Sequential Monte Carlo smoother for partially observed diffusion processes

M.P. Etienne, P. Gloaguen, S. Le Corff

Masterclass in Bayesian Statistics at CIRM

1 Context and objectives

- 2 Particle filtering
- 3 Particle smoothing
- 4 Particle smoother for PODs

Motivating example: Estimating fish biomass

What we know

Scientific observations Y

What we want

Population biomass X

Biomass dynamic models observed through abundance indices

Motivating example: Model based approach

$$dX_{t} = \kappa X_{t} \left(1 - \frac{X_{t}}{\gamma} \right) dt + \sigma X_{t} dW_{t}, \quad X_{0} \sim \chi_{0} \text{ s.t. } X_{0} \stackrel{a.s}{>} 0 \quad \text{Diffusion process}$$
$$Y_{k} = cX_{t_{k}} \exp(\varepsilon_{k}), \quad \varepsilon_{k} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma_{obs}^{2}), \quad k = 0, \dots, n \qquad \text{Observations}$$

Population dynamics model

- X_t : True biomass at year t;
- Y_k : Abundance index at year t_k ;
- γ: Carrying capacity;
- κ : Recruitement rate;
- σ, σ_{obs} : Innovation and error parameters;
- *c*: Detectability;
- t_0, \ldots, t_n are the (n+1) observation times.

Motivating example: Model based approach

$$dX_{t} = \kappa X_{t} \left(1 - \frac{X_{t}}{\gamma} \right) dt + \sigma X_{t} dW_{t}, \quad X_{0} \sim \chi_{0} \text{ s.t. } X_{0} \stackrel{a.s}{>} 0 \quad \text{Diffusion process}$$
$$Y_{k} = cX_{t_{k}} \exp(\varepsilon_{k}), \quad \varepsilon_{k} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma_{obs}^{2}), \quad k = 0, \dots, n \qquad \text{Observations}$$

Time

Motivating example

Population dynamics model

$$\begin{split} \mathsf{d}X_t &= \kappa X_t \left(1 - \frac{X_t}{\gamma} \right) \mathsf{d}t + \sigma X_t \mathsf{d}W_t, \quad X_0 = x_0 > 0, \qquad \text{Markov process} \\ Y_k &= c X_k \exp(\varepsilon_k), \quad \varepsilon_k \stackrel{i.i.d.}{\sim} \mathcal{N}(\mu_{obs}, \sigma_{obs}^2), \qquad \text{Observations} \end{split}$$

Context: General State Space Model

$$dX_{t} = \kappa X_{t} \left(1 - \frac{X_{t}}{\gamma} \right) dt + \sigma X_{t} dW_{t}, \quad X_{0} \sim \chi_{0} \text{ s.t. } X_{0} \stackrel{a.s}{>} 0 \quad \text{Diffusion process}$$
$$Y_{k} = cX_{t_{k}} \exp(\varepsilon_{k}), \quad \varepsilon_{k} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma_{obs}^{2}), \qquad \qquad \text{Observations}$$

Context: General State Space Model

$$\begin{split} \mathsf{d} X_t &= \alpha^\theta(X_t) \mathsf{d} t + \beta^\theta(X_t) \mathsf{d} W_t, \quad X_0 \sim \chi_0^\theta \qquad & \text{Diffusion process} \\ Y_k &\sim g_k^\theta(X_{t_k}, \theta) & \text{Observations} \end{split}$$

Partially observed diffusion process

- $(X_t)_{t\geq 0}$ is solution to a stochastic differential equation (SDE);
- The solution to a SDE is a continuous time Markov process;
- $(Y_k)_{k=0,...,n}$ are independent conditionally to $(X_t)_{t\geq 0}$;
- The model therefore defines a specific Hidden Markov Model;
- Model known as partially observed diffusion process;

