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Motivating example: Estimating fish biomass

What we know What we want

Scientific observations Y Population biomass X

Biomass dynamic models observed through abundance indices
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Motivating example: Model based approach

dXt = κXt

(
1− Xt

γ

)
dt + σXtdWt , X0 ∼ χ0 s.t. X0

a.s
> 0 Diffusion process

Yk = cXtk exp(εk), εk
i.i.d.∼ N (0, σ2

obs), k = 0, . . . , n Observations

Population dynamics model

Xt : True biomass at year t;

Yk : Abundance index at year tk ;

γ: Carrying capacity;

κ: Recruitement rate;

σ, σobs: Innovation and error parameters;

c : Detectability;

t0, . . . , tn are the (n + 1) observation times.



Motivating example: Model based approach

dXt = κXt

(
1− Xt

γ

)
dt + σXtdWt , X0 ∼ χ0 s.t. X0

a.s
> 0 Diffusion process

Yk = cXtk exp(εk), εk
i.i.d.∼ N (0, σ2

obs), k = 0, . . . , n Observations

Classical Inference problems

1 From abundance index, estimate the true
biomass.

2 From abundance index, estimate model
parameters



Motivating example

Population dynamics model

dXt = κXt

(
1− Xt

γ

)
dt + σXtdWt , X0 = x0 > 0, Markov process

Yk = cXk exp(εk), εk
i.i.d.∼ N (µobs , σ

2
obs), Observations



Context: General State Space Model

dXt = κXt

(
1− Xt

γ

)
dt + σXtdWt , X0 ∼ χ0 s.t. X0

a.s
> 0 Diffusion process

Yk = cXtk exp(εk), εk
i.i.d.∼ N (0, σ2

obs), Observations
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Context: General State Space Model

dXt = αθ(Xt)dt + βθ(Xt)dWt , X0 ∼ χθ0 Diffusion process

Yk ∼ gθk (Xtk , θ) Observations

Partially observed diffusion process

(Xt)t≥0 is solution to a stochastic differential equation (SDE);

The solution to a SDE is a continuous time Markov process;

(Yk)k=0,...,n are independent conditionally to (Xt)t≥0;

The model therefore defines a specific Hidden Markov Model;

Model known as partially observed diffusion process;
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Context: General State Space Model

χθ0 (x0) v

Y0

X0

gθ0 (x0)

Y1

X1

gθ1 (x1)

Y2

X2

gθ2 (x2)

qθ(x0, x1,∆0) qθ(x1, x2,∆1)
Markov Process

Observations

Observations (Yk)k=0,...,n at times t0 = 0, t1 = t0 + ∆0, ..., tn = tn−1 + ∆n−1.

Unobserved Markov process (Xt)0≤t≤tn (notation: Xk := Xtk );

Xt ∈ Rd , Yk ∈ Rd′ ;

A set of parameters θ;

X0 ∼ χθ0(x0) Initial density

Xk | (Xk−1 = xk−1) ∼ qθ(xk−1, xk ,∆k−1) Transition density

Yk | (Xk = xk) ∼ gθ(xk , yk) := gθk (xk) Observation density



Context: Partially observed diffusion processes

χθ0 (x0) v

Y0

X0

gθ0 (x0)

Y1

X1

gθ1 (x1)

Y2

X2

gθ2 (x2)

qθ(x0, x1,∆0) qθ(x1, x2,∆1)
Markov Process

Observations

(Xt)0≤t≤tn is supposed to be solution to the stochastic differential equation:

dXt = αθ(Xt)dt + βθ(Xt)dWt , X0 ∼ χθ0(x0) (1)
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Context: Partially observed diffusion processes

Particularity of SDE based models

In general,

the transition density qθ(·) is not explicit except in very specific cases (even
when θ is known).

Exact simulation is not straightforward (except in the same specific cases).
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Context: Partially observed diffusion processes

SDE based models in practice

In general,

Approximation of qθ(·) (Hermite expansion for example)

Simulation using EA algorithm (Beskos et al., 2006), or moslty approximated
numerical scheme (Euler, Ozaki, . . . ).
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Objective

Examples of application

Parameter estimation : E step of EM algorithm:

Q(θ0, θ) = E[`(θ;X0:n,Y0:n)|Y0:n; θ0]

Path reconstruction, target tracking:

E[Xk |Y0:n; θ]

General goal

Computing:
E [Hn(X0:n)|Y0:n; θ]
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Definitions and notations

Goal
Compute

E [Hn(X0:n)|Y0:n; θ]

Filtering distribution, the law of Xk |Y0:k (observations until time k)

Expectation: φk [f ] = E [f (Xk)|Y0:k ].

