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What is INLA?

@ INLA do approximate Bayesian inference for a
spesific class of models

@ Thisis the class of latent Gaussian models NEVER MIND
@ Inmost cases, INLA is faster and more accurate  THE BIG DATA
inference than with MCMC HERE'S THE

@ Cannot do all models, then the ones we can do,
we do very very well.

@ Many/most of the important models that people
use, we can do
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Bayesian computing with INLA

This site provides documentation to the R-INLA package which solves a large class of statistical models using the INLA approach.

Recent posts to the discussion group

Google Group

New TopiC c Warkallasrend | | Actons < | | Fiters +  Help

R-inla discussion group shared publicly
Membership and email settings

30 of 1382 topics (99+ unread)tP 6+ Members - About @

Welcome to this discussion group about -infa. Please ask your questions here
in case you think they will be useful for others, othenwise send them to help@r-
inla.org. You are ofcourse free to comment on questions from others as well.

Best,
H

Edit welcome message  Clear welcome message

CAR as a linear combination (11)
By Romin Aguirre-Pérez - 11 posts - 18 views oct19

Recent announcements

Recent Announcements

Preview of new book: Advanced Spatial Mnﬂel in
Stochastic Partial I Equ R and INLA
“This is to announce a forthcoming new book: Advanced Spatial

Modeling with Stochastic Partial Differential Equations Using R and
INLA, by Elias . Krainsk, Virgilio Gomez-Rubio, Haakon Bakka,
Amanda ...

Posted 22 Sep 2018, 12:02 by Havard Rue

Space-time INLA workshop We would like to announce a workshop on SPDE
modeling and INLA, which willtake place in the South of France in Avignon from
November 7 to 9. The workshop ...

Posted 6 Sep 2018, 13:15 by Haskon Bakka

Want to do a PhD? I h fora

KAUST. Application deadline your
Posted 1 Sep 2018, 20:05 by Havard Rue

ks to be expected... Due to my move to KAUST last year, I had to close
‘some of the old

Posted 1 Sep 2018, 17:01 by Havard Rue

Alternative Linux builds The RINLA package comes with Linux binaries built on
Ubuntu1604, The Linux

download.orglLinux-buildsiYou can install .

Posted 24 Jul 2018, 19:42 by Havard Rue
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Volume I: Using GLM and GLMM

XIAOFENG WANG
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@cu( Press

Elena Nleno Anatoly A Saveliev
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EFFICIENT RECONSTRUCTIONS OF COMMON ERA CLIMATE VIA
INTEGRATED NESTED LAPLACE APPROXIMATIONS.

LUIS A. BARBOZA, JULIEN EMILE-GEAY, BO LI, AND WAN HE

ABSTRACT. A Paleoclimate Reconstruction on the Common Era (1-2000AD) was performed
using a Hierarchical Bayesian Model from three types of data: proxy data from PAGES2k
project dataset, HadCRUT4 temperature data from the Climatic Research Unit at the Uni-
versity of East Anglia, and external forcing data from several sources. Five data reduction
techniques were explored with the purpose of achieving a parsimoneous but sufficient set
of proxy equations. Instead of using the MCMC approach to solve for the latent variable,
we employed an INLA algorithm that can approximate the MCMC results and meantime is
much more computationally efficient than MCMC. The role of external forcings was investi-
gated by replacing or combining them with a fixed number of BSplines in the latent equation.
Two different validation exercises confirm that it is feasible to improve the predictive ability

of traditional external forcing models.

L [stat.AP] 14 Oct 2018
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RESEARCH ARTICLE

Chagas disease mortality in Brazil: A Bayesian analysis of age-
period-cohort effects and forecasts for two decades

Taynéna César Simoes B [E], Laiane Félix Borges, Auzenda Conceicdo Parreira de Assis, Maria Vitorias Silva,
Juliano dos Santos, Karina Cardoso Meira B

