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Getting Started:

Screening for cancer

• Medical diagnostic tests are very rigorous:

– The chance of a positive test given cancer 

Pr(+|CA) = 0.90

– The chance of a negative test given no cancer 

Pr(-|Not) = 0.95

But what is the question? 



What is the question?

• From the perspective of the test:

Given a person has cancer, what is the probability that the 

test is positive?

Pr(+|CA) = 0.90

• From the perspective of the person:

Given that the test is positive, what is the probability that a 

person has cancer?

Pr(CA|+) = ?



What is the answer?

via Bayes’ Theorem

Pr(CA|+) = Pr(CA and +) / Pr(+)

Pr(CA and +) = Pr(CA) Pr(+|CA)

= 0.0009

Pr(+) = 0.0009 + 0.04995 = 0.05085

Pr(CA|+) = 0.0009/0.05085 = 0.02
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Your turn

Suppose the diagnostic test has the same sensitivity and 

specificity but the cancer is more common: 10% of the 

population has a chance of getting this cancer.

What is the probability that a person has cancer, given 

that the test is positive?



Solution

Pr(+|CA) = 0.9

Pr(-|CA) = 0.95

Pr(CA) = 0.1

Pr(+) = Pr(+|CA) Pr(CA) + Pr(+|Not) Pr(Not)

= 0.9*0.1 + 0.05*0.9 = 0.135

Pr(CA|+) = Pr(+|CA) Pr(CA) / Pr(+)

= 0.9*0.1 / 0.135 = 0.67



Bayesian Modelling

p(q|y) = p(y|q) p(q) / p(y)

p(q|y) = p(q) p(y|q) / p(y)

Overall Aim: To learn about unknowns q, given information y



Frequentist approach to modelling

We have some data Y, and want to know about q 

q can be unknown parameters, missing data, latent variables, 

etc. 

Frequentist: estimate q through the likelihood: p(Y|q)

How likely is Y for given values of q ? 

Use moment estimators or maximum likelihood.

But we really want to know about p(q|Y)

Bayes



Why Bayes?

Bayesian methods allow us to:

• Think differently about estimating and interpreting unknown 

parameters

“what are possible values of this parameter?”

• Combine prior information with the data

“what else do I know about this parameter and model?”

• Describe many sources of uncertainty in the model

“how sure am I about the inputs to my model?”

• Describe complex systems using hierarchical or multi-level 

models



Why Bayes?

Bayesian computational methods (such as MCMC) allow us to:

• Use non-standard distributions

• Fit very complex models

• Obtain a very wide variety of estimates

• Make a very wide range of inferences, based directly on 

posterior probabilities



Modern Bayesian Statistics
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Binomial example

y = number of successes from n trials

Unknown: probability of success q

𝑦|𝜃 ~ Bin(𝑛, 𝜃)

𝑝(𝑦|𝜃) ∝ 𝜃𝑦(1 − 𝜃)𝑛−𝑦



Prior

We could use a point prior:

“the population probability can only be 0.1 or 0.3, with 70% and 

30% chance respectively”.

That is: p(q=0.1) = 0.7 and p(q=0.3) = 0.3 

We might not be this certain:

“q could be any value [between 0 and 1] but based on previous 

studies it is more likely to be around 0.1, and very unlikely to be 

larger than 0.8.”

What is an appropriate prior distribution for q?



Possible Prior

𝜃~Beta 𝛼, 𝛽

𝑝(𝜃) ∝ 𝜃𝛼−1(1 − 𝜃)𝛽−1

𝐸 𝜃 =
𝛼

𝛼+𝛽

Var 𝜃 =
𝛼𝛽

𝛼+𝛽 2(𝛼+𝛽+1)
Wikipedia



Beta Distribution

Match the plots to the distributions. 

