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Overview

I Foundations of Bayesian inference

- with an emphasis on approximate models

I Why Bayesian analysis is challenged by new world data

I Computational decision theory and approximate models

- formal methods for robust, scalable, decision analysis

I Concluding remarks



Foundations of Bayesian inference

◦ Bayesian statistics is founded in decision theory and optimal decision
making under uncertainty, principally following Savage (1954)1

◦ Savage postulated a set of axioms (Savage 1954), building on the work
of Good and others, that motivated the adoption of Bayesian updating
as a way to acheive optimal (rationale and coherent) decision making

I DeGroot (1970); reviewed in Fishburn (1986), Bernardo and
Smith (1994)

1although note that Cox (R.T.) axioms underpin Bayes Theorem as an extension of
logic (Cox, 1946) – predominantly referred to in machine learning (Jaynes, 2003)



A Savage World

◦ Consider a (terribly dull) World in which everyone is seen to behave
rationally

I never preferring action A to B when it is expected that A leads to
a worse outcome

◦ and coherently

I in that two individuals with the same starting beliefs, on seeing
the same data, arrive at the same conclusion

◦ Then it is as if they are updating beliefs using probability calculus



◦ That is, their World can be perfectly modelled using a computer and
Bayes theorem

I In the computer model all uncertainty, on both random
components x and unknown constants θ, is specified via a joint
probability model

p(x, θ) = fθ(x)p(θ)

where, in most cases, the choice of “likelihood” (sampling
distribution), f(·), is at least as subjective as the prior p(θ)

I Optimal rationale decisions are taken by maximising expected
rewards R(a, θ) on potential actions a given current state of
partial information in {x, p(θ)}

Âction = arg max
a

∫
R(a, θ)p(θ|x)dθ

◦ In this way, Bayesian statistics provides a prescriptive, operational,
approach to optimal decision making



Key features of Bayesian statistics

Perhaps the most important

All of Bayesian statistics is model based

This has a number of attractions:

◦ You define a joint probability model to express uncertainty on all
relevant unknowns {data, parameters} treated interchangeably

I using generative model structures
I often involving hierarchical model building

◦ Update subjective beliefs via the model, often using Bayes theorem

◦ Bayes separates out the model building (data analysis) from the
decision making

◦ Formally, if the axioms hold, then Bayes uniquely identifies the value
of information

I That is, if the model is “true”, then Bayes provides optimal
information processing



However.....

◦ Bayesian inference is predicated on the model being true

f0(x) = fθ(x) ∃ θ ∈ Θ

I you have to assume that
Nature’s true data generating
mechanism, f0(x), is
contained under the support
of the prior

I and....

All of Bayesian statistics is
model based

◦ But increasing f0(x) is hard to justify or define....

◦ Terminology: M-closed refers to when the true sampling distribution is
contained within the model space; and M-open when no model is true



Bayesian Analysis
◦ Clearly a joint model, f0(x), representing true subjective beliefs is

unobtainable particularly for many modern applications

◦ Should we worry?

◦ But if we do just carry on,
I what does the posterior p(θ|x) actually represent?

I should I simply plug p(θ|x) into decision analysis?

Âction = arg maxa
∫
R(a, θ)p(θ|x)dθ?

◦ It seems clear that sensitivity to modelling assumptions is important
and contextual



(Trivial) Example

Suppose that data, {x1, . . . , xn}, arise from an exponential distribution,

xi ∼ exp(λ)

Yet the statistician fits a normal model, assuming,

xi ∼ N(µ, σ2)

with µ, σ unknown

I Should we (you) be concerned?



Context

I Maybe yes, if the outcome of analysis depends on predicting a future
event Pr(x ∈ [a, b])

I Maybe no, if the outcome of analysis depends on inferring E[X]
(and n is large)

The point being is that it seems inappropriate to separate out the issue of
misspecification (approximation) from the context, use and rationale of
the analysis



Models as metaphors

◦ Of course, models are just simply......models.....and it’s fanciful to
think otherwise

◦ It’s unsurprising that others have given formal consideration to this

◦ G.E.P. Box – “All models are wrong.....”
I synopsis: update like a Bayesian, critique like a frequentist

◦ J. Berger (1980’s) – see Berger (1994) for review
I Sensitivity analysis to prior specification

◦ M. Goldstein (2004 – book) – linear Bayes
I express beliefs on expectation (summary statistic) – a bit ABC like