Version 2 v | Published: September 28, 2018 « https://doi.org/10.1371/journal.pntd.0006798
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# Home > Journals > Physics & Mathematics > 0JS
Articles Archive Indexing Aims & Scope Editorial Board For Authors Publication Fees
0JS> Vol.8 No.5, October 2018 Share This Article: B ﬂ u 1
| OpenAccess |
Spatio-Temporal Variation of HIV Infection in Kenya
Full-Text HTML XML *% Download as PDF (Size:1358KB) PP. 811-830
DOI: 10.4236/0js.2018.85053 48 Downloads 114 Views
Author(s) Leave a comment
Benard Tonuil®, Samuel Mwalili2, Anthony Wanjoya?
Affiliation(s)
1pepartment of Mathematics & Computer Science, University of Kabianga, Kericho, Kenya.
2Department of Statistics & Actuarial Science, Jomo Kenyatta University of Agriculture & Technology, Juja, Kenya.
o = = = : 9ae
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Sociobiology

An international journal on sodal insects

HOME ABOUT LOGIN REGISTER CATEGORIES SEARCH CURRENT ARCHIVES
ANNOUNCEMENTS USER HELP INSTRUCTIONS FOR AUTHORS JOURNAL STATISTICS EDITORIAL BOARD

Home > Vol 65, No 3 (2018) > Nielsen

Experiences in Transplanting Wood Ants into Plantations for
Integrated Pest Management

Jesper Stern Nielsen, Mogens Gissel Nielsen, Joachim Offenberg
Abstract

Ants can function efficiently as biocontrol agents in open field horticulture. Temperate wood ants can control forest pests, including species
damaging forest regeneration plots and fruit plantations. Thus, they possess potential as biocontrol agents in open field horticulture, if they
can persist in these systems. Here we present observationson activity and survival of wood ants transplanted from forests into different types
lanted into a conifer seedli t, an organic and a conventional Christmas tree plantation, and

bayescomp.kaust . ed Oct 2018 6/135
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Some recent applications (this month)

Malaria Journal

Home About Articles Submission Guidelines

Methodology | Open Access

malariaAtlas: an R interface to global malariometric
data hosted by the Malaria Atlas Project

Daniel A. Pfeffer, Timothy C. D. Lucas ¥4, Daniel May, Joseph Harris, Jennifer Rozier, Katherine A. Twohig, Ursula Dalrymple,
Carlos A. Guerra, Catherine L. Moyes, Mike Thorn, Michele Nguyen, Samir Bhatt, Ewan Cameron, Daniel J. Weiss,

Rosalind E. Howes, Katherine E. Battle, Harry S. Gibson and Peter W. Gething

Malaria Journal 2018 17:352

https://doi.org/10.1186/s12936-018-2500-5 = © The Author(s) 2018
Received: 3 July 2018 = Accepted: 29 September 2018 = Published: 5 October 2018
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Research Article & Full Access

Larger plants promote a greater diversity of symbiotic
nitrogen-fixing soil bacteria associated with an Australian
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A three-stage model for short-term extreme wind speed

probabilistic forecasting

Daniela Castro-Camilo', Raphaél Huser!, and Havard Rue!

October 8, 2018

Abstract

Renewable sources of energy such as wind power have become a sustainable alternative to fossil
fuel-based energy. However, the uncertainty and fluctuation of the wind speed derived from
its intermittent nature bring a great threat to the wind power production stability, and to the

T 1 B T o 1 1 B 1

9 Oct 2018
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SCIENTIFIC REPg}RTS

Article = OPEN  Published: 11 October 2018

Spatiotemporal dynamics and risk factors
for human Leptospirosis in Brazil

Oswaldo Santos Baquero B® & Gustavo Machado

Scientific Reports 8, Article number: 15170 (2018)  Download Citation &
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RESEARCH ARTICLE & Full Access

A spatio-temporal approach to estimate patterns of
climate change

M. P. Laurini i

First published: 11 October 2018 | https://doi.org/10.1002/env.2542
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PHILOSOPHICAL TRANSACTIONS  [s <
OF THE ROYAL SOCIETY B Advanc

BIOLOGICAL SCIENCES
Home Content Information for About us Sign up Propose an issue
L)
G

“ Interactive effects of tree size, crown exposure and logging on
drought-induced mortality

