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Spherical harmonics / Laplacian
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Random eigenfunction of the Laplacian on the sphere
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Random eigenfunction of the Laplacian on the sphere
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Plane waves on R2

Consider solutions of the equation

∆f + λf = 0

on the plane. Particular solutions are given by

fα,β(x , y) = cos(αx + βy + ϕ)

with α2 + β2 = λ. By linearity, one can consider linear
combinations of the fα,β .
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Plane waves : one component
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Plane waves : two components
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Plane waves : three components
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Plane waves : four components
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Infinitely many components / local limit on the sphere
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The limit as a Gaussian field

The local limit of random eigenfunctions of ∆ as λ→∞ is given
by a Gaussian field φ of covariance

Cov [φ(x), φ(y)] = J0(‖y − x‖)

The covariance oscillates, and decays as 1/
√
‖y − x‖.

15/43



One large connected component
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Random polynomials / Kostlan
ensemble



Random polynomial

Define a random homogeneous polynomial on R3 by

Pd(X ) =
∑
|I |=d

aI

√
(d + 2)!

I !
X I

where the aI are i.i.d. Gaussians.

Restrict it to the unit sphere.
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Restriction to the sphere (d=30)
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Restriction to the sphere (d=100)
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Restriction to the sphere (d=200)
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Restriction to the sphere (d=1000)
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Restriction to the sphere (d=5000)
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Restriction to the sphere (d=10000)
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Restriction to the sphere (d=20000)
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Local limit as d →∞
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The limit as a Gaussian field

Qd(x , y) =
∑
i+j6d

aij

√
(d + 2)!

i !j!(d − i − j)!
x iy j

Rescale by a factor
√
d :

Qd(x/
√
d , y/

√
d) '

∑
i+j6d

aij√
i !j!

x iy j

In the limit d →∞:

ψ(x , y) =
∑
i ,j>0

aij√
i !j!

x iy j
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The limit as a Gaussian field

The limit is a stationary centered Gaussian field ψ on R2, with
covariance given by

Cov [ψ(x), ψ(y)] = exp(−‖y − x‖2/2).

In particular, the covariance is positive and decays very fast.
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Comparison between the two models
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A large connected component in ψ
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The same, and a critical percolation cluster
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Percolation



Percolation : classical results

• Kesten (1980) : pc = 1/2

• For p < pc , sub-critical regime :
• All clusters are a.s. finite
• P[0←→ x ] ≈ exp(−λp‖x‖)
• Largest cluster in Λn has diameter ≈ log n

• For p > pc , super-critical regime :
• There exists a.s. a unique infinite cluster
• P[0←→ x , |C (x)| <∞] ≈ exp(−λp‖x‖)
• Largest finite cluster in Λn has diameter ≈ log n

• At p = pc , critical regime :
• All clusters are a.s. finite
• P[0←→ x ] ≈ ‖x‖−5/24

• Largest cluster in Λn has diameter ≈ n
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Russo-Seymour-Welsh



Russo-Seymour-Welsh for critical percolation

Theorem (RSW)

For every λ > 0 there exists c ∈ (0, 1) such that for all n large
enough,

c 6 Ppc [LR(λn, n)] 6 1− c .

The case λ = 1 is easy by duality; it is enough to know how the
estimate for one value of λ > 1 and then to glue the pieces.
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Russo-Seymour-Welsh : proof (λ = 3/2)
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Russo-Seymour-Welsh for the field ψ

Main tools used were decorrelation and the FKG inequality.

Theorem (B., Gayet — Publ. Math. IHES 2017, to appear)
The field ψ satisfies RSW.

A few consequences:

• The set {z : ψ(z) > 0} has no unbounded component

• Neither do {z : ψ(z) < 0} and {z : ψ(z) = 0}
• The universal critical exponents are the same as for percolation

• ψ = 0 is the critical level [Rivera-Vanneuville]
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A few words about the proof

The main obstacle is the analyticity of the field ψ, which goes
against independence of its behavior in distant regions.

To go around it, we discretize the field on the vertices of a
triangular lattice with a small mesh δ, and look only at its sign on
it, to get a dependent, discrete percolation model. The choice of δ
is crucial:

• If δ is too large, the discretization does not catch all the
topology;

• If δ is too small, we lose in the decorrelation.

The case of the Laplacian eigenfunctions is bad on all respects: too
slow decorrelation, no FKG inequality.
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A decorrelation inequality

Theorem

Let X and Y be two Gaussian vectors in Rm+n, of covariances

ΣX =

[
Σ1 Σ12

ΣT
12 Σ2

]
and ΣY =

[
Σ1 0
0 Σ2

]
,

where Σ1 ∈ Mm(R) and Σ2 ∈ Mn(R) have all diagonal entries
equal to 1. Denote by µX (resp. µY ) the law of the signs of the
coordinates of X (resp. Y ), and by η the largest absolute value of
the entries of Σ12. Then,

dTV (µX , µY ) 6 C (m + n)8/5η1/5.
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Another decorrelation inequality

Theorem

Let X = (xi ) be a centered Gaussian vector in Rn with covariance
matrix A = (aij)1≤i ,j≤n satisfying ∀1 ≤ i ≤ n, aii = 1, and let
δ ∈ (0, 1/n). Then, the shifted truncation

B = (bij) where bij := aij1|aij |>δ + (nδ)3/51i=j

is a positive matrix, and there exists a coupling of X with another
centered Gaussian vector Y = (yi ) with covariance matrix B such
that

P [∀1 ≤ i ≤ n, xiyi > 0] > 1− 3n6/5δ1/5.

Corollary: coupling with a finitely correlated field.

37/43



The Bogomolny-Schmidt conjecture

Conjecture
The nodal lines of φ (and ψ) converge, in the scaling limit, to the
same conformally invariant object as interfaces of critical
percolation; in particular, asymptotic crossing probabilities are
given by Cardy’s formula.
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Negatively correlated fields



Russo-Seymour-Welsh along families of models

Theorem (B., Gayet, 2017, arXiv 1710.10644)

Let (Pu) be a one-parameter family of discrete site models
satisfying the following assumptions:

• symmetry and self-duality;

• uniformly good decorrelation;

• RSW estimates at parameter u = 0.

Then, RSW estimates hold uniformly for all u ∈ (−ε, ε).

This applies in particular

• to the Ising model with possibly negative β

• to discrete Gaussian fields with possibly negative correlation
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Russo-Seymour-Welsh for finitely correlated fields

Main ideas of the argument:

• Follow the general proof from percolation

• Approaching within distance ` is free

• Then, need to glue both paths together
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Russo-Seymour-Welsh for finitely correlated fields

ρn

(ρ− 1
2 )n− 4

(2ρ− 1
2 )n− 4

n

n
2

1
2n+ 4 (ρ− 1

2 )n− 4

γ
V

∂̃V ′`

z−

y+

y−

Γ−

Q−

y′−
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Russo-Seymour-Welsh for finitely correlated fields

β(r ,R) = sup
Q∈Q(r ,R)

P[Q is not glued]

Lemma (Approximative statement)
There exist ε > 0, L <∞ and λ <∞ such that

β(`, L) < ε =⇒ ∀r < R, β(r ,R) 6 λ(r/R)1/λ,

and moreover when this holds, RSW estimates are also valid.
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That’s it

Happy birthday Anton!
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