◦ L. P. Hansen and T. J. Sargent (2008) – econometricians and
robust control theory

I sensitivity analysis in the posterior
I building upon P. Whittle – signal contamination by a malevolent

Nature
I Reviewed, with extensions, in Watson & Holmes (2016) –

Statistical Science



General Bayesian Updating

◦ We have been working on formal methods for Bayesian updating
without the assumption that the models are true

I Bissiri, Holmes & Walker “General Bayesian Updating” (2016)
JRSS-b

I Holmes & Walker “Assigning a value to a power likelihood in a
general Bayesian model” (2017) Biometrika

◦ And today’s talk on

I Lyddon, Walker & Holmes “Nonparametric learning from Bayesian
models with randomized objective functions” (2018) NIPS

I Lyddon, Holmes & Walker “Generalized Bayesian Updating and
the Loss-Likelihood Bootstrap” (2018) archive



Prediction versus Inference

◦ If we are purely interested in prediction then issues of model
misspecification are easier to deal with, as we can cross calibrate
against performance metrics

◦ But a large part of Statistics is concerned with the isolation and
estimation of parameters (that are never observed)

◦ In this latter task model misspecification is more subtle and more
challenging



Q1: What are we learning about?

◦ To begin, if the model is false then what does the parameter formally
represent?

◦ A famous formula gives

p(θ|x) ∝ fθ(x)p(θ)

◦ As more and more data arrives, for most regular {models, priors} the
posterior will concentrate around a point, θ0,

p(θ|x) −−−−→
n→∞

δθ0

that maximises the expected log-likelihood function

θ0 = arg max
θ

∫
log fθ(x)dF0(x)

for data arising from x ∼ F0(x)



What are we learning about?

◦ θ0 is the value that minimizes the KL divergence from the model to
Nature’s true unknown sampling distribution, F0(x), irrespective of
whether the model is misspecified or not as

KL(Fθ||F0) = Entropy + EF0
[− log fθ(x)]∫

log fθ(x)dF0(x) ≈
∞∑
i=1

log fθ(xi)

xi ∼ F0(x)

for Nature’s F0

◦ θ0 is the target of inference and the prior p(θ) should be seen as
specifying beliefs in this context



General Bayesian Updating

◦ In Bissiri et al (2016) we showed that a coherent generalisation of
Bayesian updating was available via the posterior

log p(GB)(θ|x) = C + λ log fθ(x) + log p(θ)

p(GB)(θ|x) ∝ exp[−λR(x, θ)]× p(θ)

◦ This involves replacing the likelihood function with a loss-likelihood
exp[−λR(x, θ)]

◦ Treating R(x, θ) = − log fθ(x) as a loss-function (risk, or negative
utility) targeting the parameter value of interest, θ0

I − log fθ(x) is known as the self-information loss

I But other loss functions can be used depending on the decision
analysis

I This is not an approximation, or pseudo-Bayes, but a valid
subjective representations of beliefs



General Bayesian Updating

◦ This showed that we can derive a valid Bayesian update in the absence
of a “true model”, using loss-functions tuned to the decision analysis

◦ e.g. this allows for valid Bayesian analysis of log-linear
proportional hazard models in survival analysis

◦ However, once you ackowledge that the true sampling distribution lies
outside of the model space you introduce a scale parameter λ ≥ 0 that
quantifies the relative information in the data

◦ One of the beautiful aspects of conventional (M-closed) Bayesian
inference is that this value is precisely specified (Zellner 1988)



Quantifying the value of data

◦ We will concentrate on the use of self-information loss

p(GB)(θ|x) ∝ exp[−λR(x, θ)]× p(θ)

with R(x, θ) = − log fθ(x)

◦ The information constant λ determines the extent of the update in
how far (in measure space) the posterior will move away from the
prior, with λ→ 0 the posterior doesn’t change, and λ→∞ all of the
posterior mass accumulates around the MLE

◦ Learning the learning rate is a non-trivial problem

◦ Recently we have been exploring Bayesian nonparametric approaches
to this



Nonparametric learning for parametric models: a new
approach to Bayesian updating

◦ Imagine that you’ve chosen a parametric (generative) model, fθ(x),
that you’re about to update using data set {xi}ni=1

◦ Suppose now that I provide you with an infinite sample {x̃i}∞i=1 from
Nature’s F0(x)

x̃i ∼ F0(x)