Smoothing distribution, the law of Xk:`|Y0:n (all observations)

Expectation: φk:`|n[f ] = E [f (Xk:`)|Y0:n].
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Difference between filtering and smoothing, where is X2?

Filtering distribution, law of X2|Y0:2
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Smoothing distribution, law of X2|Y0:4, takes all observations into account!
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Definitions and notations

Goal
Compute

E [Hn(X0:n)|Y0:n; θ] = φ0:n|n[Hn]

Filtering distribution, the law of Xk |Y0:k (observations until time k)

Expectation: φk [f ] = E [f (Xk)|Y0:k ].

Smoothing distribution, the law of Xk:`|Y0:n (all observations)

Expectation: φk:`|n[f ] = E [f (Xk:`)|Y0:n].

Unknown in general!
→ Approximation using Sequential Monte Carlo methods:
Approximation of φk (resp. φk:`|n) by φNk (resp. φNk:`|n) such that for all function f :

φNk [f ] ≈ φk [f ]

Resp. φNk:`|n[f ] ≈ φk:`|n[f ]
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Previous work and contribution

Goal
Compute

E [Hn(X0:n)|Y0:n; θ] = φ0:n|n[Hn]

SSM with known transition density qθ(xt , xt+∆,∆)

First particle filter: Gordon et al. (1993);

Backward particle smoother with linear complexity: Douc et al. (2011);

Online∗ particle smoother: Olsson et al. (2017).

Partially observed diffusion processes (unknown qθ(xt , xt+∆,∆))

First unbiased particle filter: Fearnhead et al. (2008);

Biased smoother: Olsson and Strojby (2011);

Online∗ unbiased smoother: Gloaguen et al. (2018).

∗ For functionals Hn s.t. Hn(X0:n) =
∑n−1

k=0 hk(Xk ,Xk+1).
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Particle filtering for SSM

Idea

For a function f , approximating the expectation φk [f ] = E [f (Xk)|Y0:k ] by a finite
sum φNk :

φNk [f ] =
N∑
i=1

ωi
k f (ξik)

where

(ξik)i=1,...,N is a finite set of N particles;

(ωi
k)i=1,...,N are the respective importance weights of the N particles;∑N
i=1 ω

i
k = 1

Asymptotic property

φNk [f ] −→
N→∞

φk [f ]
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Particle filtering for SSM

χθ0 (x0) v

Y0

X0

gθ0 (x0)

Y1

X1

gθ1 (x1)

Y2

X2

gθ2 (x2)

qθ(x0, x1,∆0) qθ(x1, x2,∆1)
Markov Process

Observations

Filtering problem: Approximating the distribution of Xk |Y0:k

First: Let’s suppose that qθ(x , y ,∆) can be computed (for a given θ).
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Particle filtering for SSM: Initialization, k = 0
Approximation of the law of X0|Y0.

True distribution πθ0 (·), law of X0|Y0;
Proposition distribution pθ0 (·)

Choosing distribution

1 Sample ξ1
0 , . . . ξ

N
0

i.i.d.∼ pθ0 (·)
2 Compute (and normalize)

ωi
0 =

pθ0 (ξi0)

3 Approximate E[X0|Y0]:

E[X0|Y0] '
N∑
i=1

ωi
0f (ξi0)



Particle filtering for SSM: Initialization, k = 0
Approximation of the law of X0|Y0.

True distribution πθ0 (·), law of X0|Y0;
Proposition distribution pθ0 (·)

Sampling

1 Sample ξ1
0 , . . . ξ

N
0

i.i.d.∼ pθ0 (·)

2 Compute (and normalize)

ωi
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0f (ξi0)



Particle filtering for SSM: Initialization, k = 0
Approximation of the law of X0|Y0.

