under Et are i.i.d. and independent of m
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i ; then

X
�
� � � =

X
�
p[t+1] (�) exp

�
�2N

D
m[t+1]; �̂

E2�
and we are left with a Curie-Weiss type term, which is eo(N) below AT. A similar
straightforward (but wrong!) argument gives the Gardner-formula in the perceptron.



For SK: Replace J by J [t+1]+
P
of rank one corrections, which essentially adds in the

Hamiltonian
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J [t+1] is conditionally Gaussian given Gt, leading to no additional trouble, except one
has in�nitely many Curie-Weiss terms in the t!1 limit, and one has to check that
they are not distroying the picture
This step is however rather delicate for the perceptron, as the Gaussians are inside the
function u; which may even be discontinuous e.g. u (x) = �11x<0:



The second conditional moment is similar, with additional Curie-Weiss terms. The
result (for SK) is
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Remarks:

a) �In principle�, the method is non-perturbative. The only place where we have to
rely on �small ��are the Curie-Weiss computations for which the correct critical value
is a bit delicate. For the �rst moment, I think it is OK up to AT, but certainly not for
the second. For the perceptron, we in addition need the uniqueness of the �xed point
equation for (q; r) :

b) The method seems to be applicable in cases where there are TAP type equations.

c) A somewhat similar idea is used in a paper by Fan, Mei, and Montanari (Aug 2018).

d) Similar TAP-type structures appear in connection with compressed sensing, and
variants of the above representations have been obtained in this context by Bayati,
Donoho, Montanari, Lelarge, and others.



e) It is suggestive to conjecture that the Curie-Weiss terms describe the �nite size
corrections.

d) The main shortcoming is that the method is for the moment restricted to the replica
symmetric region. For diluted models, there is a non-rigorous approach by Mézard,
Parisi, Montanari for the BP equations in the 1RSB case, but I don�t now if it could
be adapted to TAP equations (even non-rigorously).



Happy (After)Birthday, Anton!