◦ With an infinite sample you would ignore your data and use fθ̃(x)
where you plug in the value

θ̃ = arg max
θ

∑
i

log fθ(x̃i)

as you have the perfect update and all uncertainty in θ is removed

◦ Of course, this assumes that you know F0



Nonparametric Learning

◦ Uncertainty in the optimal value θ0 can be seen to flow directly from
uncertainty in F0

◦ F0 is unknown, but being “Bayesian” we can place a prior on it, p(F ),
for F ∈ F , that should reflect our honest uncertainty

◦ Typically the prior should have broad support unless we have special
knowledge to hand, which is a problem with a parametric modelling
approach that only supports a family of distribution functions indexed
by a finite-dimensional parameter

I parametric Bayes assumes F0 ∈ Fθ but it learns about

θ0 = arg max

∫
log fθ(x)dF0(x)

◦ Fortunately there is a whole field of Bayesian nonparametrics for
learning F , for learning θ



◦ Once a prior for F is chosen, the correct way to propagate uncertainty
about θ comes naturally from the posterior distribution for the law
L[θ(F )|x1:n], via L[F |x1:n], where

θ(F ) = arg max
θ∈Θ

∫
log fθ(x)dF (x)

◦ The posterior for the parameter is then captured in the marginal by
treating F as a latent auxilliary probability measure,

p̃(θ | x1:n) =

∫
F
p(θ, dF | x1:n) =

∫
F
p(θ | F )p(dF | x1:n), (1)

where p(θ|F ) = δθ(F ) assigns probability 1 to θ = θ(F )

◦ We use p̃ to denote the NP update to distinguish it from the
conventional Bayesian posterior p(θ|x1:n) ∝ p(θ)

∏n
i=1 fθ(xi)

◦ In general the nonparametric posterior p̃(θ | x1:n) will be different to
the standard Bayesian update as they are conditioning on different
states of prior knowledge. In particular, as stated above, p(θ|x1:n)
assumes artificially that F0 ∈ FΘ.



Computational Algorithm: using nonparametric models to
train parametric models

The above leads to the following sampling algorithm for θ

1. Draw F ∼ p(F |x1:n) using a nonparametric update

2. Set θ(F ) = arg maxθ∈Θ

∫
log fθ(x)dF (x)

Repeat

Note: if F (x) has finite support {x̃}j on X then this becomes

1. Draw F ∼ p(F |x1:n)

2. Set θ(F ) = arg maxθ∈Θ

∑
i wi log fθ(x̃i)

Repeat

where wi = f (NP )(x̃i), and
∑
i wi = 1

If the draws of F can be made independently, then samples of θ’s can be
drawn in parallel using the NP re-weighted objective functions



Weighted Likelihood Bootstrap

◦ Newton & Rafetry (1994) introduced the “weighted likelihood
bootstrap” that has precisely this form, with randomized weights on
the data samples,

w ∼ Dir(1, 1, ...1)

θ(i) = arg max
∑
i

wi log fθ(xi)

◦ which can be considered as drawing F from a degenerate Dirichlet
Process (Bayesian Bootstrap, Rubin 1974)

◦ the WLB was presented as an approximation to a Bayesian model
under M-closed

I the paper was not particularly well received, in part as (a) it
coincided with the arrival of MCMC that could provide exact
approximation, and (b) it doesn’t allow for inclusion of prior
information on p(θ)

◦ However, we would argue that the WLB provides an exact solution to a
general Bayesian update in M-open, learning about θ0 in the absence
of prior information and a true model space



Posterior Bootstrap

◦ We would like to incorporate prior information via a generative model
fθ(x) into the nonparametric draw F ∼ p(F |x)

◦ Note: the simple idea of regularization with the prior doesn’t work

θ(j) = arg max
θ

[
n∑
i=1

wi log fθ(xi) + log p(θ)

]

consider n = 0



Priors through synthetic-data

◦ To do this we rely on the use of synthetic samples drawn from

θ ∼ p(θ)

x∗ ∼iid fθ(x)

where p(θ) is prior information (or approximate data source)

◦ Then combine the synthetic data with the actual data for the update
with a draw F ∼MDP (F |c, x, x∗) (Antoniak, 1974) where c is
equivalent to an effective sample size in p(θ), with