True distribution πθ0 (·), law of X0|Y0;
Proposition distribution pθ0 (·)

Weighting

1 Sample ξ1
0 , . . . ξ

N
0

i.i.d.∼ pθ0 (·)
2 Compute (and normalize)

ωi
0 =

πθ0 (ξi0|Y0)

pθ0 (ξi0)

3 Approximate E[X0|Y0]:

E[X0|Y0] '
N∑
i=1

ωi
0f (ξi0)
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Particle filtering for SSM, propagation to k > 0

Approximating the law of Xk |Y0:k, k > 0

Particle based method
Propagate simulated particles at time 0 to create new particles at time 1;

Compute importance weights for these new particles;

Propagate these new particles at time 2, compute weights and so on. . .



Particle filtering for SSM, propagation to k > 0

Approximating the law Xk |Y0:k.

Requires as proposition law a propagation distribution pθ(x , ·).

Initialization

1 Sample ξ1
0 , . . . ξ

N
0

i.i.d.∼ pθ0 (·)
2 Compute (and normalize)

ωi
0 =

gθ0 (ξi0)χθ0(ξi0)

pθ0 (ξi0)

3 Sample I i0 ∝ {ωi
0}i=1,...,N

4 Sample ξi1 ∼ pθ(ξ
I i0
0 , ·)

5 Compute

ωi
1 =

gθ1 (ξi1)qθ(ξ
I i0
0 , ξ

i
1,∆0)

pθ(ξ
I i0
0 , ξ

i
1,∆0)



Particle filtering for SSM, propagation to k > 0
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Particle filtering for SSM, propagation to k > 0

Approximating the law Xk |Y0:k.

Requires as proposition law a propagation distribution pθ(x , ·).

Propagation
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Particle filtering for SSM, propagation to k > 0
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Particle filtering for SSM, propagation to k > 0

Approximating the law Xk |Y0:k.
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Particle filtering for SSM, propagation to k > 0

Approximating the law Xk |Y0:k.

Requires as proposition law a propagation distribution pθ(x , ·).

Propagation
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Particle filtering for SSM, propagation to k > 0

Approximating the law Xk |Y0:k.

Requires as proposition law a propagation distribution pθ(x , ·).

Weighting

1 Sample ξ1
0 , . . . ξ

N
0

i.i.d.∼ pθ0 (·)
2 Compute (and normalize)

ωi
0 =

gθ0 (ξi0)χθ0(ξi0)

pθ0 (ξi0)

3 Sample I i0 ∝ {ωi
0}i=1,...,N

4 Sample ξi1 ∼ pθ(ξ
I i0
0 , ·)

5 Compute

ωi
1 =

gθ1 (ξi1)qθ(ξ
I i0
0 , ξ

i
1,∆0)

pθ(ξ
I i0
0 , ξ

i
1,∆0)

And so on. . .



Particle filtering for POD processes

Problem

In POD processes, qθ(x , y ,∆) can’t be computed (even when θ is known);

This quantity is crucial for weights computation.

General Poisson estimator, Fearnhead et al. (2008)

Under some assumptions, there exists an unbiased estimator q̂θ(xk , xk+1,∆k , ζk)
such that

q̂θ(xk , xk+1,∆k , ζk) > 0 and E[q̂θ(xk , xk+1,∆k , ζk)] = qθ(xk , xk+1,∆k)

ζk is a random variable requiring simulation of constrained Brownian bridges.

New filtering weights

ωi
k =

gθ1 (ξik )qθ(ξ
I ik
k−1,ξ

i
k ,∆k−1)

pθ(ξ
I i
k−1
k−1 ,ξ

i
k ,∆k−1)

is replaced by ω̂i
k =

gθ1 (ξik )q̂θ(ξ
I ik
k−1,ξ

i
k ,∆k−1,ζk−1)

pθ(ξ
I i
k−1
k−1 ,ξ

i
k ,∆k−1)
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Particle filtering for SSM, back to our example
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1 Context and objectives

2 Particle filtering

3 Particle smoothing

4 Particle smoother for PODs



Particle smoothing, näıve and direct approach

Approx. φk|n (law of Xk |Y0:n)

Näıve approach

Run a PF until n;
Remember ancestors of
each particle;

Approx. φk|n with
ancestors of ξin, at
generation k having
weights ωi

n;
High variance!
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Particle smoothing, the genealogy our example

Early biomasses distributions are approximated with very few particles!

