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1 Context and objectives



Motivating example: Estimating fish biomass

What we know What we want

Scientific observations Y Population biomass X

Biomass dynamic models observed through abundance indices
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Motivating example: Model based approach

X .
dX: = kX; (1 - ’;) dt + o Xpd Wy, Xy ~ xo s.t. Xp a>s 0 Diffusion process

Yi = cXy, exp(ex), ek L N(0,02,.), k=0,...,n Observations

Population dynamics model

X:: True biomass at year t;

Yy: Abundance index at year t;

~: Carrying capacity;

k: Recruitement rate;

0, 0obs: INNovation and error parameters;
c: Detectability;

to, ..., t, are the (n+ 1) observation times.

Observed abundance index

i

Unknown biomass

?

Time



Motivating example: Model based approach

X .
dX; = kX <1 - 7‘) dt + o X dW,, Xo~ X0 st. Xo > 0 Diffusion process
Yi = cXy, exp(ex), ek L N(0,02,.), k=0,...,n Observations

Observed abundance index

i
i

Classical Inference problems

1 From abundance index, estimate the true |~
biomass.

2 From abundance index, estimate model
parameters

Unknown biomass

Time



Motivating example

Population dynamics model

X
dX; = kX; (1 - 7t> dt + o XedWs, Xo = x0 > 0, Markov process

j.id. )
Yi = cXeexp(en), €k = N (fobs, 02ps)s Observations

Biomass

Time



Context: General State Space Model

X .
dX: = kX, (1 — ;) dt + o XpdW;, Xy ~ xo s.t. Xp a>5 0 Diffusion process

Yi = cX, exp(ex), ek L N(0,02,), Observations
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Context: General State Space Model

dX; = o?(Xe)dt + B(X)dWs, Xo ~ X§ Diffusion process
Y ~ gl(Xs,,0) Observations

Partially observed diffusion process
m (X¢)r>0 is solution to a stochastic differential equation (SDE);
m The solution to a SDE is a continuous time Markov process;
m (Yk)k=o0....,n are independent conditionally to (X;):>o;
m The model therefore defines a specific Hidden Markov Model;

m Model known as partially observed diffusion process;
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Context: General State Space Model

' 8J(x0) ' &0 () ' ()

‘ ‘ ‘ Observations

m Observations (Yk)k=o,...,n at times to =0, t1 = to + Ao, ..., th = tn—1 + Ap_1.
m Unobserved Markov process (X:)o<¢<t, (notation: Xi := X, );
m X; €R? Y, e RY;

m A set of parameters 0;

Xo ~ Xg(Xo) Initial density
Xk| (Xk,1 = kal) ~ qe(kal, Xk o Akfl) Transition density

Yiel (Xe = x) ~ g7 (s yi) := &F (xk) Observation density



Context: Partially observed diffusion processes

' ¢ (0) ' g0 () ' ! ()

‘ ‘ ‘ Observations

(Xt)o<t<t, is supposed to be solution to the stochastic differential equation:

dX, = o (X)dt + B (X)dWe, Xo ~ x(x0) 1)
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Context: Partially observed diffusion processes

Particularity of SDE based models
In general,

m the transition density q?(-) is not explicit except in very specific cases (even
when 6 is known).

m Exact simulation is not straightforward (except in the same specific cases).
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Context: Partially observed diffusion processes

SDE based models in practice
In general,
m Approximation of ¢?(-) (Hermite expansion for example)

m Simulation using EA algorithm (Beskos et al., 2006), or moslty approximated
numerical scheme (Euler, Ozaki, ...).
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Objective

Examples of application

m Parameter estimation : E step of EM algorithm:
Q(007 9) = E[g(ar XO:na YO:n)| Yo:n; 00]

m Path reconstruction, target tracking:

E[Xk| Yo:n; 0]
General goal
Computing:
E [Hn(XO:n)| YO:n; 0] )
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Definitions and notations

Goal

Compute
E [Hn(XO:n)| YO:n; 9]

m Filtering distribution, the law of Xi| Y., (observations until time k)
m Expectation: ¢ [f] = E[F(Xk)| Yox].

m Smoothing distribution, the law of X.¢| Yo., (all observations)
m Expectation: ¢y.p,[f] = E[f(Xk.e)| Yo:n].
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Difference between filtering and smoothing, where is X,?