Beta(1,1), Beta(2,2), Beta(100,100),

Beta(2,1), Beta(10,20), Beta(9,1)
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Posterior

p(q | y)  likelihood  prior

= 𝜃𝑦(1 − 𝜃)𝑦𝜃𝑎−1(1 − 𝜃)𝑏−1

= 𝜃𝑦+𝑎−1 (1 − 𝜃)𝑛−𝑦+𝑏−1

𝜃|𝑦 ~ Beta(𝑦 + 𝑎, 𝑛 − 𝑦 + 𝑏)



Your turn!

Binomial example with 22 successes, 7 failures:

Consider the following priors for q:

Beta(1,1) Beta(9,1) Beta(100,100)

Choose one of these:

1. What is the prior mean for q?

2. What is the posterior distribution for q? 

3. What is the posterior mean  for q?

4. What general conclusions can you make 

about the influence of priors and sample size?



Answers:

Sample proportion = 22/29 = 0.76

Beta(1,1):

Prior mean = (1)/(1+1) = 0.5

Posterior mean = (22+1)/(22+1+7+1) = 0.74

Beta(9,1):

Prior mean = (9)/(9+1) = 0.90

Posterior mean = (22+9)/(22+9+7+1) = 0.79

Beta(100,100):

Prior mean = (100)/(100+100) = 0.5

Posterior mean = (22+100)/(22+100+7+100) = 0.53



Dynamic Updating

If we obtain more data, we do not have to redo all of the 
analysis: our posterior from the first analysis simply becomes 
our prior for this next analysis. 

Binomial example:

Stage 0. Prior p(q) ~ Beta(1,1);  ie E(q)=0.5.

Stage 1. Observe y=22 successes from n=29 trials. 

Likelihood: p(y|q)~Bin(n=29,q);

Posterior:   p(q|y)~Beta(23,8); ie E(q|y) = 0.74

Stage 2: Observe 5 successes from 10 new trials.

Likelihood: p(y|q)~Bin(n=10,q);

Prior p(q)~Beta(23,8); 

Posterior p(q|y)~Beta(28,13); ie E(q|y) = 0.68.



DAG: Binomial model

Model

y ~ Binomial (q, n)

q ~ Beta (a,b)  

y

n

q

ba



Normal Model

Data 𝐷 = 𝑦1, … , 𝑦𝑛 ; 𝜃 = 𝜇 unknown; 𝜎𝑦
2 known

• Likelihood: 𝐷|𝜇, 𝜎𝑦
2~ 𝑁(𝜇, 𝜎𝑦

2)

• Conjugate prior: 𝜇 ~ 𝑁(𝜇0, 𝜎0
2)

• Posterior: 𝜇|𝐷 ~ 𝑁(𝜇𝑛, 𝜎𝑛
2)

𝜇𝑛 =
𝜇0

𝜎0
2 +

𝑛  𝑦

𝜎𝑦
2 /(

1

𝜎0
2 +

𝑛

𝜎𝑦
2)

1

𝜎𝑛
2 =

1

𝜎0
2 +

𝑛

𝜎𝑦
2



Normal Model cont.

Data 𝐷 = 𝑦1, … , 𝑦𝑛 ; 𝜃 = 𝜇 unknown; 𝜎𝑦
2 known

• Prior predictive: 𝑝(𝑦′) =  𝑝 𝑦′ 𝜇, 𝜎𝑦
2 𝑝(𝜇) 𝑑𝜇

=  𝑁 𝑦′|𝜇, 𝜎𝑦
2 𝑁 𝜇 𝜇0, 𝜎0

2 𝑑𝜇

y′ ~ 𝑁(𝜇0, 𝜎0
2 + 𝜎𝑦

2)

• Posterior predictive: 𝑝 𝑦′ 𝐷 =  𝑝 𝑦′ 𝜇, 𝜎𝑦
2, 𝐷 𝑝 𝜇 𝐷 𝑑𝜇

=  𝑁 𝑦′|𝜇, 𝜎𝑦
2 𝑁 𝜇 𝜇𝑛, 𝜎𝑛

2 𝑑𝜇

y′~ 𝑁(𝜇𝑛, 𝜎𝑛
2 + 𝜎𝑦

2)

Posterior predictive variance is the uncertainty due to the observation 

noise 𝜎2 plus the uncertainty due to the parameters, 𝜎𝑛
2



Your turn!