Context: General State Space Model

- Observations $(Y_k)_{k=0,...,n}$ at times $t_0 = 0, t_1 = t_0 + \Delta_0, ..., t_n = t_{n-1} + \Delta_{n-1}$.
- Unobserved Markov process $(X_t)_{0 \le t \le t_n}$ (notation: $X_k := X_{t_k}$);
- $X_t \in \mathbb{R}^d$, $Y_k \in \mathbb{R}^{d'}$;
- A set of parameters θ ;

$$\begin{split} X_0 &\sim \chi_0^\theta(x_0) & \text{Initial density} \\ X_k | \left(X_{k-1} = x_{k-1} \right) &\sim q^\theta(x_{k-1}, x_k, \Delta_{k-1}) & \text{Transition density} \\ Y_k | \left(X_k = x_k \right) &\sim g^\theta(x_k, y_k) := g_k^\theta(x_k) & \text{Observation density} \end{split}$$

Context: Partially observed diffusion processes

 $(X_t)_{0 \le t \le t_n}$ is supposed to be solution to the stochastic differential equation:

$$dX_t = \alpha^{\theta}(X_t)dt + \beta^{\theta}(X_t)dW_t, \quad X_0 \sim \chi_0^{\theta}(x_0)$$
(1)

Particularity of SDE based models

In general,

- the transition density $q^{\theta}(\cdot)$ is not explicit except in very specific cases (even when θ is known).
- Exact simulation is not straightforward (except in the same specific cases).

SDE based models in practice

In general,

- Approximation of $q^{\theta}(\cdot)$ (Hermite expansion for example)
- Simulation using EA algorithm (Beskos et al., 2006), or moslty approximated numerical scheme (Euler, Ozaki, ...).

Objective

Examples of application

■ Parameter estimation : E step of EM algorithm:

$$\mathcal{Q}(\theta_0,\theta) = \mathbb{E}[\ell(\theta; X_{0:n}, Y_{0:n})|Y_{0:n}; \theta_0]$$

■ Path reconstruction, target tracking:

 $\mathbb{E}[X_k|Y_{0:n};\theta]$

General goal

Computing:

 $\mathbb{E}\left[H_n(X_{0:n})|Y_{0:n};\theta\right]$

Goal

Compute

$\mathbb{E}\left[H_n(X_{0:n})|Y_{0:n};\theta\right]$

- Filtering distribution, the law of $X_k | Y_{0:k}$ (observations until time k)
 - Expectation: $\phi_k[f] = \mathbb{E}[f(X_k)|Y_{0:k}].$
- Smoothing distribution, the law of $X_{k:\ell}|Y_{0:n}$ (all observations)
 - Expectation: $\phi_{k:\ell|n}[f] = \mathbb{E}[f(X_{k:\ell})|Y_{0:n}].$

Filtering distribution, law of $X_2 | Y_{0:2}$

Filtering distribution, law of $X_2 | Y_{0:2}$

Filtering distribution, law of $X_2 | Y_{0:2}$

Smoothing distribution, law of $X_2 | Y_{0:4}$, takes all observations into account!

Smoothing distribution, law of $X_2 | Y_{0:4}$, takes all observations into account!

Definitions and notations

Goal

Compute

$$\mathbb{E}\left[H_n(X_{0:n})|Y_{0:n};\theta\right] = \phi_{0:n|n}[H_n]$$

- Filtering distribution, the law of $X_k | Y_{0:k}$ (observations until time k)
 - Expectation: $\phi_k[f] = \mathbb{E}[f(X_k)|Y_{0:k}].$
- Smoothing distribution, the law of $X_{k:\ell}|Y_{0:n}$ (all observations)
 - Expectation: $\phi_{k:\ell|n}[f] = \mathbb{E}[f(X_{k:\ell})|Y_{0:n}].$

Unknown in general!

 \rightarrow Approximation using **Sequential Monte Carlo** methods: Approximation of ϕ_k (resp. $\phi_{k:\ell|n}^N$) by ϕ_k^N (resp. $\phi_{k:\ell|n}^N$) such that for all function f:

> $\phi_{k}^{N}[f] \approx \phi_{k}[f]$ Resp. $\phi_{k:\ell|n}^{N}[f] \approx \phi_{k:\ell|n}[f]$

Previous work and contribution

Goal

Compute

$$\mathbb{E}\left[H_n(X_{0:n})|Y_{0:n};\theta\right] = \phi_{0:n|n}[H_n]$$

SSM with known transition density $q^{\theta}(x_t, x_{t+\Delta}, \Delta)$

- First particle filter: Gordon et al. (1993);
- Backward particle smoother with linear complexity: Douc et al. (2011);
- Online* particle smoother: Olsson et al. (2017).

