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Outline

I Brief reminder on variational methods

I What's worth improving?

I How to improve: importance sampling

I How to improve: perturbations

I Open questions



Disclaimer

Very little of this is novel or my own work, but (therefore?) I think
it's useful. Main ideas appear in Tierney, Kass & Kadane (1989).
Lots of similar ideas appeared earlier in the stat. physics literature,
see Opper & Winther (2001).



A reminder

I The goal of variational methods in Bayesian statistics is to
compute an approximation to the posterior distribution (or just
to posterior moments).

I Should be cheaper than sampling.

I Sometimes variational methods are incredibly accurate,
sometimes the results are really bad.

I There are dozens of methods out there, I'm just going to talk
about general principles that apply whenever you have an
initial approximation and you wish to improve it.



Goal of this tutorial

General setup: you've already computed an approximation and:

I You want to squeeze a bit more accuracy out of the method

I You want to extract some higher-moments or marginals

I (You wish to know how good the approximation is)



Setup, notation

Let π(θ) ∝ p(θ|y) (posterior distribution over parameter θ given
data y). We call π the �target distribution�. q(θ) is an
approximation to π that belongs to a family of approximating
distributions Q. Typically Q is the set of Gaussian distributions, so
we are looking for a Gaussian approximation to the posterior. I'll
focus on the univariate case just to simplify notation.



Variational Bayes in one slide

In VB we �nd an approximation that minimises the following cost:

argmin
q∈Q

KL(q||π)

This is tractable because KL(q||π) is an expectation over q. To
obtain the various �avours:

I Change the approximating family Q
I Change how you do the optimisation

I Change the cost function (rinse, repeat)

In some cases VB=mean �eld approximation from statistical
physics.



Expectation Propagation

Expectation Propagation (Minka, 2001) is another algorithm that
works on di�erent principles, essentially by re�ning approximations
to each likelihood term in the posterior:

π(θ) =
n∏

i=1

p(yi |θ)p(θ) ≈ q(θ) =
n∏

i=1

qi (θ)p(θ)

The well-known �belief propagation� algorithm is a special case of
EP.



The Canonical Gaussian Approximation

The CGA is sometimes (mistakenly) called the �Laplace�
approximation. In two steps:

1. Find the mode of the target

θ? = argmax
θ

log π(θ)

2. Compute second derivative of log π at the mode

h = − ∂2

∂θ2
log π(θ)|θ=θ?

The CGA is the Gaussian distribution centred at θ with variance
h−1.



Running example

Running example for this talk: a sequence of Bernoulli trials

yi ∼ B(θ)

where we are interested in estimating the prob. of success θ. Prior
is uniform over θ, so that:

p(θ|y1 . . . yn) ∝ θ
∑

yi (1− θ)n−
∑

yi

NB: picking a Gaussian approximation for this posterior is rather
silly.



The CGA on the Bernoulli example
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The CGA on the Bernoulli example
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The CGA on the Bernoulli example
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MCMC vs Variational Methods

MCMC pros:

I Modern algorithms are nearly black-box for a lot of models
(meaning you run Stan and it works)

I The longer you wait, the better the answer

MCMC cons:

I Slow



MCMC vs Variational Methods

Variational pros:

I Really fast

I Can be very accurate in certain models

Cons:

I Need model-speci�c work, except for CGA

I Weak theoretical guarantees

I Only captures certain features of your posterior (*)

I You won't get a better answer if you wait longer (*)



What are corrections good for?

Corrections try to improve on the last two points

I You can get more out of your approximation

I You can get a better answer if you invest more time



When is it worth improving an approximation?

I At this stage, we have an approximation and the goal of the
talk is to give you ways of improving it. These improvements
aren't free. Should we bother?

I We are all familiar with the idea that imprecise quantities
needn't be reported with 15 decimals of precision (e.g. �the
probability that it rains tomorrow is 0.567891354�).

I In the same fashion, if you're estimating the distance to the
sun, and the posterior density has a standard deviation of, say
10km, nobody cares if your approximation to the mean is o�
by a cm or two.



When is it worth improving an approximation?

I Suggestion: let's start by estimating an order of magnitude for
the errors of the CGA, to see what we could gain with a bit
more e�ort.

I The CGA is exact in large n (lots of data), so we'll estimate
the error in the approximation as a function of n.



How good is the CGA?

The CGA gives an approximate mean and variance, and it's a
Gaussian. We can divide the question of accuracy into two parts:

1. How good are the approximate mean and variance?

2. How good can a Gaussian approximation to π be, even with
the right mean and variance?



How good is the approximate mean?

