Maximum likelihood inference for large & sparse
hidden random graphs

Sylvain Le Corff
based on joint works with E. Vernet, M. Lerasle and R. Diel

Télécom SudParis

1/37



Pairwise comparisons based graphs

Zermelo, Math. Z. (1929), Bradley & Terry, Biometrika (1952)...

Weighted edges and an influence parameter attached to each node.

Motivations - what to do with pairwise comparison based graphs ?
Maximum likelihood - what is known with many observations ?
Bayesian setting - comparison graphs in random environment

A few algorithms



Pairwise comparisons based graphs

Zermelo, Math. Z. (1929), Bradley & Terry, Biometrika (1952)...

Nodes - Latent data
n individuals characterized by their abilities (V;)i<i<n.

Edges - Observations
Abilities indirectly observed through discrete valued scores (Xi ;) j)cE,
describing the results of the comparison between individuals i and ;.

Conditionally on Vi.,, the random variables (X,-J)(,-_J-)egn are independent with:

P(Xij = x| Vi) = k(x, Vi, V)) .

(9V,‘)XVJ-17X

Caron & Doucet, JCGS (2012) k(x,vi,v;) = v
0 J

1—x
Chatterjee, Diaconis & Sly, AoAP (2011) k(x,vi,vj) = (1 _\:VJ ) (1 +1 ) .
ViV ViVj



Motivations (i) - "social" networks

Bonato et al. (2016)

(Latent) nodes n individuals Harry P., Hermione G., Dobby, etc.

(Observed) edges Xi; is the number of occurrences of two key names i and j
both within a specified distance in the text.
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Motivations (i) - "social" networks

Bonato et al. (2016)

(Latent) nodes n individuals Charlie, Bella, etc.

(Observed) edges X;; is the number of occurrences of two key names i and j
both within a specified distance in the text.

Open problem predict the degree of a given node, the links between clusters.



Motivations (ii) - sport analytics

Sire & Redner, Eur. Phys. J. B (2009)

(Latent) nodes n teams FC Nantes, EA Guinguamp, Stade Rennais, etc.

(Observed) edges Xij is 3 (Vi beats V;), 1 (tie) or 0 (V; beats V).

ol
80 f+f
© thebtie

Number of points
2
3

w sy

ity

2 9 3 8
S 23 @ g 8
g EFo0s3 @ s 2
E £S23 2 z <
8 So 2% §o O o
7 Js gT 0 E 3 Q 3
E $£92558338189009:%2
S o FSEELEQSE g ®
#8885 82853C38Le 83
s §EEe20283E5834a
5§56 2285800902 2E23z0
a=Z00mhz=20UL<UBO0ITIH @

Toulouse FC

ESTAC Troyes
Losc
FC Metz

Estimated probablity

Empirical distribution after 38 games

0.25
17th team
18th team
02
0.15
0.1
0.05

o .
30 35 20
Number of points

Open problem predict the final ranking of a championship, the minimum

number of points to reach a certain goals, detect outliers.
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Motivations (iii) - animal behaviour: fighting ability during male contests

Stapley et al., Biol. Lett. (2006), Firth et al. (2010)

(Latent) nodes n = 77 Platysaurus broadleyi.

(Observed) edges Xij is 1 (Vi beats V;), 0 (V; beats V;).

Open problem predict the ecosystem mapping, the roles of covariates,
...(u.v. signals) in female choice and in fighting ability.



Motivations (iv) - online matchmaking

Herbrich, R. et al., NIPS (2007)

(Latent) nodes n (very large) players .

(Observed) edges X is 1 (V; beats V), 0 (V; beats V;).

Open problem online estimation of the abilities and choose optimal
matchmaking to decide future matchings simultaneously.



MLE of V;., for Pairwise comparisons

Zermelo, Math. Z. (1929), Bradley & Terry, Biometrika (1952), David, AMS, (1964)
n fixed, number of observed edges X; ; for each pair (i,j) grows to infinity.
Consistency and asymptotic normality of the MLE.

Simons & Yao, AoS (1999)
At least one weighted edge X;; for each pair (i, j) when n goes to infinity.
Consistency and asymptotic normality of the MLE.

Chatterjee, Diaconis & Sly, AcAP (2011)

One weighted edge X; ; for each pair (i,}).

Probability larger than 1 — 1/n?, there exists a unique MLE.
Supremum norm of the estimation error upper bounded by /log n/n.

Chétrite, Diel & Lerasle, AoAP (2017)
The abilities are realizations of independent and identically distributed random
variables with common distribution 7.