MPE SMC for SDEs Marseille 2018 19 / 31



Particle smoothing, fixed lag technique

Approx. φk|n (law of Xk |Y0:n)

Fixed lag technique

Choose a lag δ;
Run a PF until k + δ
Approx. φk|n by φk|k+δ

with ancestors of ξik+δ

having weights ωi
k+δ

Variance ↑ when δ ↑
Biased technique, with
bias ↑ when δ ↓

Used by Olsson and Strojby (2011), first (biased) smoother for PODs
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Particle smoothing, backward simulation

Idea: Reducing the variance by recreating diversity

Approx. φk|n (law of Xk |Y0:n)

Backward simulation

Run a PF until n;

For a final particle ξin,
pick a ”probable” direct
ancestor;
Repeat until reaching an
initial particle;
Do it for each final point;
Approximate φk|n with
particles obtained at
time k, having new
weights 1/N;
Possibility of having joint
distributions.
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Backward sampling on our example

How can it be done when qθ(x , y ,∆) can’t be computed?
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1 Context and objectives

2 Particle filtering

3 Particle smoothing

4 Particle smoother for PODs



Backward sampling mechanism

Sampling an ancestor of ξik .

How credible is each ξjk−1 as the

parent of ξik?
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Backward sampling mechanism

Sampling an ancestor of ξik .

Draw ancestor with prob. Λj,i
k−1, i.e.: ”The probability of ξjk−1 being the

ancestor of ξik under the true dynamics”.

How credible is each ξjk−1 as the

parent of ξik?

Λj,i
k−1 ∝

Ancestor’s filtering weight

ω̂j
k−1

× qθ(ξjk−1, ξ
i
k ,∆k−1)

Markov transition density
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Sampling ancestor with weights Λj ,i
k−1 in the POD context

Main problem

Backward smoothing requires to sample an ancestor (value of j) with weights:

Λj,i
k−1 =

ω̂j
k−1q

θ(ξjk−1, ξ
i
k ,∆k−1)∑N

`=1 ω̂
`
k−1q

θ(ξ`k−1, ξ
i
k ,∆k−1)

The probability of ξjk−1 being the ancestor of ξik under the true dynamics

The solution? (When qθ can’t be computed)

Use the unbiased estimator q̂θ(ξjk−1, ξ
i
k ,∆k−1, ζi ) as a substitute:

Λ̂j,i
k−1 =

ω̂j
k−1q̂

θ(ξjk−1, ξ
i
k ,∆k−1, ζi )∑N

`=1 ω̂
`
k−1q̂

θ(ξjk−1, ξ
i
k ,∆k−1, ζi )

But E(Λ̂j,i
k−1) 6= Λj,i

k−1, because of the ratio.
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Sampling with weights Λj ,i
k−1 in the POD context

Λj,i
k−1 =

ω̂j
k−1q

θ(ξjk−1, ξ
i
k ,∆k−1)∑N

`=1 ω̂
`
k−1q

θ(ξ`k−1, ξ
i
k ,∆k−1)

Lemma Gloaguen et al. (2018)

Assumption: ∃ σ̂k,+ such that ∀x , y , 0 < q̂θ(x , y ,∆k , ζk) < σ̂k,+ a.s.

Consider the random variable Ĵ defined as follow:

• Sample Jcand ∈ 1, . . . ,N with probabilities ∝ {ω̂i
k−1}i=1,...,N ;

• Sample ζk−1 using the GPE of Fearnhead et al. (2008);
• Sample U ∼ U [0, 1];

if U ≤
q̂θ(ξ

Jcand
k−1

,ξik ,∆k−1,ζk−1)

σ̂k−1,+
then

Set Ĵ = Jcand ;
else

Try Again;
end if

Then,
P(Ĵ = j) = Λj,i

k−1

MPE SMC for SDEs Marseille 2018 25 / 31



Smoothing for POD processes

Proposition: Asymptotic unbiased property Gloaguen et al. (2018)

Let denote φ̂0:n|n[Hn] our estimator of φ0:n|n [Hn] := E [Hn(X0:n)]:

P
(∣∣∣φ̂0:n|n[Hn]− φ0:n|n [Hn]

∣∣∣ ≥ ε) ≤ bn exp
(
−cnNε2

)
.

