Dynamic Hamiltonian Monte Carlo in Stan

@ Hamiltonian Monte Carlo

e use of gradient information and dynamic simulation reduce
random walk

@ Dynamic HMC
e adaptive simulation time
@ Adaptation of algorithm parameters
@ mass matrix and step size adaptation during warm-up

@ Dynamic HMC specific diagnostics
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Extra material for dynamic HMC

@ Michael Betancourt (2018). Scalable Bayesian Inference
with Hamiltonian Monte Carlo
https://www.youtube.com/watch?v=jUSZboSq1zg

@ Michael Betancourt (2018). A Conceptual Introduction to
Hamiltonian Monte Carlo. https://arxiv.org/abs/1701.02434

@ http://elevanth.org/blog/2017/11/28/
build-a-better-markov-chain/

@ Cole C. Monnahan, James T. Thorson, and Trevor A.
Branch (2016) Faster estimation of Bayesian models in
ecology using Hamiltonian Monte Carlo.
https://dx.doi.org/10.1111/2041-210X.12681
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Demos

@ https://github.com/avehtari/BDA_R_demos/tree/master/
demos_ch12

@ demos_ch12/demo12_1.R

@ http://elevanth.org/blog/2017/11/28/
build-a-better-markov-chain/
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Hamiltonian Monte Carlo

@ Uses gradient information for more efficient sampling
@ Augments parameter space with momentum variables
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Hamiltonian Monte Carlo

@ Uses gradient information for more efficient sampling
@ Augments parameter space with momentum variables
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Hamiltonian Monte Carlo

@ Uses gradient information for more efficient sampling
@ Augments parameter space with momentum variables

Cumulative averages
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Hamiltonian Monte Carlo

@ Uses gradient information for more efficient sampling

@ Augments parameter space with momentum variables
@ Simulation of Hamiltonian dynamics reduces random walk

e http://elevanth.org/blog/2017/11/28/
build-a-better-markov-chain/
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Hamiltonian Monte Carlo

@ Uses gradient information for more efficient sampling
@ Alternating dynamic simulation and sampling of the energy
level
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Hamiltonian Monte Carlo

@ Uses gradient information for more efficient sampling

@ Alternating dynamic simulation and sampling of the energy
level

@ Parameters: step size, number of steps in each chain
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Hamiltonian Monte Carlo

@ Uses gradient information for more efficient sampling
@ Alternating dynamic simulation and sampling of the energy
level
@ Parameters: step size, number of steps in each chain
@ No U-Turn Sampling (NUTS) and dynamic HMC
e adaptively selects number of steps to improve robustness
and efficiency
e dynamic HMC refers to dynamic trajectory length
o to keep reversibility of Markov chain, need to simulate in
two directions
e http://elevanth.org/blog/2017/11/28/
build-a-better-markov-chain/
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Hamiltonian Monte Carlo

@ Uses gradient information for more efficient sampling
@ Alternating dynamic simulation and sampling of the energy
level
@ Parameters: step size, number of steps in each chain
@ No U-Turn Sampling (NUTS) and dynamic HMC
e adaptively selects number of steps to improve robustness
and efficiency
e dynamic HMC refers to dynamic trajectory length
o to keep reversibility of Markov chain, need to simulate in
two directions
e http://elevanth.org/blog/2017/11/28/
build-a-better-markov-chain/
@ Dynamic simulation is discretized
e small step size gives accurate simulation, but requires more
log density evaluations
o large step size reduces computation, but increases
simulation error which needs to be taken into account in the
Markov chain
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Adaptive dynamic HMC in Stan

@ Dynamic HMC using growing tree to increase simulation
trajectory until no-U-turn criterion stopping
e max treedepth to keep computation in control
e pick a draw along the trajectory with probabilities adjusted
to take into account the error in the discretized dynamic
simulation
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@ Dynamic HMC using growing tree to increase simulation
trajectory until no-U-turn criterion stopping
e max treedepth to keep computation in control
e pick a draw along the trajectory with probabilities adjusted
to take into account the error in the discretized dynamic
simulation
@ Mass matrix and step size adaptation in Stan
e mass matrix refers to having different scaling for different
parameters and optionally also rotation to reduce
correlations
@ mass matrix and step size adjustment and are estimated
during initial adaptation phase
e step size is adjusted to be as big as possible while keeping
discretization error in control
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Adaptive dynamic HMC in Stan

@ Dynamic HMC using growing tree to increase simulation
trajectory until no-U-turn criterion stopping
e max treedepth to keep computation in control
e pick a draw along the trajectory with probabilities adjusted
to take into account the error in the discretized dynamic
simulation
@ Mass matrix and step size adaptation in Stan
e mass matrix refers to having different scaling for different
parameters and optionally also rotation to reduce
correlations
@ mass matrix and step size adjustment and are estimated
during initial adaptation phase
e step size is adjusted to be as big as possible while keeping
discretization error in control
@ After adaptation the algorithm parameters are fixed and
some further iterations included in the warmup
@ After warmup store iterations for inference
@ See more details in Stan reference manual
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Dynamic HMC

Comparison of algorithms on highly correlated
250-dimensional Gaussian distribution

*Do 1,000,000 draws with both Random Walk Metropolis and Gibbs,
thinning by 1000

*Do 1,000 draws using Stan’s NUTS algorithm (no thinning)

*Do 1,000 independent draws (we can do this for multivariate normal)
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]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[
|
|

T T T T

T T T T T T T m— L
-15 <10 -5 0 5 10 15 -15 -10 -5 0 5 10 15 -15 -10 -5 O 5 10 15 -15 -10 -5 0 5 10 15

Source: Jonah Gabry
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Max tree depth diagnostic

@ Dynamic HMC specific diagnostic

@ Indicates inefficiency in sampling leading to higher
autocorrelations and lower neg

@ Different parameterizations matter
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Divergences

@ HMC specific: Indicates that Hamiltonian dynamic
simulation has problems going to narrow places
e indicates possibility of biased estimates

@ Different parameterizations matter
@ http://mc-stan.org/users/documentation/case-studies/
divergences_and_bias.html
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