7, is relevant to make predictions... what about MLE for 7, 7



MLE with "sufficently enough" observations

n = 100 players, one strength parameter \; € (0, 1) for each.
All players are involved in a game at each time step.
Prior ()\j)lgign ii.d. Q(a, b)

B (0% — 1)\
(AN ON 4 N)

k(3,)\,’,Aj) and k(17)\,',Aj)

_ )\i
- Ai + 0

Unique solution for the maximum likelihood equations and MLE approximately
computed using an Expectation Maximization algorithm.

100 independent Monte Carlo runs with 2000 time steps.



MLE with "sufficently enough" observations

= true abilities
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MLE with "sufficently enough" observations

Empirical distibution after 38 games
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Likelihood and estimator - random environment

The log-likelihood is given, for all = € I, by

log P ((X):jc,) = log / T %%, vi )" (dvin)

(i,j)EEn

True distribution 7, estimated by the standard maximum likelihood estimator:

#En ¢ argmax,cn logPr((X)(jeE,) -

Analysis of 75

. relies on the asymptotic behavior of log P ((X)(i jjeg,) When n grows to co.

Risk bounds for #£" ? Practical computation of an approximation of A ?



Bayesian setting - posterior consistency

Prior distribution g on IM.

The posterior distribution given the observations:

S TI0y k(X;, vi, vier) L a(m)7®"  (dvainsr ) p(drr)
,LL(TF & A|X1:n) - n e ®n+1
STy k(Xi, vi, viea )m®+2 (dvainsa ) p(dmr)

Posterior consistency: the posterior distribution concentrates around the true
parameter m, w.r.t. a loss function d. For all ¢ > 0,

w(d(m, m) < el Xin) —ns00 1, Pr, —as.

*

Minimal requirement, in particular in the context of large dimensional models
where it is not possible to construct fully subjective priors...



Bayesian setting - assumptions

Barron, A., TR (1988)

Posterior consistency is established w.r.t. a loss function d if, for all € > 0,

Limiting loglikelihood:

%Iog]P’Tr(Xl;n) = % log Pr, (X1:n) —nso00 d(m, 7)), Px, —a.s.

Kullback-Leibler condition: for all € > 0, u({m; d(m, 7.) <e}) > 0.

Test condition: there exists a sequence of tests (¢,) and a sequence of space
(M,) such that

p(NY) <e™, Exlpn)<e ™, sup  Er[l—¢n)<e ™.
7€My ,d(m,my)>e



Bayesian setting - i.i.d. case

Ghosal et al. AoS (2007a, 2007b), Kruijer et al., EJS (2010), Scricciolo, Bayesian analysis (2014)

(X1, .., Xp,) are i.i.d. with unknown density 7, on RY.

Limiting loglikelihood:

1 1
. log P (X1:n) — . log Pr, (X1:n) —ns00 KL(x, ), 7. — a.s.

Prior distribution - Dirichlet process
G= ijﬁaj ;o bj~iid. Go, pi=1; H(l —9e), Y ~iia B(l,q).
Jj=0 £<j

Sample independently § ~ G and o ~ 7 and set ™ = ¥g o1,

Kullback-Leibler condition: for regular 7. (8 Holder), 7. can be approximated
by finite mixtures of Gaussian distributions so that
p({m; KL(7, ) < en}) > 0, for €2 oc n=2A/(28+1),

Test condition: upper bound for the entropy (i.e. the number of balls needed
to cover finite location mixtures of Gaussian distributions) with at most
nY/(2B+1) components.



Graphical model

dE graph distance in ({1,...,n}, E,).
d(f"(i7j) is the minimal length of a path between nodes i and j.
Random graph decomposed as {V4,..., Vo} = Uz VqE", where:

O VoEn ={Vi};

e forallg>1, VqE" is the set of V; such that dg"(l,i) =q.

E,
E n
XEr X0" X,

E, E, En
Ve %% Vor eV Vit

(ijl,XqE")@o is a Markov chain...



The journey is paved...

1 1
7 log Prr (X1.0) = m Z log P (Xq’X1:q71)
q=1

Forgetting properties

p € (0,1) such that for each term and all p’ < p < g,

S:ﬁ |log Py (Xg|Xpg—1) — log Pr (Xq|Xprq—1)| < 777

log P (X4|X,.q_1) converges a.s.

Ergodicity

Approximate log P (X1:n) by the sum of these limits.

Normalized loglikelihood converges by the ergodic theorem.