Comments

The acceptance/rejection comes (for usual SSM) from Douc et al. (2011);

Olsson et al. (2017) have proposed the PaRIS algorithm : an online smoother
(without backward pass) for additive functionals, i.e;

E [Hn(X0:n)|Y0:n; θ] =
n−1∑
k=1

E [hk(Xk ,Xk+1)|Y0:n; θ]

The same trick provides an online version, resulting in the
Generalized Random PaRIS alogrithm (GRand PaRIS);



GRand PaRIS is a hot topic in the French community
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Application for parameter estimation

Population dynamics model

dXt = κXt

(
1− Xt

γ

)
dt + σXtdWt , X0 = x0 > 0, Markov process

Yk = qXk exp(εk), εk
i.i.d.∼ N (0, σ2

obs), Observations

Objective: Approximation of the E step
of an EM algorithm:

Q(θ0, θ) = E[

Hn(X0:n)︷ ︸︸ ︷
`(θ;X0:n,Y0:n) |Y0:n; θ0]

Hn(X0:n) =

n−1∑
k=0

log
(
qθ(Xk ,Xk+1,∆k )gθk+1(Xk+1)

)



Comparison with the fixed lag technique
Comparing our estimator with the fixed lag of Olsson and Strojby (2011)



Remark on the range of applications

Particle smoothers for POD:

Olsson and Strojby (2011) and Gloaguen et al. (2018) both rely on
Fearnhead et al. (2008) unbiased particle filtering (but this is a very active
field of research);

Assumptions for the use of Fearnhead et al. (2008)

The hidden process satisfies dXt = αθ(Xt)dt + βθ(Xt)dWt , if:

Lamperti transform ∃ a 1-1 function ηθ s.t., for X̃s := ηθ(Xs) satisfies

dX̃s = α̃θ(X̃s)dt + dWt

Potential assumption ∃Aθ : R 7→ R s.t. α̃θ(x) = ∇Aθ(x);

Boundary assumption

lim
‖x‖→∞

‖ α̃θ(x) ‖2 +∆Aθ(x) <∞ and ∃ L s.t. L ≤‖ α̃θ(x) ‖2 +∆Aθ(x)

Then a positive, a.s. bounded, and unbiased estimate of qθ can be obtained;
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Conclusions and perspectives

Conclusions

New online smoother for SDE based SSMs;

Mixes the tricks of Fearnhead et al. (2008), Douc et al. (2011) and Olsson
et al. (2017);

Asymptotically unbiased estimation, with at at best complexity of nN (at
worse nN2);

Fit to the classical range of models for exact simulation algorithms of
diffusion;

Extending the range of SDE models? (Fearnhead et al., 2018).
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Proof of lemma

P

Y = l|U ≤
q̂k (ξYk , ξk+1, ζ)

σ+

 =

P
(
U ≤

q̂k (ξYk ,ξk+1,ζ)

σ+
|Y = l

)
P(Y = l)

P
(
U ≤

q̂k (ξY
k
,ξk+1,ζ)

σ+

)

=

P
(
U ≤

q̂k (ξlk ,ξk+1,ζ)

σ+

)
ωl
k

P
(
U ≤

q̂k (ξY
k
,ξk+1,ζ)

σ+

)

We now note that

P

U ≤
q̂k (ξYk , ξk+1, ζ)

σ+

 = Epζ

E
EpY

E
P
U ≤

q̂k (ξYk , ξk+1, ζ)

σ+

 |Y
 |ζ


= Epζ

 N∑
l=1

wl
k

q̂k (ξlk , ξk+1, ζ)

σ+

 (As
q̂k (ξYk , ξk+1, ζ)

σ+

≤ 1)

=
1

σ+

N∑
l=1

wl
k qk (ξlk , ξk+1, ζ)

In the same way, we have:

P

U ≤
q̂k (ξlk , ξk+1, ζ)

σ+

 =
1

σ+

qk (ξlk , ξk+1, ζ)

Which gives overall the wanted result

P

Y = l|U ≤
q̂k (ξYk , ξk+1, ζ)

σ+

 =
ωl
k qk (ξlk , ξk+1, ζ)∑N

l=1
wl
k
qk (ξl

k
, ξk+1, ζ)

= pX (l)
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