The CGA replaces the mean with the mode. For unimodal
distributions (Basu & DasGupta, 1997):

|E (θ)− θ?| ≤
√

3

5
Var(θ) (1)

so we know the error is at most O
(
Var(θ)1/2

)
.



How good is the approximate mean?

I Typically, Var(θ) = O(n−1)

I Implies that the variational error is (mode - mean) O(n−1/2)

I That's the worst possible rate for unimodal distribution,
sometimes the CGA is much better than that



How good is the approximate variance?

Under the hypothesis that π is strongly log-concave and some
additional assumptions (Dehaene & Barthelme 2015), we have a
relative error of O(n−1) for the variance, meaning O(n−1/2) for the
standard deviation.



What does that tell us?

I Standard asymptotics: distance between �true� θ and the
posterior mean E (θ|y1 . . . yn) is O(n−1/2).

I In some cases, the error in the CGA may have the same
magnitude as the estimation error

I That's going to be the case in posterior distributions with a lot
of skew



Estimation error vs. variational error

Variational error

Estimation error
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Conclusion so far

I For small n and/or hard posteriors, you can improve the CGA
by a signi�cant margin

I For large n and/or easy posteriors, not worth the bother

I Of course no one knows in advance if they are dealing with an
easy or a hard case (Open Research Problem #1)



The Laplace approximation

I We need to introduce the Laplace approximation proper.

I Let Z =
´
p(θ|y)dθ =

´
π(θ)dθ (marginal likelihood).

I Laplace approximation is closely related to the CGA. Note that
the approximation is q(θ) = 1√

2πh−1
exp(−h

2
(θ − θ?)2)

I If q(θ) ≈ π(θ)/Z then Z ≈ π(θ)/q(θ)

I In particular, at θ? we obtain:

Z ≈
√
2πh−1π(θ?)

I That's the Laplace approximation proper



Accuracy of the Laplace approximation

Tierney & Kadane (1986): the relative error in the Laplace
approximation is O(1/n), i.e.

Z = Zlap(1 +O(n−1))

Note that this is de�nitely better than what we had for the mean
and std. dev. We will come back to that later.



Summary on Laplace approximation

I Laplace approximation is an approximation to integrals (Z ),
not distributions

I Closely related to the CGA

I It's quite reliable (O(1/n))



Improvement via importance sampling

I This �rst idea is obvious: if you have an approximation,
sample from it, then use importance sampling to compute
expectations

I Applying this idea to the computation of Z (marginal
likelihood):

Z =

ˆ
π(θ)dθ =

ˆ
q(θ)

π(θ)

q(θ)
dθ ≈ (1/m)

m∑
i=1

π(θi )

q(θi )

for θ1 . . . θm drawn IID from q. Call Z̃m this approximation.



Importance sampling: estimating the mean

Along the same lines, the obvious IS estimator for the mean is the
following:

E (θ) = Z−1
ˆ
π(θ)θdθ = Z−1

ˆ
q(θ)θ

π(θ)

q(θ)
dθ ≈ Z̃−1m

m∑
i=1

θi
π(θi )

q(θi )

ie., the �self-normalised� importance sampling estimate.



How well can we expect IS to do?

Assume the variational approximation is perfect, i.e.
q(θ) = Z−1π(θ). Then:

Z̃m = (1/m)
m∑
i=1

π(θi )

q(θi )
= (1/m)Z = Z

We get a zero-variance estimator!



How well can we expect IS to do?

IS estimate for the mean is just the empiral mean of the sample
θ1, . . . , θm.
In other words, we started out with a perfect estimate, and all we
have done is add Monte Carlo error (of order O(m−1/2))



How well can we expect IS to do?

More generally, if we assume that q(θ) is �not far� from π, in the
sense that:

q(θ) ∝ π(θ) exp(εd(θ))

for small ε, we get a O(εm−1/2) relative error for Z and a
O((1 + ε)m−1/2) error for the mean.
If the variational approximation is very bad (q far from π), IS
estimators can be arbitrarily awful and it's hard to say much.



Summary

I Importance Sampling has the nice property of being
convergent with greater e�ort (the more computational e�ort
you put in, the better the estimate, on average).

I It has the less nice property that if your approximation is
already exact, IS will make it worse.

I So what else can we do?



Correction via perturbation

I The next class of methods we will look at are based on
perturbations.

I These ideas have been used forever in statistical physics,

I In Bayesian statistics they also appear all over the place.

I Essential principle: if you can't compute a moment, compute a
derivative (and vice-versa).