Y;
Yo 2
° Y1 T
e
12-
>
11-
10-
1 2 3 4 5

Filtering distribution, law of X5 |Yp.»



Difference between filtering and smoothing, where is X7

[0 Lawof Xy Yy
13-

Y

12-

11-

10-
i 2 3 ’ 5

Filtering distribution, law of X5 |Yp.»



Difference between filtering and smoothing, where is X7

[0 Lawof Xy 1Yy
13-

Yo
° Y
L]
12-
> Y,
o
11-
Yy
o
10-
i 2 3 1 5

Filtering distribution, law of X5 |Yp.»



Difference between filtering and smoothing, where is X,?

[0 Lawof Xy 1Yy

13- B rawof Xy TYy;
Yo
° Y,
L]
12-
s Y3
&
11-
Y,y
o

10-

1 2 3 4 5

X

Smoothing distribution, law of X;|Yp.4, takes all observations into account!



Difference between filtering and smoothing, where is X,?

[0 Lawof Xy 1Yy

13- ] B rawof Xy TYy;

11-

10-

i 2 3 ’ 5
X

Smoothing distribution, law of X;|Yp.4, takes all observations into account!



Definitions and notations

Goal

Compute
E [Hn(XO:n)| YO:n; 0] = (DO:n\n[Hn]

m Filtering distribution, the law of Xi|Yo.x (observations until time k)
m Expectation: o, [f] = E[f(Xk)| Yo.x].

m Smoothing distribution, the law of Xy.¢| Yo., (all observations)
m Expectation: ¢y.,[f] = E [f(Xi.e)| Youn)-

Unknown in general!
— Approximation using Sequential Monte Carlo methods:
Approximation of ¢, (resp. ¢y.4,) by ¢} (resp. @2’:[‘”) such that for all function f:

(')kN[f] ~ (’)k[f]
Resp. éi\l”n[f] ~ @k:[\n[f]

MPE SMC for SDEs Marseille 2018 9 /31



Previous work and contribution

Goal
Compute
E [Hn(XO:n)| Yo:n; 9] = ¢0:n|n[Hn]

SSM with known transition density q°(x;, xe1n, A)
m First particle filter: Gordon et al. (1993);

m Backward particle smoother with linear complexity: Douc et al. (2011);
m Online* particle smoother: Olsson et al. (2017).

Partially observed diffusion processes (unknown q(x:, xt1a, A))
m First unbiased particle filter: Fearnhead et al. (2008);
m Biased smoother: Olsson and Strojby (2011);
m Online* unbiased smoother: Gloaguen et al. (2018).

* For functionals H, s.t. Ha(Xo.n) = S 0—g (X, Xs1)-



2 Particle filtering



Particle filtering for SSM

Idea
For a function f, approximating the expectation ¢, [f] = E[f(Xk)| Yo.k] by a finite
sum ¢l

N
ORI =D wif(€)
i=1

where
m (&)i=1...n is a finite set of N particles;
m (w] )1 are the respective importance weights of the N particles;

u 25\1:1“’;;:1

Asymptotic property

orlf] = oulf]
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Particle filtering for SSM

| | |
' g5 (x0) g7 (x1) ' g5 (%)
Y A4 A

. . . Observations

Filtering problem: Approximating the distribution of Xi| Y.k

First: Let's suppose that q°(x,y, A) can be computed (for a given 6).
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Particle filtering for SSM: Initialization, k =0

Approximation of the law of Xp|Yo.
m True distribution , law of Xp] Yo;
m Proposition distribution pj(-)
Choosing distribution

o

Biomass value at k = 0



Particle filtering for SSM: Initialization, k =0

Approximation of the law of Xp|Yo.
m True distribution , law of Xp] Yo;
m Proposition distribution pj(-)
Sampling