Asymptotic behavior of the loglikelihood

Xo X

V() Vl V2 st Vk Vk+1

Vi+1, Xq)q>0 extended to a stationary sequence indexed by Z with law P, .
q q)q> y

Assumption
Forall x e X,m € MU {m.} and vi, v> € supp(w), k(x, v1, v2) > €.

The transition kernel of the Markov chain is uniformly lower bounded

Pr(Xi—1, Vi; Xi, A) = /ILA(V:'+1)7T(dvi+1)k(Xi7 Vi, viy1) = v (A) .

The joint Markov chain (Vii1, Xi)icz is unirformly ergodic.



Asymptotic behavior of the loglikelihood

Xo X Xi

VO \/1 V2 st Vk Vk+1

Forall p’ < p<qinZ,

Slégl |log P (Xg|Xp:q—1) — log P (Xq|Xpriq-1)| < € T(L-e)r.

There exists a function £, such that for all g in Z,

sup |log P (Xq| Xp:g—1) — £x (97 X)) pjo 0, P. -as.

el

For all 7 € M, P,,-a.s. and in L*(P.,),

Zlog P (Xon) — Lo, (1) = Bx, [6x(X)]



Risk bounds - Vapnik

X1,...,X, i.i.d. observations and ¢ a loss function.

Empirical risk minimizer

én:ar min 00, Xi) .
g > 40, Xi)

i=1

The risk of any 6 is measured by the excess risk
R(0) =E[£(0, X1)] — E[¢(6+, X1)]

where 6, is the minimizer of 6 — E[£(0, X1)].
The normalized empirical criterion satisfies almost surely,

%zn:e(e, Xi) — E[(6, X1)] -

The excess risk R(6) is the difference between the asymptotic normalized
empirical loss and the minimizer of this quantity.



Risk bounds - Random graphs

m, is actually a minimizer of —L, () over MU {m,}.

Llog P (Xon) — Le,(n) = Ex, [6x(X)]

Suggests to use —L, () as a proxy for the asymptotic normalized empirical
loss:
R, (1) = La, (m4) — L, () .

~ 9 —t2
Pr, (Rﬂ* () > vn ('°g1/2 NCT - flev, €) + t)) <e "
Usual setting, t, o< \/n=, and entropy of order \/n=, with (\/ns,) ' = o(1).

Entropy controlled for bounded in variation functions, Sobolev classes...



Risk bounds - Random graphs

Using the forgetting properties,
Rﬂ—* (%) = O(nil) + Grr*(Xl:n) .

with
1 1
Gr«(Xo:n) = sup,, . log P (Xo:n) — Ex, {; Iog]P’,T(XO;n)} ‘ )
Gr(Xo:n) is a function of the strong mixing Markov chain (Xg, V441)g>0-

By Dedecker & Guezel (2015), Douc et al. (2017?), concentration inequality for
this term using bounded difference inequalities: for all t > 0,

P, (|G, (Xo:n) — Ex, [Gr, (Xo:n)]| > t) < exp (—cntz) .

The expectation is then controlled with Dudley's entropy bound.



Nonparametric Expectation Maximization (i)

Xo X Xy

Vo Vi o Vi Vi

The Expectation Maximization produces a sequence of parameter estimates
(7'p)p=0 following two steps:

Compute the intermediate quantity:

n+1

Zlogw(Vk)

k=0

T Q(Fp,m)=n""t Ez, Xo:n

)

Define 741 as a maximizer of this intermediate quantity:

Tpr1 € argmax, . Q(7,, ) -



Nonparametric Expectation Maximization (ii)

E-step not available explicitly

n+1

Zlogw(Vk)

k=0

T = Q(%p,ﬂ') = nil]Eﬁp XO:n

Conditional law of V4 given Xo., approximated by a random empirical measure
with uniformly weighted particles &£, 1 < £ < M.

Forward (filt.) pass to approximate the conditional law of Vi given Xo.«.

= approximate the filtering distribution by Zyzl wﬁ(ng.

Backward (smooth.) pass to approximate the conditional law of Vi given Xo.p.

= approximate the smoothing distribution by M~* Zyzl 5§£.



Nonparametric Expectation Maximization (ii)

Time

k Courtesy of the famous team allegedly responsible for RHabits package.



Nonparametric Expectation Maximization (iii)

E-step not available explicitly
n+1

Z log (Vi)
k=0

n+l1 M

~ (nM) 1Y S "log (&) -

k=0 (=1

7 Q(Fp,w) =n"" Ez, Xo:n

Kernel regularization and EM update
Let W be a positive kernel and h > 0.