Partially observed diffusion processes (unknown $q^{\theta}(x_t, x_{t+\Delta}, \Delta)$)

- First unbiased particle filter: Fearnhead et al. (2008);
- Biased smoother: Olsson and Strojby (2011);
- Online* unbiased smoother: Gloaguen et al. (2018).

* For functionals H_n s.t. $H_n(X_{0:n}) = \sum_{k=0}^{n-1} h_k(X_k, X_{k+1})$.

1 Context and objectives

2 Particle filtering

- 3 Particle smoothing
- 4 Particle smoother for PODs

Particle filtering for SSM

Idea

For a function f, approximating the expectation $\phi_k[f] = \mathbb{E}[f(X_k)|Y_{0:k}]$ by a finite sum ϕ_k^N :

$$\phi_k^N[f] = \sum_{i=1}^N \omega_k^i f(\xi_k^i)$$

where

(ξⁱ_k)_{i=1,...,N} is a finite set of N particles;
 (ωⁱ_k)_{i=1,...,N} are the respective importance weights of the N particles;
 ∑^N_{i=1} ωⁱ_k = 1

Asymptotic property

$$\phi_k^N[f] \xrightarrow[N \to \infty]{} \phi_k[f]$$

Particle filtering for SSM

Filtering problem: Approximating the distribution of $X_k|Y_{0:k}$ **First:** Let's suppose that $q^{\theta}(x, y, \Delta)$ can be computed (for a given θ).

Approximation of the law of $X_0|Y_0$.

- **True distribution** $\pi_0^{\theta}(\cdot)$, law of $X_0|Y_0$;
- **Proposition distribution** $p_0^{\theta}(\cdot)$

Choosing distribution

Biomass value at k = 0

Approximation of the law of $X_0|Y_0$.

- **True distribution** $\pi_0^{\theta}(\cdot)$, law of $X_0|Y_0$;
- **Proposition distribution** $p_0^{\theta}(\cdot)$

Sampling

Approximation of the law of $X_0|Y_0$.

- **True distribution** $\pi_0^{\theta}(\cdot)$, law of $X_0|Y_0$;
- **Proposition distribution** $p_0^{\theta}(\cdot)$

Weighting

Compute (and normalize)

 $\omega_0^i = \frac{\pi_0^\theta(\xi_0^i|Y_0)}{p_0^\theta(\xi_0^i)}$

Approximation of the law of $X_0|Y_0$.

- **True distribution** $\pi_0^{\theta}(\cdot)$, law of $X_0|Y_0$;
- **Proposition distribution** $p_0^{\theta}(\cdot)$

Weighting

Compute (and normalize)

 $\omega_0^i = \frac{g_0^\theta(\xi_0^i)\chi_0^\theta(\xi_0^i)}{p_0^\theta(\xi_0^i)}$

Approximation of the law of $X_0|Y_0$.

- **True distribution** $\pi_0^{\theta}(\cdot)$, law of $X_0|Y_0$;
- **Proposition distribution** $p_0^{\theta}(\cdot)$

Weighting

Approximating the law of $X_k | \mathbf{Y}_{0:k}, k > 0$

Particle based method

- Propagate simulated particles at time 0 to create new particles at time 1;
- Compute importance weights for these new particles;
- Propagate these new particles at time 2, compute weights and so on...

Approximating the law $X_k | \mathbf{Y}_{0:k}$.

Requires as proposition law a propagation distribution $p^{\theta}(x, \cdot)$.

Approximating the law $X_k | \mathbf{Y}_{0:k}$.

Requires as proposition law a propagation distribution $p^{\theta}(x, \cdot)$.

Approximating the law $X_k | \mathbf{Y}_{0:k}$.

• Requires as proposition law a propagation distribution $p^{\theta}(x, \cdot)$.

Approximating the law $X_k | \mathbf{Y}_{0:k}$.

Requires as proposition law a propagation distribution $p^{\theta}(x, \cdot)$.

Approximating the law $X_k | \mathbf{Y}_{0:k}$.

Particle value

Requires as proposition law a propagation distribution $p^{\theta}(x, \cdot)$.

And so on...

Selection

Approximating the law $X_k | \mathbf{Y}_{0:k}$.

Particle value

Requires as proposition law a propagation distribution $p^{\theta}(x, \cdot)$.

