Cognitive models of memory processes in sentence comprehension: A case study using Bayesian hierarchical modeling

Bruno Nicenboim October 29, 2018

University of Potsdam

How can we evaluate (slightly) different theories?

How can we evaluate (slightly) different theories?

By implementing the theories as computational models using Bayesian methods and comparing the models.

The two scouts who ditched Billy and Weary were shot.

The two scouts who ditched Billy and Weary were shot.

The two scouts who ditched Billy and Weary were shot.

Models of memory in sentence processing

Models that assume a cue-based retrieval mechanism:

- (I) Activation-based model (Lewis and Vasishth 2005)
- (II) Direct-access model (McElree 2000)

Models that assume a cue-based retrieval mechanism:

- (I) Activation-based model (Lewis and Vasishth 2005)
- (II) Direct-access model (McElree 2000)

Similar but not quite the same

based on ACT-R (Anderson and Reder 1999)

based on ACT-R (Anderson and Reder 1999)

Words in memory have an activation level, which

- depends on the match with the retrieval cues
- is noisy

The highest activation determines

- which word is retrieved
- the retrieval time ($\propto e^{-A}$)

The retrieval of a word in memory

- depends on the match with the retrieval cues
- can be repaired in case of error

- Access time is unaffected by the degree of match (i.e. direct access)
- Final processing time may be inflated by reanalyzed errors

(I) Activation-based model

match ightarrow activation ightarrow accuracy & RT

(II) Direct-access model match \rightarrow probability \rightarrow accuracy \rightarrow RT

Computational implementation

Benefits

- The general advantages of Bayesian inference: credible intervals, and flexibility in fitting complex non-linear models.
- A hierarchical structure means that both between- and within-group variances into account and pool information via shrinkage.

Nicenboim and Vasishth (2018) "Models of Retrieval in Sentence Comprehension: A computational evaluation using Bayesian hierarchical modeling"

- Implementation as Bayesian hierarchical models in Stan
- Data (from Nicenboim et al. 2018):
 - reading times at the verb
 - responses (multiple choice)
- Model comparison:
 - posterior predictive checking
 - k-fold cross validation

The activation-based model is a race model

The activation-based model is a race model

The activation-based model is a race model

The activation-based model is a race model

The activation-based model is a race model

$$Latency \propto e^{-\arg\max_{c}(A_{c})}$$
(1)
$$t_{c} \propto e^{-A_{c}}$$
(2)

where $A_c \sim Normal(\mu_c, \sigma)$

$$Latency \propto e^{-\arg\max_{c}(A_{c})}$$
(1)
$$t_{c} \propto e^{-A_{c}}$$
(2)

where
$$A_c \sim Normal(\mu_c, \sigma)$$

$$t_{\rm other} > t_{\rm selected}$$
 (5)

obs. time peripherial proc.

$$\widetilde{RT_{l,i,j}} \sim \widetilde{\psi_i} + LogNormal(b - \alpha_{l,i,j,selected}, \sigma)$$
 (6)

$$Pr[t_{other} > t_{selected}] = \int_{t_{selected}}^{\infty} LogNormal(t_{other}|b - \alpha_{other}, \sigma) \cdot dt_{other}$$

$$(7)$$

$$= 1 - \Phi\left(\frac{log(t_{selected}) - (b - \alpha_{other})}{\sigma}\right) (8)$$

The direct-access model is a **mixture model** Trial 1

Count

The direct-access model is a **mixture model** Trial 1

Count

The direct-access model is a **mixture model** Trial 1

Count

The direct-access model is a **mixture model** Trial 2

Count

The direct-access model is a **mixture model** Trial 2

Count

The direct-access model is a **mixture model** Trial 2

Count

The direct-access model is a **mixture model** Trial 3

Count

The direct-access model is a **mixture model** Trial 3

Count

The direct-access model is a **mixture model** Trial 3

Count

The direct-access model is a **mixture model** Trial 4

Count

The direct-access model is a **mixture model** Trial 4

Count

The direct-access model is a **mixture model** Trial 4

Count

The direct-access model is a **mixture model** Trial 5

Count

The direct-access model is a **mixture model** Trial 5

Count

The direct-access model is a **mixture model** Trial 5

Count

The direct-access model is a mixture model

$$P_{r}(Target) = \theta_{Target} + (1 - \theta_{Target}) \cdot \theta_{b}$$
(9)
$$P_{r}(Competitor_{c}) = \theta_{Competitor_{c}} \cdot (1 - \theta_{b})$$
(10)