1. Suppose that we observe y = 2 and wish to estimate the 
population mean m. 

2. Assume p(y|m) ~ N(m,s2=3) 
and our prior is p(m) ~ N(m0=0 , s0

2=1).

3. What is the posterior distribution for m?

4. What if the prior is N(2,1)? N(0,10)?

5. What happens to the comparative weight of the likelihood and 
prior as the same size increases? As the prior variance 
increases?



Answers

• Observe y = 2 ;   p(y|m) ~ N(m,s2=3) 

• If prior p(m) ~ N(m0=0 , s0
2=1)

then the posterior is p(m|y) ~ N(m1, s1
2)

posterior mean: m1 = ( 0/1 + 2/3) / (1/1 + 1/3) = 0.50

posterior variance: 1/s1
2 = 1/1 + 1/3 + 1.333 so s1

2 = 0.75 

• If prior p(m) ~ N(m0=2 , s0
2=1)

then the posterior is p(m|y) ~ N(m1, s1
2)

m1 = ( 2/1 + 2/3) / (1/1 + 1/3) = 2

1/s1
2 = 1/1 + 1/3 = 1.333 so s1

2 = 0.75

• If prior p(m) ~ N(m0=0 , s0
2=10)

then the posterior is p(m|y) ~ N(m1, s1
2)

m1 = ( 0/10 + 2/3) / (1/10 + 1/3) = 1.54

1/s1
2 = 1/10 + 1/3 = 0.4433 so s1

2 = 2.31



Dynamic updating – normal model

Kevin Murphy, 2007



Your turn!

Draw a DAG for the Normal model



Hierarchical models

• Useful when observations or parameters have a natural structure.

• Can be used to describe more complex priors.

• Can simplify computational strategies.

𝑦𝑗|𝜃𝑗 , 𝜙 ~ 𝑃(𝑦𝑗|𝜃𝑗 , 𝜙)

𝜃𝑗|𝜙 ~ 𝑃(𝜃𝑗|𝜙)

𝜙 ~ 𝑃(𝜙)



Countries where spiralling whitefly has been detected.
Administrative regions within some countries are shown
when documented. Source (CABI 2004, Monteiro et al.
2005, CABI 2006). Personal communications (J.H.
Martin, 2008, B.M. Waterhouse, 2008)

 The Problem

 Major tropical plant pest

 Lives on 100 hosts +

 Restricts market access to other 
states

 Information

 Literature: Characteristics,
growth, spread

 Detectability (inspectors)

 Surveillance data (> 30 000 
records)

 Scope of modelling

 Local, district and statewide

Hierarchical models in practice:

Spiralling whitefly

Stanaway et al.



• Data Model: Pr(data | incursion process and data parameters)  
– How data is observed given underlying pest extent

• Process Model: Pr(incursion process | process parameters) 
– Potential extent given epidemiology / ecology

• Parameter Model: Pr(data and process parameters)
– Prior distribution to describe uncertainty in detectability, exposure, growth …

• The posterior distribution of the incursion process (and 
parameters) is related to the prior distribution and data by:

Pr(process, parameters | data) 

Pr(data | process, parameters ) Pr( process | parameters ) Pr(parameters)

Hierarchical Bayesian model



Early Warning Surveillance

 Priors

 Surveillance data

 Posterior learning

 modest reduction in 

area freedom

 large reduction in 

estimated extent 

 residual “risk” maps to 

target surveillance



Invasion Parameter Estimates

Useful for local management 



Observation parameter 

estimates

Also learn about:

• Host suitability

• Inspector efficiency



Let’s talk about Priors

• Conjugate priors

• Uninformative (objective, default)

• Weakly informative (vague)

• Informative



Conjugate priors



What did Bayes say?