And so on...

Propagation

Approximating the law $X_k | \mathbf{Y}_{0:k}$.

• Requires as proposition law a propagation distribution $p^{\theta}(x, \cdot)$.

And so on...

Weighting

Particle filtering for POD processes

Problem

- In POD processes, $q^{\theta}(x, y, \Delta)$ can't be computed (even when θ is known);
- This quantity is crucial for weights computation.

General Poisson estimator, Fearnhead et al. (2008)

Under some assumptions, there exists an unbiased estimator $\hat{q}^{\theta}(x_k, x_{k+1}, \Delta_k, \zeta_k)$ such that

$$\hat{q}^{ heta}(\mathsf{x}_k,\mathsf{x}_{k+1},\Delta_k,\zeta_k)>0 ext{ and } \mathbb{E}[\hat{q}^{ heta}(\mathsf{x}_k,\mathsf{x}_{k+1},\Delta_k,\zeta_k)]=q^{ heta}(\mathsf{x}_k,\mathsf{x}_{k+1},\Delta_k)$$

 ζ_k is a random variable requiring simulation of constrained Brownian bridges.

New filtering weights

$$\omega_{k}^{i} = \frac{\mathbf{g}_{1}^{\theta}(\xi_{k}^{i})q^{\theta}(\xi_{k-1}^{l_{k}^{i}},\xi_{k}^{i},\Delta_{k-1})}{p^{\theta}(\xi_{k-1}^{l_{k-1}^{i}},\xi_{k}^{i},\Delta_{k-1})} \text{ is replaced by } \hat{\omega}_{k}^{i} = \frac{\mathbf{g}_{1}^{\theta}(\xi_{k}^{i})\hat{q}^{\theta}(\xi_{k-1}^{l_{k}^{i}},\xi_{k}^{i},\Delta_{k-1},\zeta_{k-1})}{p^{\theta}(\xi_{k-1}^{l_{k-1}^{i}},\xi_{k}^{i},\Delta_{k-1})}$$

Particle filtering for SSM, back to our example

Particle filtering for SSM, back to our example

- 1 Context and objectives
- 2 Particle filtering
- 3 Particle smoothing
- 4 Particle smoother for PODs

Particle smoothing, naïve and direct approach

- Naïve approach
 - Run a PF until *n*;
 - Remember ancestors of each particle;

Particle smoothing, naïve and direct approach

Particle smoothing, the genealogy our example

Final particles genealogy

Early biomasses distributions are approximated with very few particles!

Particle smoothing, fixed lag technique

Used by Olsson and Strojby (2011), first (biased) smoother for PODs

SMC for SDEs

Idea: Reducing the variance by recreating diversity

Time step k

Idea: Reducing the variance by recreating diversity

- Backward simulation
 - Run a PF until n;
 - For a final particle ξⁱ_n, pick a "probable" direct ancestor;

Time step k

Idea: Reducing the variance by recreating diversity

- Backward simulation
 - Run a PF until n;
 - For a final particle ξⁱ_n, pick a "probable" direct ancestor;
 - Repeat until reaching an initial particle;

Idea: Reducing the variance by recreating diversity

- Backward simulation
 - Run a PF until n;
 - For a final particle ξⁱ_n, pick a "probable" direct ancestor;
 - Repeat until reaching an initial particle;
 - Do it for each final point;
 - Approximate \$\phi_{k|n}\$ with particles obtained at time k, having new weights 1/N;

Idea: Reducing the variance by recreating diversity

- Backward simulation
 - Run a PF until n;
 - For a final particle ξⁱ_n, pick a "probable" direct ancestor;
 - Repeat until reaching an initial particle;
 - Do it for each final point;
 - Approximate \$\phi_k|n\$ with particles obtained at time k, having new weights 1/N;
 - Possibility of having joint distributions.

Backward sampling on our example

Backward smoothing trajectories

How can it be done when $q^{\theta}(x, y, \Delta)$ can't be computed?

- 1 Context and objectives
- 2 Particle filtering
- 3 Particle smoothing
- 4 Particle smoother for PODs

Backward sampling mechanism

Sampling an ancestor of ξ_k^i .