Alexander Shenkin, Benjamin Bolker, Marielos Pefia-Claros, Juan Carlos Licona,
Nataly Ascarrunz, Francis E. Putz
Published 8 October 2018. DOI: 10.1098/rstb.2018.0189
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Colaiste na Trionéide, Baile Atha Cliath
Trinity College Dublin
Ollscoil Atha Cliath | The University of Dublin

The Environmental Epidemiology of

Amyotrophic Lateral Sclerosis in Europe

A dissertation submitted to Trinity College Dublin in fulfilment for the award of
Doctor of Philosophy (PhD)

James PK Rooney
B.Sc., M.B. B.Ch. B.A.O., M.Sc.
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Active Users
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4K o Monthly
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Locations of users

Countries
Country Users v
Presence
25,039
% of Total: 100.00% (25,039)
1. EE United States 6,474 (25.62%)
2. EE United Kingdom 2,945 (11.66%)
3. [*l Canada 1,427 (5.65%)
) 4. Brazil 1,205 (4.77%)
4 > 5. I= Spain 993 (3.93%)
Ty
> 6. [l Australia 872 (3.45%)
4 v
e 7. [ France 855 (3.38%)
1 — 17t
8. Germany 791 (3.13%)
9. = Norway 718 (2.84%)
10. @ China 706 (2.79%)
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Respository

] n,1nc 1U5]_ bitbucket.org/hruerinla/src/default/
c o [T Havard Rue
R-INLA
Q <> Source
This s the respoitory for the RINLA package and related projects
A ¢ Commits
Iy defaur ~ Filter files
§s  Branches
19 Pullrequests [ "W
@ Pipelines Name Size  Lastcommit
& Deployments @B buildconfigs
@ issues B build-user/linux
B wiki B extibs
B Downloads BB fmesher
@ Boards [
(3] settiogs W inlavemote
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The code

Respository

M C @ [B) Atession,nc 1Us] bitbucket.org/hrue/rinta/src/default/
o R_W Havard Rue
R-INLA
Q <> Source
This is the respoitory for the RINLA package and related projects
- ¢ Commits
g9 default v | Fiterfiles
15 Branches
19 Pullrequests -
©  Pipelines Name Size  Last commit
@ Deployments I build-configs
@ issues 8 build-user/linux
B wiki BB extibs
B Downloads I fmesher
@ Boards [p—
Q setings B8 inlaemote
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Commits

D Allbranches ~
Author

@ Havard Rue

@ Havard Rue

Hévard Rue

Havard Rue

®
@ Havord Rue
®

Havard Rue

@ Havard Rue

@ Havard Rue

1| @ Havara re

Havard Rue

Havard Rue

bayescomp.kaust.edu.sa

Commit

2570038

cassear

30192

soasdsr

ssr0a12

asaseas

abbardo

1795319

30ad320

630ate2

Commits

)]

2
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@ Q Find commits

Message
‘Added tag Version_18.10.17 for changeset c386¢01105bd

Updated NEWS  Verston 10.10.17
Removed tag Version.18.10.17

‘Added tag Version_18.10.17 for changeset 8679312¢23b1

Removed tag Version_18.10.17

‘Smallfix to my.update() due to the new exportof cl.. 1 seall-fixes

‘Added tag Version_18.10.17 for changeset 7c7a78ea318a

Ran indent

Cleaned up some of the new code b dnatern

Forgot a debug statement

Ran top make. Export the inla-class as suggested by T.Onkelinx, than.

Date
5days ago
5days ago
5days ago
5days ago
5days ago
5days ago
5days ago
5days ago

5days ago

20181016

20181016
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@ The issue of Bayesian computing is not “solved” even though MCMC is
available
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@ Hierarcical models are more difficult for MCMC
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@ Hierarcical models are more difficult for MCMC

@ A main obstacle for Bayesian modelling is the issue of “Bayesian
computing”
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@ The issue of Bayesian computing is not “solved” even though MCMC is
available

@ Hierarcical models are more difficult for MCMC

@ A main obstacle for Bayesian modelling is the issue of “Bayesian
computing”

@ There are (somewhat) generic tools are available JAGS/stan, based on
MCMC
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@ The issue of Bayesian computing is not “solved” even though MCMC is
available