Bayes: “... it is plain, that in the case of such an event as I there call M, from the 

number of times it happens and fails in a certain number of trials, without knowing any 

thing more concerning it, one may give a guess whereabouts it’s probability is, and, by 

the usual methods computing the magnitudes of the areas there mentioned, see the 

chance that the guess is right. And that the same rule is the proper one to be used in the 

case of an event concerning the probability of which we absolutely know nothing 

antecedently to any trials made concerning it, seems to appear from the following 

consideration; viz. that concerning such an event I have no reason to think that, in a 

certain number of trials, it should rather happen any one possible number of times than 

another.”

Price, on Bayes’ essay: “… the rule must be to suppose the chance the same that it 

should lie between any two equidifferent degrees”

Criticism: not invariant under transformation, eg if p is uniform in a binomial 

setup, p2 is not uniform. 



Plausible “objective” priors

Berger (1985); Ghosh (2011)

1. Bayes-Laplace 𝜃~Uniform Beta(1,1)

2. Jeffreys/reference 𝜃 ∝ det 𝐼(𝜃) Beta(½ , ½)

3. Zellner 𝜃 ∝ 𝜃0(1 − 𝜃)0



Jeffreys’ Prior

Example 1: 𝑦|𝜇 ~ 𝑁 𝜇, 𝜎2 , 𝜎2 known

What is the Jeffreys prior for m?

𝑝 𝑦 𝜇 = 2𝜋𝜎2 exp − 𝑥 − 𝜇 2 /2𝜎2)

𝑝 𝜇 ∝ 𝐼 𝜇 = 𝐸
𝑑

𝑑𝜇
log 𝑓 𝑦 𝜇

2

= 𝐸
𝑦−𝜇

𝜎

2
=  𝑓(𝑦|𝜇)

𝑦−𝜇

𝜎2

2
𝑑𝑦 = 1

Improper, invariant



Jeffreys’ Prior

Example 2:  

𝑦|𝜎 ~ 𝑁 𝜇, 𝜎2 , 𝜇 known

Jeffreys’ prior:

𝑝 𝜎 ∝ 1/𝜎

Improper, invariant

Example 3: Your turn!  

𝑦|𝜃 ~ Bernoulli 𝜃 , 𝑦𝜖 0,1 , 0 ≤ 𝜃 ≤ 1

Jeffreys’ prior?



Jeffreys’ Prior: Binomial

𝑦|𝜃 ~ Bernoulli 𝜃 ∝ 𝜃𝑦(1 − 𝜃)𝑦

𝑝 𝜃 ∝ 𝐼 𝜃 = 𝐸
𝑦

𝜃
−

1 − 𝑦

1 − 𝜃

2

= 𝜃
1

𝜃
−

0

1−𝜃

2
+ (1 − 𝜃)[

0

𝜃
−

1

(1−𝜃)
]2

=
1

√[𝜃 1−𝜃 ]

arcsine distribution, Beta(½, ½)



Other priors

 Weakly Informative

m ~ N(0, large variance)

 Informative (subjective)

m ~ N(M, V)



Normal model, unknown mean

unknown variance

Conjugate:

𝜎−2 ~ Gamma(𝛼, 𝛽)

Weakly/strongly informative:

s ~ Uniform(a,b)



Normal linear regression

𝑦 = (𝑦1, . . , 𝑦𝑛)𝑇 ; 𝑋 = 𝑛 × 𝑘 design matrix

𝑦𝑖 = 𝑥𝑖
𝑇𝛽 + 𝜀𝑖 ; 𝜀𝑖~𝑁(0, 𝜎2)

or equivalently

𝑦𝑖|𝛽, 𝜎2 ~ 𝑁(𝜇𝑖 , 𝜎
2)

𝜇𝑖 = 𝑥𝑖
𝑇𝛽



Conjugate prior

𝑦𝑖|𝛽, 𝜎2 ~ 𝑁(𝜇𝑖 , 𝜎
2)

𝜇𝑖 = 𝑥𝑖
𝑇𝛽

Conjugate priors:

𝑝 𝛽, 𝜎2 = 𝑝 𝛽|𝜎2 𝑝 𝜎2

𝑝 𝛽|𝜎2 ~N(𝛽0, 𝜎2Λ0
−1)