1 Sample &}, ..

o

io iO
Simulated value at k = 0

N i

~



Particle filtering for SSM: Initialization, k =0

Approximation of the law of Xp|Yo.
m True distribution , law of Xp] Yo;
m Proposition distribution pj(-)

Weighting
B Sample &, ...& "= p8()
vo 2 Compute (and normahze)
o i
wh = Wg(fowo)
{(3))

(&5, )

(55, ) (&, wp)
Simulated value at k = 0



Particle filtering for SSM: Initialization, k =0

Approximation of the law of Xp|Yo.
m True distribution , law of Xp] Yo;
m Proposition distribution pj(-)

Weighting
B Sample &, ...& "= p8()
vo 2 Compute (and normahze)
o . ;
80 (&)x5(8)

0
Pg(fo)

(&5, )

(55, ) (&, wp)
Simulated value at k = 0



Particle filtering for SSM: Initialization, k = 0

Approximation of the law of Xp|Yo.
m True distribution , law of Xp] Yo;
m Proposition distribution pj(-)

Weighting
/v iid. g
---- True Value . Sample éo N pO()
——  Median of ¢f 2 Compute (and normalize)
© 95 Conf Int of oy
i = & 5 (£0)x6(£h)
P (&6)

3 Approximate E[Xp| Yo]:

N
E[Xo| Yo] ~ > wif(€9)
i-1

500 1000 1500 2000 2500 3000



Particle filtering for SSM, propagation to k > 0

Approximating the law of Xi|Yox, k >0

Particle based method
m Propagate simulated particles at time 0 to create new particles at time 1;
m Compute importance weights for these new particles;

m Propagate these new particles at time 2, compute weights and so on. ..




Particle filtering for SSM, propagation to k > 0

Approximating the law Xi|Yo.x.
m Requires as proposition law a propagation distribution p’(x, -).
Initialization

(&, ) 1 Sample &,... &Y i 40
2 Compute (and normalize)
i — 80(&)xG(%)
0 0(ci
Po (&o)
E
g
%




Particle filtering for SSM, propagation to k > 0

Approximating the law Xi|Yo.x.
m Requires as proposition law a propagation distribution p@(x7 ).
Selection

(&, o)) 1 Sample &3,... & "% pd ()

2 Compute (and normalize)
_ SE3E)
Po(&0)

3 Sample /§ oc {wi}iz1, .

Particle value




Particle filtering for SSM, propagation to k > 0

Approximating the law Xi|Yo.x.
m Requires as proposition law a propagation distribution p@(x7 ).
Propagation
Sample &,... &) "% pf ()
Compute (and normalize)

(& o) g

iy

N

3 Sample I§ oc {whtiz1,.. N

Sample & ~ p(&f. )

Particle value

IS




Particle filtering for SSM, propagation to k > 0

Approximating the law Xi|Yo.x.
m Requires as proposition law a propagation distribution p@(x7 ).
Weighting

&, 00 (& o) # Sample &,...¢l) L Pa(")

2 Compute (and normalize)

Sample I§ oc {wi}iz1, N

Sample & ~ po(géé_ )

5 Compute ;

i = gf(si)qi(sé’,&{,Ao)
P’ (&g s &1 Do)

Particle value
w

IS




Particle filtering for SSM, propagation to k > 0

Approximating the law Xi|Yo.x.
m Requires as proposition law a propagation distribution p‘g(x7 ).

Selection
(%, @p) &, o)) # Sample &,...¢l) g5 po(-)
2 Compute (and normalize)
»
- L aENE)
P, ) ’ Po (&)
g
£ I 3 Sample I§ oc {whtiz1,.. N
E -7 i
o~ & Sample & ~ p(€8. )
5 Compute
. Il .
i 864" (&9, €t Do)
wy = T
P? (&0 €1 Do)

And so on. ..



Particle filtering for SSM, propagation to k > 0

Approximating the law Xi|Yo.x.