θ̃ = arg max
θ

n∑
i

wi log fθ(xi) + c
∑
j

wj log fθ(x
∗
j )



◦ Prior specification through synthetic data is well known in parametric
(conjuage) models: Beta-Binomial (Laplace) and Linear regression



Data-centric priors via synthetic observations

I To recap, we represent the prior, p(θ), via (infinite) sample sets of
synthetic observations,

θ(j) ∼ p(θ)

x̃
(j)
i ∼ fθ(j)(x) for i = 1, ......

and construct the synthetic data set X̃(j) = {x̃(j)
i }∞i=1

I In practice for each θ(j) we can sample {x̃i}Ti=1 synthetic
observations for T large

I We can then combine the observed samples {xi}ni=1 with the
pseudo-samples {x̃i}Ti=1

I We can then Bayesian bootstrap the combined data

{x1, . . . , xn, x̃
(j)
1 , . . . , x̃

(j)
T }, redrawing synthetic data at each step,

and putting weight n on the real obervations and weight c on the
synthetic data



E.g: Posterior bootstrap samples for VB inference

◦ Variational Bayes cover are an important class of approximate models
designed for computational tractability and scalable inference

◦ While prediction maybe good, it is known that inference on parameters
is not to be trusted due to (artificial) conditional indepedence
structures engineered into the model

I VB builds an approximation by minimizing KL divergence to an
incorrect model. Why not minimize KL to the correct distribution?

◦ We can use NPL to correct for the known model misspecification

I Take a fast, approximate, update for p(θ|x) ∝ fθ(x)p(θ), using a
Variational Bayes model, fθ∗(x)

I Use the VB posterior p(θ∗|x) as a centering model under a
nonparametric prior

I Use a posterior bootstrap to draw samples, θ(j), that combine
information in the data and information in the prior model



E.g: Posterior bootstrap samples for VB inference on
parameters

◦ Variational Bayes cover are an important class of approximate models
designed for computational tractability and scalable inference

I as you saw earlier today!

◦ While prediction maybe good, it is known that inference on parameters
is not to be trusted due to (artificial) conditional independence
structures engineered into the model

I VB builds an approximation by minimizing KL divergence to an
incorrect model. Why not minimize KL to the correct distribution?

◦ Importance sampling correction can show huge variance and can break
down especially in high-dimensional models

◦ We can explore the use of nonparametric correction, via the posterior
bootstrap, for the VB approximation



Posterior bootstrap VB correction

◦ We can use NPL to correct for the known model misspecification

I Take a fast, approximate, update for p(θ|x) ∝ fθ(x)p(θ), using a
Variational Bayes model, fθ∗(x)

I Use the VB posterior p(θ∗|x) as a centering model under a
nonparametric prior

I Draw synthetic-samples under the VB approximation,
θ(i)∗ ∼ p(θ∗|x) and x̃ ∼ fθ(i)∗(x)

I Use a posterior bootstrap to draw samples, θ̃(j), that provide a
NP correction, combining information in the data and information
in the prior model (through synthetic samples)



Algorithm 1: The Variational Bayes - Posterior Bootstrap

Data: Dataset x1:n = (x1, . . . , xn).
Approximate VB posterior p(θ∗|x1:n), concentration parameter c,
centering model fθ(x).
Number of centering model samples T .
begin

for i = 1, . . . , B do
Draw VB posterior model parameter θ(i)∗ ∼ p(θ∗|x1:n);

Draw posterior synthetic-sample x
(i)
(n+1):(n+T )

iid∼ fθ(i)∗(x);

Generate weights (w
(i)
1 , . . . , w

(i)
n , w

(i)
n+1, . . . , w

(i)
n+T ) ∼

Dirichlet(1, . . . , 1, c/T, . . . , c/T );
Compute parameter update

θ̃(i) =

arg maxθ

{
n∑
j=1

w
(i)
j log fθ(xj) +

T∑
j=1

w
(i)
n+j log fθ(x

(i)
n+j)

}
;

end

Return NP posterior sample {θ̃(i)}Bi=1.
end



VB and EP bivariate Gaussian example from Bishop’s book
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Figure: 95% probability contour for a bivariate Gaussian, comparing VB-NPL
with c ∈ {1, 102, 103, 104} (red, orange, green, blue respectively) to Bayes
posterior (grey dashed line) and a VB approximation (black dashed line).