@ Hierarcical models are more difficult for MCMC
@ A main obstacle for Bayesian modelling is the issue of “Bayesian
computing”

@ There are (somewhat) generic tools are available JAGS/stan, based on
MCMC

@ Still slower than we would like them to be
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GLM/GAM/GLMM/GAMM/++
@ Perhaps the most important class of statistical models
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@ Perhaps the most important class of statistical models
@ Many “models” can be cast in to this class without knowing
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GLM/GAM/GLMM/GAMM/++
@ Perhaps the most important class of statistical models
@ Many “models” can be cast in to this class without knowing
@ No good (enough) MCMC solution around
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GLM/GAM/GLMM/GAMM/++
@ Perhaps the most important class of statistical models
@ Many “models” can be cast in to this class without knowing
@ No good (enough) MCMC solution around
@ Many suggested approaches does not scale well computationally
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Linear predictor
n = ul +A,3+ZB,'V,'+€
i

where
@ A: covariates, with fixed effects 3 ~ N (0, X)
@ B;: weights, with random effects v; ~ A/(0, 21)
@ ¢;: possible Gaussian noise
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Bayesian GLM/GAM/GLMM/GAMM/+++

Linear predictor
n =l +A,3+ZBIV/'+€
!
where
@ A: covariates, with fixed effects 3 ~ N (0, X)
@ B;: weights, with random effects v; ~ A/(0, 21)
@ ¢;: possible Gaussian noise

Observations

y ~ 7(y|n.) Hvry,\n,

Havard Rue (haavard.rue@kaust.edu.sa) bayescomp.kaust.edu.sa Oct 2018 14 /135
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Smoothing of binary/integer time-series
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Smoothing of binary/integer time-series

@ Datais sequence of 0,1and 2’s
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Smoothing of binary/integer time-series

@ Datais sequenceof 0,1and 2’s
@ Binomial data where probability for a success p;, depends on time t

. _&xp(m)
1+ exp(nt)
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»
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Smoothing of binary/integer time-series

@ Datais sequenceof 0,1and 2’s
@ Binomial data where probability for a success p;, depends on time t

. _&xp(m)
1+ exp(nt)

@ Linear predictorn: = u + 5S¢t + ur + vy, t=1,...,n
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We can reinterpret the model as
0 ~ m(0)
x|6 ~ w(x|6)=N(0,X(6))
yIx6 ~ [[=0ilm0)
i
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Bayesian GLM/GAM/GLMM/GAMM/+++

Example | &

M

(X

We can reinterpret the model as
0 ~ m(0)
x|6 ~ w(x|6)=N(0,X(6))
yIx6 ~ [[=0ilm0)
i

e dim(x) could be large 10%-10°
@ dim(@)issmall1-5
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Bayesian GLM/GAM/GLMM/GAMM/+++

Precision matrix (n, u, v, u, ) N = 100, M = 5.
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Bayesian GLM/GAM/GLMM/GAMM/+++

Reordered precision matrix
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Bayesian GLM/GAM/GLMM/GAMM/+++

Cholesky triangle of the reordered precision matrix
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Example II: Disease mapping

Cnp

(D))

@ Datay; ~ Poisson(Eexp(n;))
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Example II: Disease mapping

=

<D

)]

)

G

@ Datay; ~ Poisson(Eexp(n;))
@ Log-relative risk

ni = p+ Ui+ v+ f(c)
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Bayesian GLM/GAM/GLMM/GAMM/+++

A
Example II: Disease mapping &P
@ Datay; ~ Poisson(Eexp(n;))
@ Log-relative risk
ni = p+ Ui+ v+ f(c)
@ Structured/Spatial componentu
oS S = T 9Dacr
Havard Rue (haavard.rue@kaust.edu.sa)

bayescomp.kaust.edu.sa



Bayesian GLM/GAM/GLMM/GAMM/+++

2

Example II: Disease mapping <D

)]

)

G

@ Datay; ~ Poisson(E;exp(n;))
@ Log-relative risk
ni = p+ui+ v+ f(c)
@ Structured/Spatial componentu
@ Unstructured component v