Particle value

m Requires as proposition law a propagation distribution p‘g(x7 ).

(&, ob)

&, )

Propagation
# Sample &,...¢l) 5 po(-)
2 Compute (and normalize)

L BE@NE)
0 O(ci
Po(fo)
3 Sample I§ oc {whtiz1,.. N
@ Sample & ~ pe(féé. )
51 Compute
i lo ¢i
Wll _ gle(gl)qﬁ(gooﬂflvAO)

.
p? (&5, €1 Do)

And so on. ..



Particle filtering for SSM, propagation to k > 0

Approximating the law Xi|Yo.x.
m Requires as proposition law a propagation distribution p‘g(x7 ).
Weighting

(&, @) &, ) (&, @) 1 Sample €1, ... €N K ()

2 Compute (and normalize)

Particle value
w
(0]
oY)
3
=5
)
ST
R
~—
€
o-.
-
I
\l—‘
=2

, -
- i
Iy

Sample & ~ pf(&5, )
51 Compute

. I/ o
glﬁ(gi)qg(gooﬂ Ei* AO)

.
p? (&5, €1 Do)

L]
\
IS

w

[
1=

And so on. ..



Particle filtering for POD processes

Problem

m In POD processes, g’(x,y,A) can't be computed (even when 6 is known);
m This quantity is crucial for weights computation.

General Poisson estimator, Fearnhead et al. (2008)

Under some assumptions, there exists an unbiased estimator c“]”(xk. Xk+1, Dk, Ck)
such that

G (1. A ) > 0and B[ G0, v O] = g7 (i Xk, Ak

(. is a random variable requiring simulation of constrained Brownian bridges.

New filtering weights

o
gr (63" (&) 6D 1.Gen)

-1
PO (&, 7 €1 Dk—1)

0 (i 0k i
i 8189 (61,8 Bk-1) . N
wj, = DLk is replaced by ] =

l—1
po(&, 1 & Dk—1)
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Particle filtering for SSM, back to our example

Biomass Value

600

400

200

Generated particles with filtering weights (N = 200)

1 oevlid True biomass —— Y/c

0 10 20 30 40 50
Time

MPE SMC for SDEs

Marseille 2018
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Particle filtering for SSM, back to our example

= 200)

Generated particles with filtering weights (N

-
- S T —— e o
Cn e —— B ———
. ar . S Tt
L e e e ————
B e el
S EEIEEIGEE TSR o . -
e ——— F—

True biomass —— Y/c

50

40

10

009

oo
anjeA ssewolg

002

Time

17 /31

Marseille 2018
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3 Particle smoothing



Particle smoothing, naive and direct approach

. . ° °
. o o e e e e e e .
. ® - - e - . . - @ - .« - . - e
.......... [ ] e @ .
e o o .
° e ® @ ¢ - e .+ e . .
. ) . [ ]
. L] .
@ o .
[ . . .
Time step k
MPE SMC for SDEs

Approx. ¢y, (law of Xi|Yo.n)
m Naive approach

m Run a PF until n;
m Remember ancestors of
each particle;

Marseille 2018 18 /31



Particle smoothing, naive and direct approach

E.-kl n

Approx. ¢y, (law of Xi|Yo.n)
m Naive approach

m Run a PF until n;

m Remember ancestors of
each particle;

m Approx. ¢y, with
ancestors of &, at
generation k having
weights whe

m High variance!

Time step k
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Particle smoothing, the genealogy our example

Final particles genealogy

600

Biomass Value
400

Time

Early biomasses distributions are approximated with very few particles!
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Particle smoothing, fixed lag technique

E.;k| n s

Approx. ¢y, (law of Xi|Yo.n)
m Fixed lag technique
m Choose a lag ¢;
m Run a PF until k+ ¢
m Approx. @i, by ¢xjkrs
with ancestors of &, 5
having weights w), ;
m Variance 1 when § 1
m Biased technique, with
bias T when § |

Time step k

Used by Olsson and Strojby (2011), first (biased) smoother for PODs
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Particle smoothing, backward simulation