𝑝 𝜎2 ~𝐼𝐺(𝑎0 =
𝜈0

2
, 𝑏0 =

𝜈0𝑠0
2

2
)



Posterior under conjugate prior

𝑝 𝛽, 𝜎2|𝑦, 𝑋 = 𝑝(𝑦 𝛽, 𝜎2 𝑝 𝛽|𝜎2 𝑝 𝜎2

𝑝 𝛽|𝜎2, 𝑦, 𝑋 ~N(𝜇1, 𝜎2Λ1
−2)

𝜇1 = 𝑋𝑇𝑋 + Λ0
−1(Λ0𝜇0 + 𝑋𝑇𝑦)

Λ1 = (𝑋𝑇𝑋 + Λ0)

𝑝 𝜎2|𝑦, 𝑋 ~𝐼𝐺(𝑎1, 𝑏1)

𝑎1 = 𝑎0 + 𝑛/2

𝑏1 = 𝑏0 + 0.5(𝑦𝑇𝑦 − 𝜇1
𝑇Λ0𝜇1 + 𝜇0

𝑇Λ0𝜇0)



Zellner’s g-prior

• Objective prior for b : MVN with covariance matrix 

proportional to the inverse Fisher information matrix for b. 

• The scalar constant g controls the weight assigned to the 

prior.

Prior: 𝛽|𝜑 ~ 𝑀𝑉𝑁(𝛽0, 𝑔𝜑−1 𝑋𝑇𝑋 −1)

Posterior:

𝛽|𝜑, 𝑥, 𝑦 ~ 𝑀𝑉𝑁(𝑞  𝛽 + (1 − 𝑞)𝛽0, 𝑔/𝜑 𝑋𝑇𝑋 −1)

𝑞 = 𝑔/(𝑔 + 1);  𝛽 = 𝑋𝑇𝑋 −1𝑋𝑇𝑦



High dimensional regression

• Spike and slab priors

• Lasso regression (Laplace priors)

• Elastic net (combine lasso and ridge regression)

Wikipedia



Model Comparison

• Bayes factors, posterior odds

𝑝 𝑀2 𝑦
𝑝 𝑀1 𝑦

∝
𝑝(𝑦|𝑀2)

𝑝(𝑦|𝑀1)

𝑝(𝑀2)

𝑝(𝑀1)

• BIC, DIC

BIC = log P(y|q*,M) – p/2 log n

• Posterior predictive fit

• Reversible jump MCMC, Birth and death MCMC

• Model averaging

Bayes Factor

(marginal likelihood ratio,

integrated over parameters)



with Alston, Robert,

Besag et al.

Priors in practice:

CAT-scanning sheep



Bayesian Mixture Models Robert



Bayesian Mixture Models

Latent variable approach: ‘break down’ the likelihood

𝑦𝑖|𝑇𝑖 = 𝑇 ~ 𝑁(𝑦|𝜇𝑇𝑖
, 𝜎𝑇𝑖

2 )



Conditional autoregressive prior:

yi ~ Poisson(mi)

mi = Ei qi

qi = exp(Xb + ni + ei)

ei ~ N(0, se
2)

ni|nj ~ N(mi , si
2)

Bayesian Spatial Models

mi = weighted sum of neighbouring n’s / no. neighbours

si
2 = s2 / no. neighbours



From sheep to cancer with Baade, Duncan

Cramb et al.

Does “place” impact on cancer?

What is the effect of agricultural/environmental exposures?

https://www.youtube.com/watch?v=sleXZ7EiSj8

https://atlas.cancer.org.au/

https://www.youtube.com/watch?v=sleXZ7EiSj8


• Demographic (age, gender, hospital length of stay, etc)

• Comorbidity (other diseases)

• Physiological (heart rate, blood pressure, body temperature, etc)

• Biochemical (white cell count, potassium, sodium, etc)

• Treatment (use of mechanical ventilation, etc)

• Outcome (dead/alive after 30 days)