Backward sampling mechanism

Sampling an ancestor of ξ_k^i . Draw ancestor with prob. $N_{k-1}^{j,i}$, i.e.: "The probability of ξ_{k-1}^j being the ancestor of ξ_k^i under the true dynamics".

How credible is each ξ_{k-1}^{j} as the parent of ξ_{k}^{i} ?

$$\begin{split} \Lambda^{j,i}_{k-1} \propto & \stackrel{\text{Ancestor's filtering weight}}{\hat{\omega}^j_{k-1}} \\ \times & q^{\theta}(\xi^j_{k-1},\xi^j_k,\Delta_{k-1}) \end{split}$$

Markov transition density

Sampling ancestor with weights $\Lambda_{k-1}^{j,i}$ in the POD context

Main problem

Backward smoothing requires to sample an ancestor (value of j) with weights:

$$\boldsymbol{\Lambda}_{k-1}^{j,i} = \frac{\hat{\omega}_{k-1}^{j} \boldsymbol{q}^{\theta}(\boldsymbol{\xi}_{k-1}^{i},\boldsymbol{\xi}_{k}^{i},\boldsymbol{\Delta}_{k-1})}{\sum_{\ell=1}^{N} \hat{\omega}_{k-1}^{\ell} \boldsymbol{q}^{\theta}(\boldsymbol{\xi}_{k-1}^{\ell},\boldsymbol{\xi}_{k}^{i},\boldsymbol{\Delta}_{k-1})}$$

The probability of ξ_{k-1}^{j} being the ancestor of ξ_{k}^{i} under the true dynamics

The solution? (When q^{θ} can't be computed)

Use the unbiased estimator $\hat{q}^{\theta}(\xi_{k-1}^{j},\xi_{k}^{i},\Delta_{k-1},\zeta_{i})$ as a substitute:

$$\hat{\Lambda}_{k-1}^{j,i} = \frac{\hat{\omega}_{k-1}^{j}\hat{q}^{\theta}(\xi_{k-1}^{j},\xi_{k}^{i},\Delta_{k-1},\zeta_{i})}{\sum_{\ell=1}^{N}\hat{\omega}_{k-1}^{\ell}\hat{q}^{\theta}(\xi_{k-1}^{j},\xi_{k}^{i},\Delta_{k-1},\zeta_{i})}$$

But $\mathbb{E}(\hat{\Lambda}_{k-1}^{j,i}) \neq \Lambda_{k-1}^{j,i}$, because of the ratio.

Sampling with weights $\Lambda_{k-1}^{j,i}$ in the POD context

$$\Lambda_{k-1}^{j,i} = \frac{\hat{\omega}_{k-1}^{j} q^{\theta}(\xi_{k-1}^{j},\xi_{k}^{i},\Delta_{k-1})}{\sum_{\ell=1}^{N} \hat{\omega}_{k-1}^{\ell} q^{\theta}(\xi_{k-1}^{\ell},\xi_{k}^{i},\Delta_{k-1})}$$

Lemma Gloaguen et al. (2018)

Assumption: $\exists \hat{\sigma}_{k,+}$ such that $\forall x, y, 0 < \hat{q}^{\theta}(x, y, \Delta_k, \zeta_k) < \hat{\sigma}_{k,+}$ a.s. Consider the random variable \widehat{J} defined as follow:

• Sample
$$J_{cand} \in 1, ..., N$$
 with probabilities $\propto \{\hat{\omega}_{k-1}^i\}_{i=1,...,N};$
• Sample ζ_{k-1} using the GPE of Fearnhead et al. (2008);
• Sample $U \sim \mathcal{U}[0, 1];$
if $U \leq \frac{\hat{q}^{\theta}(\xi_{k-1}^{land}, \xi_{k}^i, \Delta_{k-1}, \zeta_{k-1})}{\hat{\sigma}_{k-1,+}}$ then
Set $\widehat{J} = J_{cand};$
else
Try Again;
end if
Then.