I The posterior bootstrap provides a one-shot correction of the VB
model to provide exact coverage – it’s clear that IS would be awful

I The VB model regularizes and smooths for small data sets



Fast, robust, Bayesian logistic regression

◦ Consider the Bayes logistic regression model

log

(
p(y = 1|x)

p(y = 0|x)

)
= xβ

◦ Two challenges for a conventional Bayesian update:

I It assumes that the model is true – and all interpretation of
posterior intervals are predicated on this

I We have to use (Polya-Gamma) MCMC with a burn-in and
convergence diagnostics to draw dependent samples approximately
θ ∼ p(θ|x)

◦ Using Nonparametric learning we can draw iid samples in parallel
θ̃ ∼ p̃(θ|x)



Statlog example: german credit data

c = 1 c = 1000 c = 20000
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Figure: Posterior contour plot for β22 vs β21, for VB-NPL (green) and VB
(blue), for three different values of the concentration parameter c. Scatter plot
is a sample from a Bayesian logistic posterior (red) via Polya-Gamma scheme.

I The posterior bootstrap corrects the model to exact coverage

I Run-time 1 million samples: AWS – 20s for VB-NPL, and 30 mins
for MCMC, 95 times speed up

I NPL: no burn-in, no thinning, no need for convergence diagnostics



Properties

I Two Theorems show,

I NPL obtains exact asymptotic (frequentist) interval coverage for
p̃(θ|x) – conventional Bayes update only does if the model
(likelihood) is true

I NPL obtains exact asymptotic (frequentist) prediction calibration

I The approach is trivially parallizable in correcting for (VB or other)
model approximation – but requires an additive log-likelihood
function for data x = {x1, . . . , xn}

log fθ(x) =
∑
i

log fθ(xi)

i.e., conditional independence of the data given the parameter



Central Idea: randomized objective functions

◦ More generally the approach extends to Bayesian inference that
directly targets functionals of interest

θ0 = arg min

∫
R(x, θ)dF0(x)

where we have risk (loss, utility) R(·, ·), leading to samples from
suitably randomized objective functions

θ̃(j) = arg min
∑
i

wiR(xi, θ)

for random weights

◦ Using a mix of real and synthetic data, and where for self-information
loss, R = − log fθ(x) we obtain the Bayesian update for parameters
indexing a model

◦ For example, we can learn about the outputs (optimal predictions) from
machine learning algorithms y = g(x) with additive objective functions
where g(·) is an algorithm that takes x as input and predicts a y



Directly updating from synthetic data
◦ We considered Random forests (RF) to construct a Bayesian RF

(BRF), via NPL with decision trees, under a prior mixing distribution

◦ This enables the incorporation of prior information, via synthetic data
generated from a prior prediction function, in a principled way that is
not available to RF

◦ To demonstrate the ability of BRF to incorporate prior information, we
conducted the following experiment

◦ For 13 binary classification datasets from the UCI ML repository, we
constructed a prior; training; and test dataset of equal size

◦ We measured test dataset predictive accuracy for three methods
relative to an RF trained on the training dataset only:

I BRF (c = 0) (a non-informative BRF with c = 0, trained on the
training dataset only),

I BRF (c > 0) (a BRF trained on the training dataset, incorporating
prior synthetic-samples from a non-informative BRF trained on
the prior dataset

I RF-all (an RF trained on combined training and prior data).



Results
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Figure: Boxplot of classification accuracy minus that of RF, for 13 UCI datasets.

I BRF best performance occurs when c is set equal to the number of
samples in the prior training dataset, in line with intuition of the role
of c as an effective sample size

I BRF−c accuracy is better than that of RF, and close to that of
RF-all

I BRF may have privacy benefits over RF-all as it only requires
synthetic-samples; the prior data and model can be kept private



Conclusions

◦ We are motivated by large scale applications that do not rely on
notions of true models

◦ We wish to avoid MCMC but make use of approximate models

◦ We wish for accurate uncertainty quantification on parameters of
interest

◦ Replacing priors with synthetic-samples, and MCMC with randomized
objective functions through the MDP (Antoniak, 1974)

θ̃ = arg max
θ

n∑
i

wi log fθ(xi) + c
∑
j

wj log fθ(x
∗
j )


◦ On the one hand we are using nonparametrics to correct for parametric

approximations, on the other hand we are using parametric models to
regularize nonparametric inference

Thank you!
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