From cancer to ICU: 

predicting death after heart surgery
with Petra

Graham



Adaptive logistic regression model

𝑦𝑖 ∈ 0,1 ; 𝑖 = 1, . . , 𝑛

𝑦𝑖~ Bernoulli 𝑝𝑖

logit 𝑝𝑖 = log 𝑝𝑖/(1 − 𝑝𝑖) = 𝑋𝛽 + 𝑒𝑖

𝑒𝑖 ~ 𝑁 0, 𝜎𝑒
2

𝛽 ~ 𝑁(𝛽0, 𝜎0
2)

U.S.A. ICU risk score



“Doing” Bayesian Analysis:

Markov chain Monte Carlo

• “Decompose” joint posterior distribution into a sequence of conditional 

distributions – these are often much simpler (eg, simple univariate normals, 

etc)

• Simulate from each conditional distribution in turn. We use a simulation 

method that resembles a Markov chain (so that the new simulated value relies 

only on the previous value), giving a set of simulated values

q (1), q (2), …, q (i) , ... 
which converges to the required conditional, 

The resulting simulations will come from the required joint distribution.

• We can use Markov chain theory to make statements about behaviour and 

convergence of the chain



Markov chain Monte Carlo

• “Decompose” joint posterior distribution into a sequence of conditional 

distributions – these are often much simpler (eg, simple univariate normals, 

etc)

• Simulate from each conditional distribution in turn. We use a simulation 

method that resembles a Markov chain (so that the new simulated value relies 

only on the previous value), giving a set of simulated values

q (1), q (2), …, q (i) , ... 
which converges to the required conditional, 

Under mild assumptions, the resulting simulations will come from the required 

joint distribution.

• Use Markov chain theory to make statements about behaviour and 

convergence of the chain



MCMC Algorithms

• Gibbs sampling: sample from the conditionals themselves

• Metropolis-Hastings: sample from an “easy” distribution and 

accept those values that conform to the conditional distribution

• Lots of variations: reversible jump, slice sampling, particle 

filters, perfect sampling, adaptive rejection sampling, etc

• Need to ensure conditions, eg detailed balance, reversibility 



Gibbs sampling

Suppose you have a joint posterior 𝒑(𝜽𝟏, 𝜽𝟐|𝒚, … )

0. Choose starting values 𝜃1
(0)

, 𝜃1
(0)

1. At ith iteration (i)

Sample 𝜃1
(𝑖)

from p( 𝜃1 | 𝜃2 , 𝑦, … )

Sample 𝜃2
(𝑖)

from p( 𝜃2 | 𝜃1 , 𝑦, … )

2. Repeat step 1 many times

3. Make inferences based on simulated values



Example of Gibbs Sampler

Consider a single observation (y1,y2) from a bivariate 

normal population with unknown mean (q1,q2) and known 

variance-covariance matrix 

s1
2 r2

r2 s2
2 

Let s1
2 = s2

2 = 1

With a uniform prior on q1,q2, the posterior distribution is

q1

q2

y   ~    N y1

y2

, s1
2 r2

r2 s2
2



Gibbs sampler

Sample from

𝜃1 | 𝜃2 , 𝑦 ~ 𝑁(𝑦1 + 𝜌 ( 𝜃2 -𝑦2), 1 − 𝜌2)

Then sample from

𝜃2 | 𝜃1 , 𝑦 ~ 𝑁(𝑦2 + 𝜌( 𝜃1 -𝑦1), 1 − 𝜌2)
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Gibbs sampling for mixtures

0. Initialisation: Choose p(0) and q(0) arbitrarily

For t=1,…

1.1 Allocate observations to components:

Generate T(t) for each observation

1.2 Generate new weights for the components:

Generate p(t)

1.3 Generate new parameters for each component:

Generate q(t)