 $\mathbb{P}(\widehat{\mathsf{J}}=i)=\Lambda^{j,i}_{l}$

Smoothing for POD processes

Proposition: Asymptotic unbiased property Gloaguen et al. (2018) Let denote $\hat{\phi}_{0:n|n}[H_n]$ our estimator of $\phi_{0:n|n}[H_n] := \mathbb{E}[H_n(X_{0:n})]$:

$$\mathbb{P}\left(\left|\hat{\phi}_{0:n|n}[H_n] - \phi_{0:n|n}[H_n]\right| \ge \varepsilon\right) \le b_n \exp\left(-c_n N \varepsilon^2\right)$$

Comments

- The acceptance/rejection comes (for usual SSM) from Douc et al. (2011);
- Olsson et al. (2017) have proposed the PaRIS algorithm : an *online* smoother (without backward pass) for additive functionals, i.e;

$$\mathbb{E}[H_n(X_{0:n})|Y_{0:n};\theta] = \sum_{k=1}^{n-1} \mathbb{E}[h_k(X_k, X_{k+1})|Y_{0:n};\theta]$$

The same trick provides an *online* version, resulting in the Generalized Random PaRIS alogrithm (GRand PaRIS);

GRand PaRIS is a hot topic in the French community

GRand PaRIS is a hot topic in the French community

Application for parameter estimation

Population dynamics model

$$dX_t = \kappa X_t \left(1 - \frac{X_t}{\gamma} \right) dt + \sigma X_t dW_t, \quad X_0 = x_0 > 0, \qquad \text{Markov process}$$
$$Y_k = q X_k \exp(\varepsilon_k), \quad \varepsilon_k \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma_{obs}^2), \qquad \text{Observations}$$

Objective: Approximation of the E step of an EM algorithm:

$$\mathcal{Q}(\theta_0, \theta) = \mathbb{E}[\overbrace{\ell(\theta; X_{0:n}, Y_{0:n})}^{H_n(X_{0:n})} | Y_{0:n}; \theta_0]$$
$$H_n(X_{0:n}) = \sum_{k=0}^{n-1} \log \left(q^{\theta}(X_k, X_{k+1}, \Delta_k) g^{\theta}_{k+1}(X_{k+1}) \right)$$

Comparison with the fixed lag technique

Comparing our estimator with the fixed lag of Olsson and Strojby (2011)

Remark on the range of applications

Particle smoothers for POD:

 Olsson and Strojby (2011) and Gloaguen et al. (2018) both rely on Fearnhead et al. (2008) unbiased particle filtering (but this is a very active field of research);

Assumptions for the use of Fearnhead et al. (2008)

The hidden process satisfies $dX_t = \alpha^{\theta}(X_t)dt + \beta^{\theta}(X_t)dW_t$, if:

Lamperti transform \exists a 1-1 function η^{θ} s.t., for $\tilde{X}_s := \eta^{\theta}(X_s)$ satisfies

$$d ilde{X}_s = ilde{lpha}^ heta(ilde{X}_s) \mathsf{d}t + dW_t$$

- **Detential assumption** $\exists A^{\theta} : \mathbb{R} \mapsto \mathbb{R} \text{ s.t. } \tilde{\alpha}^{\theta}(x) = \nabla A^{\theta}(x);$
- Boundary assumption

$$\lim_{|x\|\to\infty} \parallel \tilde{\alpha}^{\theta}(x) \parallel^2 + \Delta A^{\theta}(x) < \infty \text{ and } \exists \ L \text{ s.t. } L \leq \parallel \tilde{\alpha}^{\theta}(x) \parallel^2 + \Delta A^{\theta}(x)$$

• Then a positive, a.s. bounded, and unbiased estimate of q^{θ} can be obtained;

Conclusions and perspectives

Conclusions

- New online smoother for SDE based SSMs;
- Mixes the tricks of Fearnhead et al. (2008), Douc et al. (2011) and Olsson et al. (2017);
- Asymptotically unbiased estimation, with at at best complexity of nN (at worse nN^2);

SMC for SDEs

- Fit to the classical range of models for exact simulation algorithms of diffusion;
- Extending the range of SDE models? (Fearnhead et al., 2018).