Havard Rue (haavard.rue@kaust.edu.sa) bayescomp.kaust.edu.sa



Bayesian GLM/GAM/GLMM/GAMM/+++

2

Example II: Disease mapping <D

X))

G

@ Datay; ~ Poisson(E;exp(n;))
@ Log-relative risk

ni = p+ui+ v+ f(c)
@ Structured/Spatial componentu
@ Unstructured component v

@ Smooth effect of a covariate ¢

u]
8
I
il
it
N
o
Pl
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Bayesian GLM/GAM/GLMM/GAMM/+++

Precision matrix (n, u, v, u, f)
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Reordered precision matrix

<
“
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Bayesian GLM/GAM/GLMM/GAMM/+++

Cholesky triangle of the reordered precision matrix

<
-
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Example Il &

M

(X

We can reinterpret the model as
0 ~ m(0)
x|6 ~ w(x|6)=N(0,X(6))
yIx6 ~ [[=0ilm0)
i

e dim(x) could be large 10%-10°
@ dim(@)issmall1-5
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LG
What we have learned so far (l)

This model-construct

0 ~ m(0)
x|0 ~ 7w(x|0)=N(0,Z(0))
ylx6 ~ HW(YI‘MI,O)

occurs in seemingly unrelated, statistical models.

Latent Gaussian models!

Havard Rue (haavard.rue@kaust.edu.sa) bayescomp.kaust.edu.sa Oct 2018
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Summarising the Examples

Further Examples )

)]

)

(

@ Dynamic linear models
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Summarising the Examples

2

Further Examples ©Cn

)]

)

G

@ Dynamic linear models
@ Stochastic volatility
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Summarising the Examples

Further Examples )

)]

)

(

@ Dynamic linear models
@ Stochastic volatility
@ Generalised linear (mixed) models
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Summarising the Examples Latent Gaussian Models

Further Examples =

@ Dynamic linear models

@ Stochastic volatility

@ Generalised linear (mixed) models

@ Generalised additive (mixed) models
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Summarising the Examples Latent Gaussian Models

Further Examples "

Dynamic linear models

Stochastic volatility

Generalised linear (mixed) models
Generalised additive (mixed) models
Measurement error models
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Summarising the Examples Latent Gaussian Models

Further Examples

Dynamic linear models

Stochastic volatility

Generalised linear (mixed) models
Generalised additive (mixed) models
Measurement error models

Spline smoothing
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Summarising the Examples Latent Gaussian Models

Further Examples

»

(]

Dynamic linear models

Stochastic volatility

Generalised linear (mixed) models
Generalised additive (mixed) models
Measurement error models

Spline smoothing

Semiparametric regression
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Summarising the Examples Latent Gaussian Models

Further Examples

»

(]

Dynamic linear models

Stochastic volatility

Generalised linear (mixed) models

Generalised additive (mixed) models
Measurement error models

Spline smoothing

Semiparametric regression

Space-varying (semiparametric) regression models
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Summarising the Examples Latent Gaussian Models

Further Examples

Dynamic linear models

Stochastic volatility

Generalised linear (mixed) models

Generalised additive (mixed) models
Measurement error models

Spline smoothing

Semiparametric regression

Space-varying (semiparametric) regression models
Disease mapping
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Summarising the Examples Latent Gaussian Models

Further Examples

Dynamic linear models

Stochastic volatility

Generalised linear (mixed) models

Generalised additive (mixed) models
Measurement error models

Spline smoothing

Semiparametric regression

Space-varying (semiparametric) regression models
Disease mapping

Log-Gaussian Cox-processes
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Summarising the Examples Latent Gaussian Models

Further Examples

Dynamic linear models

Stochastic volatility

Generalised linear (mixed) models
Generalised additive (mixed) models
Measurement error models

Spline smoothing

Semiparametric regression
Space-varying (semiparametric) regression models
Disease mapping

Log-Gaussian Cox-processes
Model-based geostatistics (*)
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Summarising the Examples Latent Gaussian Models

Further Examples

Dynamic linear models

Stochastic volatility

Generalised linear (mixed) models
Generalised additive (mixed) models
Measurement error models

Spline smoothing

Semiparametric regression
Space-varying (semiparametric) regression models
Disease mapping

