
Dynamic Hamiltonian Monte Carlo in Stan

Hamiltonian Monte Carlo
use of gradient information and dynamic simulation reduce
random walk

Dynamic HMC
adaptive simulation time

Adaptation of algorithm parameters
mass matrix and step size adaptation during warm-up

Dynamic HMC specific diagnostics
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Extra material for dynamic HMC

Michael Betancourt (2018). Scalable Bayesian Inference
with Hamiltonian Monte Carlo
https://www.youtube.com/watch?v=jUSZboSq1zg
Michael Betancourt (2018). A Conceptual Introduction to
Hamiltonian Monte Carlo. https://arxiv.org/abs/1701.02434
http://elevanth.org/blog/2017/11/28/
build-a-better-markov-chain/
Cole C. Monnahan, James T. Thorson, and Trevor A.
Branch (2016) Faster estimation of Bayesian models in
ecology using Hamiltonian Monte Carlo.
https://dx.doi.org/10.1111/2041-210X.12681
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Demos

https://github.com/avehtari/BDA_R_demos/tree/master/
demos_ch12

demos_ch12/demo12_1.R

http://elevanth.org/blog/2017/11/28/
build-a-better-markov-chain/
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Hamiltonian Monte Carlo
Uses gradient information for more efficient sampling
Augments parameter space with momentum variables
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Hamiltonian Monte Carlo
Uses gradient information for more efficient sampling
Augments parameter space with momentum variables
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Hamiltonian Monte Carlo
Uses gradient information for more efficient sampling
Augments parameter space with momentum variables
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Hamiltonian Monte Carlo

Uses gradient information for more efficient sampling
Augments parameter space with momentum variables
Simulation of Hamiltonian dynamics reduces random walk

http://elevanth.org/blog/2017/11/28/
build-a-better-markov-chain/
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Hamiltonian Monte Carlo

Uses gradient information for more efficient sampling
Alternating dynamic simulation and sampling of the energy
level

Parameters: step size, number of steps in each chain
No U-Turn Sampling (NUTS) and dynamic HMC

adaptively selects number of steps to improve robustness
and efficiency
dynamic HMC refers to dynamic trajectory length
to keep reversibility of Markov chain, need to simulate in
two directions
http://elevanth.org/blog/2017/11/28/
build-a-better-markov-chain/

Dynamic simulation is discretized
small step size gives accurate simulation, but requires more
log density evaluations
large step size reduces computation, but increases
simulation error which needs to be taken into account in the
Markov chain
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Adaptive dynamic HMC in Stan

Dynamic HMC using growing tree to increase simulation
trajectory until no-U-turn criterion stopping

max treedepth to keep computation in control
pick a draw along the trajectory with probabilities adjusted
to take into account the error in the discretized dynamic
simulation

Mass matrix and step size adaptation in Stan
mass matrix refers to having different scaling for different
parameters and optionally also rotation to reduce
correlations
mass matrix and step size adjustment and are estimated
during initial adaptation phase
step size is adjusted to be as big as possible while keeping
discretization error in control

After adaptation the algorithm parameters are fixed and
some further iterations included in the warmup
After warmup store iterations for inference
See more details in Stan reference manual
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Dynamic HMC

Comparison of algorithms on highly correlated  
250-dimensional Gaussian distribution

•Do 1,000,000 draws with both Random Walk Metropolis and Gibbs, 
thinning by 1000

•Do 1,000 draws using Stan’s NUTS algorithm (no thinning)

•Do 1,000 independent draws (we can do this for multivariate normal)

Source: Jonah Gabry
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Max tree depth diagnostic

Dynamic HMC specific diagnostic
Indicates inefficiency in sampling leading to higher
autocorrelations and lower neff

Different parameterizations matter
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Divergences
HMC specific: Indicates that Hamiltonian dynamic
simulation has problems going to narrow places

indicates possibility of biased estimates
Different parameterizations matter
http://mc-stan.org/users/documentation/case-studies/
divergences_and_bias.html
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