Idea: Reducing the variance by recreating diversity

Approx. ¢y, (law of Xi|Yo.n)
m Backward simulation
m Run a PF until n;

&

Time step k
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Particle smoothing, backward simulation

Idea: Reducing the variance by recreating diversity

Approx. ¢y, (law of Xi|Yo.n)
m Backward simulation
m Run a PF until n;

m For a final particle &,

2_) pick a " probable” direct
7/n' ancestor;

Time step k

MPE SMC for SDEs Marseille 2018 21 /31



Particle smoothing, backward simulation

Idea: Reducing the variance by recreating diversity

MPE

Time step k

SMC for SDEs

Approx. ¢y, (law of Xi|Yo.n)
m Backward simulation

m Run a PF until n;

m For a final particle &,
pick a " probable” direct
ancestor;

m Repeat until reaching an
initial particle;
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Particle smoothing, backward simulation

Idea: Reducing the variance by recreating diversity

(E.vk|m1 /'/N)

Approx. ¢y, (law of Xi|Yo.n)
m Backward simulation

m Run a PF until n;

m For a final particle &,
pick a " probable” direct
ancestor;

m Repeat until reaching an
initial particle;

m Do it for each final point;

m Approximate ¢y, with
particles obtained at
time k, having new
weights 1/N;
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Particle smoothing, backward simulation

Idea:

Reducing the variance by recreating diversity

(gk:k+1|na1 /N)

MPE

SMC for SDEs

Approx. ¢y, (law of Xi|Yo.n)
m Backward simulation

m Run a PF until n;

m For a final particle &,
pick a " probable” direct
ancestor;

m Repeat until reaching an
initial particle;

m Do it for each final point;

m Approximate ¢y, with
particles obtained at
time k, having new
weights 1/N;

m Possibility of having joint
distributions.
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Backward sampling on our example

Backward smoothing trajectories

Biomass Value
400

—e— True biomass

0 10 20 30 40 50
Time

How can it be done when g%(x,y, A) can't be computed?
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4 Particle smoother for PODs



Backward sampling mechanism

Sampling an ancestor of &} .

&

(E-Lq '“){H)

MPE SMC for SDEs

How credible is each 5{(_1 as the

parent of £, ?

Marseille 2018
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Backward sampling mechanism

Sampling an ancestor of &;.
Draw ancestor'with prob. A" |, i.e.: " The probability of &, | being the
ancestor of &, under the true dynamics”.

9°(E 1.8 How credible is each 5{;_1 as the
parent of &7

Ancestor’s filtering weight
Joi ~
Ny Wk—1

X

(iL—1 vmikq)
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Sampling ancestor with weights /\J,'(’i1 in the POD context

Main problem

Backward smoothing requires to sample an ancestor (value of j) with weights:

‘/Ll;flqe(ﬂ(—lv &, A1)
N .~y ;
22:1 wf{flqa(fﬁfla §k7 Ak—1)

Ji
Ak—l -

The probability of §{;_1 being the ancestor of &} under the true dynamics

The solution? (When g’ can’t be computed)

Use the unbiased estimator § ( 1S A\, 1, () as a substitute:

D16’ Gy o Di1, G)
N ¢ ¢
D -1 Wﬁqq (xk &k D1, G)

A
/\k—l -

But E(A} ;) # A", because of the ratio.
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Sampling with weights /\J,-("._1 in the POD context

@k71q9(§i_1a§i,Ak—1)

g
Akfl_ N .~y o0(cl i
Ze=1w'k71q (fk_pfkaAk—l)

Lemma Gloaguen et al. (2018)

Assumption: 3 5, such that Vx,y, 0< ¢”(x.y. A, () <54 as.
Consider the random variable J defined as follow:

e Sample Jang € 1,..., N with probabilities o {of);;_l},-zlw,,v;
e Sample (, ; using the GPE of Fearnhead et al. (2008);
e Sample U ~ U[0, 1];

1ZJ

50 (¢lcand ¢i Ay 1,Ck—
U<l s " then
Set j = Jeand ;
else
Try Again;
end if
Then,

P(j :f) = /\Jl;’il

MPE SMC for SDEs Marseille 2018
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Smoothing for POD processes

Proposition: Asymptotic unbiased property Gloaguen et al. (2018)
Let denote c,gg;,,‘n[H,,] our estimator of ¢, [Ha] := E [Ha(X0:0)]:

P (‘éo:nm[Hn] - ¢0:n|n [Hn]

> E) < byexp (—c,Ne?)