The quantity to be maximized is approximated by:

QM(7,,7) = /%y(v) e

where




Estimation of the unknown densiy
07, : :

o5

Value of the density

Figure 1: Density estimates from the using Monte Carlo nonparametric EM.
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Back to Bayesian setting (i)

Prior distribution g on .

The posterior distribution given the observations:

JTT7 k(X vi, viea)La(m)m®" (dvain s )u(dr)
,U/(Tr & A|X1:n) = n VA VA ®n+1
f Hi:l k(Xh Vi, VH’]-)ﬂ- (dV]_:,H,])[,L(dﬂ')

The aim is to obtain Bayesian posterior concentration rates around 7.

For all € > 0, define

Bi(e)={meN : Ry (m)<e}.

Find sequences (£,) and () such that:

P, (1 (B5(en)|X1:n) > an) = 0(1) or Er, [u(B5(en)|X1:n)] =0(1) .



Back to Bayesian setting (ii)

For all € > 0,
Bi(e)={mreN : Rr(m)<e} .

Requires to build a sequence of spaces (I1,) such that
w(Bi(en)) = e~ and w(ny) < e @men |

and

\/|0gN ‘tv 5n) \/EE,—, .

3/(26+1) 5/(46+2) \with a, o (TX])(*CI’)E,%),

Choosing =, < n (log n)5‘

P, (1 (Bi(en)|Xen) > an) = o(1) .



Markov Chain Monte Carlo implementation

The unknown distribution 7 is specified as a mixture model in which some
probability density (. is mixed with respect to a discrete probability measure P.

The mixture of Dirichlet processes is given by:

(9j)iz1 ) Beta(1,a) ,
1.1.4.

j—1
w1 =9 and for j>2, wj:ﬂjH(lfﬂ,-),
i=1

(z)j>1 v Q,

(ki ui)igi<ns1  ~ Z]lu,-<wj5j(fff) :

t1d- s

V,-Ncpznl_ for 1<i<n+1,

where Q is a base measure for the parameters (z;);>1 of the density ..



Practical implementation

Yau et al. JRSSB (2011)

Target
Joint posterior distribution of (Vi:nt1, U1:n+1, K1:n+1, 2, 0).

Solution Block Gibbs sampling.

Posterior distribution of Vi.ni1 given (Xi:n, Ur:nt1, 2,9)... (Tricky).
Posterior distribution of r; given (X1.n, Va:nt1, Utint1, ¥, 2)...
Posterior distribution of (9, u1:n+1) given (K1:nt1, @)...

Posterior distribution of z given (X1.n, K1:n, Vai:nt1):

n+1

7i~Q(z) [[ v4(V).

i=1, kj=j

Allegedly computationally efficient, with good MCMC mixing properties and
robustness to the length of the time series being investigated. Easy to
implement and requiring little or no user-interaction..



Practical implementation - Block Gibbs HMM SMC sampler *where is ABC*

Integrating out k1.,41, the conditional distribution of (X1:n, Vi:n+1) given
(u1:nt+1,2,79) is given by

n+1 n
pn(vl:n+1,X1:n) X H Z szj(\/l) H k(X,’, \/,', \/j+1) .
i=1 \J, uj<wj i=1

The posterior distribution of Vi.,11 given the random variables
(X1:n, U1:n41, 2, 19) is the joint smoothing distribution of V4.,11 given Xi., when
(Vi)i<i<nt1 are independent with V; ~ Zj.quj @z forall 1 <i<n+1.

Cannot be done explicitly and a Sequential Monte Carlo smoother is used
instead.



Loglikelihood

Figure 2: Results of the EM algorithm btemhometies with 2017-2018 Ligue 1 results.
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Estimated scores at the end of the championship

Number o points

Figure 3: Estimated scores at the end of the championship with btemhometies

parameter estimates: median (dotted line) and first and last deciles (grey area).

Boxplots of the scores obtained with the Block Gibbs Sampler.
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Estimated scores atthe end of the championship

Figure 4: Estimated scores at the end of the championship with parameter sampled
with the target distribution: median (dotted line) and first and last deciles (grey area).
Boxplots of the scores obtained with the Block Gibbs Sampler.
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Some extensions

Numerical results for the nonparametric kernel regularized SMC EM algorithm.

Numerical results for the Bayesian posterior - MCMC.

Regression with covariates for each V.

Challenging issues

Generic assumptions to extract n-regular graphs form general random graphs
with the same limiting loglikelihood.

Lower bounds for L, () — L, (7) as a function of ||, — 7||ev.