References

- Beskos, A., Papaspiliopoulos, O., Roberts, G., and Fearnhead, P. (2006). Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes (with discusion). J. Roy. Statist. Soc. Ser. B, 68(3):333–382.
- Douc, R., Garivier, A., Moulines, E., and Olsson, J. (2011). Sequential Monte Carlo smoothing for general state space hidden Markov models. Ann. Appl. Probab., 21(6):2109–2145.
- Fearnhead, P., Latuszynski, K., Roberts, G. O., and Sermaidis, G. (2018). Continious-time importance sampling: Monte carlo methods which avoid time-discretisation error. arXiv preprint arXiv:1712.06201.
- Fearnhead, P., Papaspiliopoulos, O., and Roberts, G. (2008). Particle filters for partially observed diffusions. J. Roy. Statist. Soc. Ser. B, 70(4):755-777.
- Gloaguen, P., Étienne, M.-P., and Le Corff, S. (2018). Online sequential monte carlo smoother for partially observed diffusion processes. EURASIP Journal on Advances in Signal Processing, 2018(1):9.
- Gordon, N. J., Salmond, D. J., and Smith, A. F. (1993). Novel approach to nonlinear/non-gaussian bayesian state estimation. In IEE Proceedings F (Radar and Signal Processing), volume 140-2, pages 107–113. IET.
- Olsson, J. and Strojby, J. (2011). Particle-based likelihood inference in partially observed diffusion processes using generalised Poisson estimators. Electron. J. Statist., 5:1090–1122.
- Olsson, J., Westerborn, J., et al. (2017). Efficient particle-based online smoothing in general hidden markov models: the PaRIS algorithm. Bernoulli, 23(3):1951–1996.

Proof of lemma

$$\mathbb{P}\left(\mathbf{Y} = I | U \leq \frac{\hat{q}_k(\xi_k^{\mathbf{Y}}, \xi_{k+1}, \zeta)}{\sigma_+}\right) = \frac{\mathbb{P}\left(U \leq \frac{\hat{q}_k(\xi_k^{\mathbf{Y}}, \xi_{k+1}, \zeta)}{\sigma_+} | \mathbf{Y} = I\right) \mathbb{P}(\mathbf{Y} = I)}{\mathbb{P}\left(U \leq \frac{\hat{q}_k(\xi_k^{\mathbf{Y}}, \xi_{k+1}, \zeta)}{\sigma_+}\right)}$$
$$= \frac{\mathbb{P}\left(U \leq \frac{\hat{q}_k(\xi_k^{\mathbf{Y}}, \xi_{k+1}, \zeta)}{\sigma_+}\right) \omega_k^{\mathbf{I}}}{\mathbb{P}\left(U \leq \frac{\hat{q}_k(\xi_k^{\mathbf{Y}}, \xi_{k+1}, \zeta)}{\sigma_+}\right)}$$

We now note that

$$\begin{split} \mathbb{P}\left(U \leq \frac{\hat{q}_k(\xi_k^{\vee}, \xi_{k+1}, \zeta)}{\sigma_+}\right) &= \mathbb{E}_{P\zeta}\left[\mathbb{E}\left[\mathbb{E}_{PY}\left[\mathbb{E}\left[\mathbb{P}\left(U \leq \frac{\hat{q}_k(\xi_k^{\vee}, \xi_{k+1}, \zeta)}{\sigma_+}\right) | Y\right]\right] | \zeta\right]\right] \\ &= \mathbb{E}_{P\zeta}\left[\sum_{l=1}^N w_k^l \frac{\hat{q}_k(\xi_k^{\prime}, \xi_{k+1}, \zeta)}{\sigma_+}\right] \quad (\text{As } \frac{\hat{q}_k(\xi_k^{\vee}, \xi_{k+1}, \zeta)}{\sigma_+} \leq 1) \\ &= \frac{1}{\sigma_+} \sum_{l=1}^N w_k^l q_k(\xi_k^{\prime}, \xi_{k+1}, \zeta) \end{split}$$

In the same way, we have:

$$\mathbb{P}\left(U \leq \frac{\hat{q}_k(\xi_k^l, \xi_{k+1}, \zeta)}{\sigma_+}\right) = \frac{1}{\sigma_+} q_k(\xi_k^l, \xi_{k+1}, \zeta)$$

Which gives overall the wanted result

$$\mathbb{P}\left(Y = l \mid U \leq \frac{\hat{q}_k(\xi_k^Y, \xi_{k+1}, \zeta)}{\sigma_+}\right) = \frac{\omega_k^l q_k(\xi_k^l, \xi_{k+1}, \zeta)}{\sum_{l=1}^N w_k^l q_k(\xi_k^l, \xi_{k+1}, \zeta)} = p_X(l)$$