Comments

m The acceptance/rejection comes (for usual SSM) from Douc et al. (2011);

m Olsson et al. (2017) have proposed the PaRIS algorithm : an online smoother
(without backward pass) for additive functionals, i.e;

n—1
E [Ha(Xo:n)| Youn; 0] = > E [Ak(Xi, Xics1)| Youn; 6]
k=1
The same trick provides an online version, resulting in the
Generalized Random PaRIS alogrithm (GRand PaRIS);




GRand PaRIS is a hot topic in the French community
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GRand PaRIS is a hot topic in the French community

LE GR ND

Tout ce que le Grand Paris va changer pour
vous
e Ot o G e A 20 S o 1 € 7 @

OAROULE

President. financement... Le Grand
Paris EXpress sur de nouveaux rails

Par Sibylle Vincendon 7 septembre 2018 ) 1818

I rounoue o oot ramsowems maviier  soms  Losws @ &

Grand Paris : Valérie Pécresse regrette «une
occasion ratée»

KONOME BOURSE ENTREPRISESS FINANCE HITECH VOSFINANCES DEES METROPOLES CARRIERES

"

Le Grand Paris vaut mieux qu'un jeu de mots

Par Alain Sarfat et Alin Chizet

MPE SMC for SDEs Marseille 2018

27 /31



Application for parameter estimation

Population dynamics model
X
dX: = kX, (1 — i) dt + o XedWs, Xo = x9 > 0, Markov process

Y, = qXeexp(er), ex = N(0,02,), Observations

Objective: Approximation of the E step
of an EM algorithm:

Hn(XO:n)

——
Q(GO’ 9) = ]E[Z(O, XO:m YO:n) ‘YO:n; 00]

Biomass

n—1
Hn(XOIn) = Z |0g (qe(xkz Xk+17 Ak)g,?+1(Xk+1))
k=0

Time



Comparison with the fixed lag technique
Comparing our estimator with the fixed lag of Olsson and Strojby (2011)

-318

320
I
Py
@

Q(s, 8)

322
I

FL1 FL2 FLS FL 10 FL 50 GR PaRIS



Remark on the range of applications

Particle smoothers for POD:
m Olsson and Strojby (2011) and Gloaguen et al. (2018) both rely on

Fearnhead et al. (2008) unbiased particle filtering (but this is a very active
field of research);
Assumptions for the use of Fearnhead et al. (2008)
The hidden process satisfies dX; = o (X;)dt + 8%(X;)dW,, if:
m Lamperti transform 3 a 1-1 function 7’ s.t., for X, := n?(X,) satisfies

dX, = a%(Xs)dt + dW,

m Potential assumption 3A? : R — R s.t. a%(x) = VA?(x);

m Boundary assumption

lim || &’(x) > +AA%(x) < 0o and 3 Lst. L <| d%(x) ||> +AA%(x)

lIx]|—o00

m Then a positive, a.s. bounded, and unbiased estimate of q9 can be obtained;

MPE SMC for SDEs Marseille 2018 30/31



Conclusions and perspectives

Conclusions
m New online smoother for SDE based SSMs;

m Mixes the tricks of Fearnhead et al. (2008), Douc et al. (2011) and Olsson
et al. (2017);

m Asymptotically unbiased estimation, with at at best complexity of n/N (at
worse nN?);

m Fit to the classical range of models for exact simulation algorithms of
diffusion;

m Extending the range of SDE models? (Fearnhead et al., 2018).
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Proof of lemma
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In the same way, we have:
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Which gives overall the wanted result
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