The cumulant generating function

I Let: Ψ(t) = log
´
π(θ) exp(tθ)dθ

I Cumulant generating function of Ψ

I Easy to check that ∂
∂t Ψ(t)|t=0 =

´
θπ(θ)dθ´
π(θ)dθ

, i.e. the mean of π



The CGF as a perturbation

I Interpretation: given an algorithm that outputs an
approximation to logZ (the integration constant), we can
construct an algorithm that outputs an approximation to the
mean of π

I Step 1: run the algorithm a �rst time with π, to get
log Z̃ ≈ log

´
π(θ)dθ

I Step 2: run the algorithm again, on a small perturbation of π,
speci�cally: πε(θ) = π(θ) exp(εθ). The algorithm outputs
log Z̃ε ≈ log

´
πε(θ)dθ

I The approximate mean is log Z̃ε−log Z̃
ε



Results

CGA

Perturbation
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The cancellation miracle

I Why does this work so much better than the CGA?

I Part of the error cancels, and a quick picture will help
understand why



The cancellation miracle
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Generalising

I It's easy to generalise to other moments of π: if you need to
compute Eπ(g(θ)), use the following perturbation

logZ (ε) = log

ˆ
π(θ) exp(εg(θ))dθ

I Using log(1 + x) = x +O(x2) and exp(x) = 1 + x +O(x2) we
�nd

logZ (ε) = log

ˆ
π(θ)(1 + εg(θ) +O(ε2))dθ

= logZ + εEπ(g) +O(ε2)



Corrections for the Laplace expansion

I In the case of the Laplace expansion d
dε log Z̃ (ε) can be carried

out analytically

I We �nd:

d

dε
log Z̃ (ε) = g(θ?)− g ′(θ?)ψ′′′(θ?)

2(ψ′′(θ?))2

I This only depends of g(θ?) and g ′(θ?), so the correction is
extremely local

I Note that Eπ(g) ≈ g(θ?) is the naive approximation we'd get
from the CGA (neglecting high order derivatives of g).

I The correction relative to the naive approximation has order
O(n−1).



Some notes on implementation

I You may be able to carry out the di�erentiation analytically,
however painful that sounds (it's possible for EP, for example).

I You may want to use centred di�erences rather than forward

di�erences: (1/2ε)
(

log ˜Z (ε)− log ˜Z (−ε)
)

I An obvious alternative is to use automatic di�erentiation but I
haven't tried it.



Extension: computing covariances

I A very cheap class of variational approximations use
fully-factorising distributions, i.e.
q(θ1 . . . θd ) ∝ q1(θ1) . . . qd (θd )

I The approximate posterior distribution is independent over
parameters, and so carries no information on the covariance.

I A similar perturbation trick can be used, however.



Extension: computing covariances

I Idea: fully-factorised q still gives an approximation to the
mean and to logZ , and we may approximate

κ(ε) =

ˆ
θ exp(εtθ)π(θ)dθ

I The rest is left as an exercise to the reader



Conclusion

I A viable alternative to MCMC in Bayesian statistics is a
combination of decent variational method + correction where
needed

I Sometimes a CGA is all you really need, and it has the
advantage of requiring very little model-speci�c work



More open problems

I Natural heuristic: if the correction is small, that means the
initial approximation was good

I Open Problem # 2: prove that is not just a heuristic

I Open Problem # 3: �nd explicit error bounds



Bonus material: Paquet-Winther-Opper corrections

I Neat technique described in Paquet, Winther & Opper (2009):
assume the posterior can be written as

π(θ) =
n∏

i=1

p(yi |θ)p(θ)

I Similarly, assume that the approximation can be written as:

q(θ) =
n∏

i=1

qi (θ)p(θ)

where each qi (θ) approximates p(yi |θ), so that

p(yi |θ)

qi (θ)
= 1 + εi (θ)

and εi is small.



Bonus material: Paquet-Winther-Opper corrections

Then:

π(θ) = π(θ)
q(θ)

π(θ)
=

n∏
i=1

(1 + εi (θ))

Expanding to �rst order in ε:

π(θ) ≈ q(θ)

(
1 +

n∑
i=1

εi (θ) +O(εiεj)

)

= q(θ) +
∑
i

(
q(θ)

p(yi |θ)

qi (θ)
− 1

)



PWO corrections

Terms like: q(θ)p(yi |θ)
qi (θ)

can be understood as �remove approximation

for the i-th factor and replace with the true factor instead�.
If you apply the PWO correction to the CGA you get something
that's very close to Expectation Propagation.
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