Other computational methods

• Other MCMC algorithms

– Metropolis Hastings

– Slice Sampling

• Approximations

– Variational Bayes

– INLA

– ABC

– SMC

– Gaussian Processes



Bayesian Software

BUGS: Bayesian analysis using Gibbs sampling (OpenBUGS)
http://www.mrc-bsu.cam.ac.uk/software/bugs/

http://www.openbugs.net

JAGS: Just Another Gibbs Sampler (RJAGS)
http://mcmc-jags.sourceforge.net/

https://www.r-bloggers.com/getting-started-with-jags-rjags-and-bayesian-

modelling/

STAN (interface with R, Matlab, etc)
http://mc-stan.org/

INLA: integrated nested Laplace approximation 
www.r-inla.org

R packages
http://cran.r-project.org/web/views/Bayesian.html

https://www.r-bloggers.com/getting-started-with-jags-rjags-and-bayesian-modelling/


uin dob date tagz age sex seg status type code

12385 ######## ######## 0 21.79603 female Tech servicesemployee Initial Amber

81174 ######## ######## 0 21.71116 female Plant operator surfacecontractorPeriodic Green

991163 ######## ######## 0 21.27584 male Development maintenancecontractor Initial Green

80844 ######## ######## 0 27.37577 female Tech servicesemployee Initial Green

81137 ######## ######## 0 19.66598 male Tech servicesemployee Initial Green

81092 ######## ######## 0 24.37509 female Plant operator surfacecontractor Initial Green

Bayes + Big Data



Models:

• Probabilistic

• Regularised

• Flexible

• Robust

• Transferable

• Adaptive

Computation:

• Scalable 
(parallelisable)

• Subsampling

• Pre-computable

• Approximations 
(eg. ABC, SMC,     

VI, GP)

"In the past ten years, it's hard to find 
anything that doesn't advocate a Bayesian 
approach." -Nate Silver

Inference:

• Estimation

• Optimisation

• Uncertainty 
quantification

• Testing

• Model averaging

Meeting the challenge



with Peterson et al.

Monitoring the Great Barrier Reef



Traditional data source: surveys





Virtual Reef Diver

Modelling

Virtual RealityData Workflow

D
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Web interface

Spatial Predictions

https://www.virtualreef.org.au/



Modelling complex systems



Bayesian Networks

G

E

F

G

E F normal high

yes

low 0.4 0.6

medium 0.2 0.8

high 0.1 0.9

no

low 0.5 0.5

medium 0.6 0.4

high 0.4 0.6

F

low 0.7

medium 0.2

high 0.1



Managing lyngbya in Moreton Bay, 

Australia

• What is the overall scientific consensus 
about the drivers of lyngbya?

• What management actions should be 
taken to reduce lyngbya in the Bay? 
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Most influential factors

1. Available Nutrient Pool

2. Bottom Current Climate

3. Sediment Nutrients

4. Dissolved Iron

5. Dissolved Phosphorous

6. Light

7. Temperature
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“What-if” scenarios

Factor
Change in P(Bloom)

(%)

Available Nutrient Pool 77    (3% - 80%) 

Bottom Current Climate 28   (15% - 43%)

Sediment Nutrient Climate 17   (21% - 38%)

Dissolved Fe 16   (21% - 37%)

Dissolved P 15  (23% - 38%)

Light Climate 14   (18% - 32% )

Temperature 14   (21% - 35%)

Dissolved N 13   (22% - 35%)

Rain – present 10   (25% - 35%)

Light Quantity 9   (21% - 30%)



From Science to Management



An integrated 

approach to 

pest risk 

management

STDF – WTO 

funded project

5 SEA partners 

+ OC: + QUT

Mumford et al.

Biosecurity: “Beyond Compliance”



CP-BN



Economics

adding costs and losses utility nodes

83

J. Holt, A. W. Leach, S. Johnson, D. M. Tu, D. T. Nhu, N. T. Anh, L. N. Quang, 

M. M. Quinlan, P. J. L.Whittle, K. Mengersen and J. D. Mumford (in prep.) 

Bayesian  networks to compare pest control interventions on commodities 

along agricultural production chains.



Ongoing Questions

84

1. How to elicit information from experts?

2. How to combine information from multiple 

experts?

3. How to incorporate uncertainty into BNs?

4. How to combine BNs?



Reflection

and

Final Comments