$$P_{r}(Target) = \theta_{Target} + (1 - \theta_{Target}) \cdot \theta_{b}$$
(9)

$$P_r(Competitor_c) = \theta_{Competitor_c} \cdot (1 - \theta_b)$$
(10)

$$RT_{Target,l,ij} \sim \psi_i + \begin{cases} LogNormal(t_{da,i,j} + \gamma_{i,j}, \sigma) & , \text{ if the first} \\ LogNormal(t_{da,i,j} + t_{b,i,j} + \gamma_{i,j}, \sigma) & , \text{ otherwise} \\ \end{cases}$$
(11)

$$RT_{Competitor_{c},l,i,j} \sim \psi_{i} + LogNormal(t_{da,i,j} + \gamma_{i,j}, \sigma)$$
 (12)

- reading times at the verb \rightarrow retrieval times
- responses (multiple choice) \rightarrow word retrieved from memory at the verb

Model comparison

Model fit - Posterior predictive checks

(I) Activation-based model

Model fit - Posterior predictive checks

(II) Direct-access model

Predictive accuracy - Model comparison with K-fold-CV

Discussion

- Activation-based model fails to account for some aspects of the data.
- Direct-access model fits and predicts better the data.

- Activation-based model fails to account for some aspects of the data.
- Direct-access model fits and predicts better the data.
- This has implication for the relationship between sentence processing and our memory system.

- Activation-based model fails to account for some aspects of the data.
- Direct-access model fits and predicts better the data.
- This has implication for the relationship between sentence processing and our memory system.
- We can understand where the activation-based model fails, and improve it (and we did that too...).

Is the direct access to items in memory the only possibility?

Possible improvements to the activation-based model

- add reanalysis (mixture in correct responses) to the activation-based model
- other models that assume the sequential sampling of evidence as a model of retrieval
- activation-based model with different variances (Brown and Heathcote 2008; Gillund and Shiffrin 1984)

Possible improvements to the activation-based model

- add reanalysis (mixture in correct responses) to the activation-based model
- other models that assume the sequential sampling of evidence as a model of retrieval
- activation-based model with different variances (Brown and Heathcote 2008; Gillund and Shiffrin 1984)
- item with highest total activation is retrieved, and its retrieval time depends on its total activation ($\propto e^{-A}$)
- the noise in the activation depends on the match

More model comparison

Model fit - Posterior predictive checks

(III) Activation-based model with different variances

Cognitive models of memory processes in sentence comprehension @@bruno_nicenboim 26

Predictive accuracy - Model comparison with K-fold-CV

Cognitive models of memory processes in sentence comprehension **#@**bruno_nicenboim 27

Discussion

Both models are similarly good (or bad)

- The posterior predictive checks show a tighter fit for the direct access model (the ×'s are pretty much in the middle)
- The estimates of predictive accuracy are very similar
- The direct access model may be overfitting more, while the activation model with different variance may not be flexible enough

Conclusions

- Comparison of the activation-based model and the direct access model
- Incorrect retrievals were fast, which is incompatible with the (default) activation-based model
- The direct access model provides a better fit than the default activation-based model
- Race models (sequential sampling framework) could still be useful to explain retrieval
- A lognormal race with a different variances fits the data as well as the direct access model

Appendix

Nicenboim et al. (2018) - Stimuli

(1) a. High Interference

DerWohltäter,derdenThe.sg.nomphilanthropist,who.sg.nomthe.sg.accAssistentendesDirektorsbegrüßt hatte,saßassistant(of)the.sg.gendirectorgreetedhad.sg,sat.sgspäter imSpendenausschuss.laterinthe donations committee.

'The philanthropist, who had greeted the assistant of the director, sat later in the donations committee.'

b. Low Interference

DerWohltäter,derdieThe.sg.nomphilanthropist,who.sg.nomthe.pl.accAssistentenderDirektorenbegrüßt hatte,saßassistants(of)the.pl.gendirectorsgreetedhad.sg,sat.sgspäter imSpendenausschuss.laterinthe donations committee.

'The philanthropist, who had greeted the assistants of the Cognitive models afræctors, saggatesin the donations committee."@bruno_nicenboim

- (2) Wer hatte jemanden begrüßt?Who had greeted someone?
 - a. der/die Wohltäter
 c. der/die Direktor/en
 the philanthropist(s)
 the director(s)
 (correct)
 - b. der/die Assistent/en
 d. Ich weiß es nicht
 the assistant(s)
 I don't know