Log-Gaussian Cox-processes
Model-based geostatistics (*)
Spatio-temporal models
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Summarising the Examples Latent Gaussian Models

Further Examples

Dynamic linear models

Stochastic volatility

Generalised linear (mixed) models
Generalised additive (mixed) models
Measurement error models

Spline smoothing

Semiparametric regression
Space-varying (semiparametric) regression models
Disease mapping

Log-Gaussian Cox-processes
Model-based geostatistics (*)
Spatio-temporal models

Survival analysis
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Summarising the Examples Latent Gaussian Models

Further Examples

Dynamic linear models

Stochastic volatility

Generalised linear (mixed) models
Generalised additive (mixed) models
Measurement error models

Spline smoothing

Semiparametric regression
Space-varying (semiparametric) regression models
Disease mapping

Log-Gaussian Cox-processes
Model-based geostatistics (*)
Spatio-temporal models

Survival analysis

Joint survival/longitudional models
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Summarising the Examples Latent Gaussian Models

Further Examples

Dynamic linear models

Stochastic volatility

Generalised linear (mixed) models
Generalised additive (mixed) models
Measurement error models

Spline smoothing

Semiparametric regression
Space-varying (semiparametric) regression models
Disease mapping

Log-Gaussian Cox-processes
Model-based geostatistics (*)
Spatio-temporal models

Survival analysis

Joint survival/longitudional models
+++
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Summarising the Examples

What we have learned so far (ll) Gon

)]

)

(

The precision matrix of the latent field

is sparse and this will play a key role!
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ot e
What we have learned so far (Il)

The precision matrix of the latent field

is sparse and this will play a key role!

Two important benefits

@ Building models through conditioning (“hierarchical models”)
@ Computational
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Summarising the Examples

Building models through conditioning GSm

)]

)

(

If
° x ~N(0,Q;")
° ylx ~N(x,Q")
then

Havard Rue (haavard.rue@kaust.edu.sa) bayescomp.kaust.edu.sa



Summarising the Examples

Building models through conditioning WS

D)

Q@

If
° x~N(0,Q")
° ylx ~N(x,Q,7)

then
Qx+Q _Q
Qey) = [ "ch/y Cbﬁ}
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TS L S
Building models through conditioning &P

If
° x ~N(0,Q;")
° ylx ~N(x,Q")
then
Qx + Q _Q
Qey) = [ -Q ’ ny}

Not so nice expressions using the Covariance-matrix
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Summarising the Examples

Computational benefits G

)]

)

(

@ Models we have seen gives a sparse precision matrix
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Summarising the Examples

2

Computational benefits CSn

X))

(]

@ Models we have seen gives a sparse precision matrix
@ These are much faster to compute with, than dense matrices
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Summarising the Examples Gaussian Markov random fields

Computational benefits

@ Models we have seen gives a sparse precision matrix
@ These are much faster to compute with, than dense matrices
@ Special case: Kalman-filter algorithms

Havard Rue (haavard.rue@kaust.edu.sa) bayescomp.kaust.edu.sa Oct 2018

<D

(

25/135



Summarising the Examples Gaussian Markov random fields

Computational benefits

@ Models we have seen gives a sparse precision matrix
@ These are much faster to compute with, than dense matrices
@ Special case: Kalman-filter algorithms
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Summarising the Examples Gaussian Markov random fields

Computational benefits

@ Models we have seen gives a sparse precision matrix
@ These are much faster to compute with, than dense matrices
@ Special case: Kalman-filter algorithms

Tasks:
@ Factorize Qinto Q = LL' (Cholesky)
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Summarising the Examples Gaussian Markov random fields

Computational benefits

»

(]

@ Models we have seen gives a sparse precision matrix
@ These are much faster to compute with, than dense matrices
@ Special case: Kalman-filter algorithms

Tasks:
@ Factorize Qinto Q = LL' (Cholesky)
@ SolveQx =b,Lx =borL’x=b
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Summarising the Examples Gaussian Markov random fields

Computational benefits

@ Models we have seen gives a sparse precision matrix
@ These are much faster to compute with, than dense matrices
@ Special case: Kalman-filter algorithms

Tasks:
@ Factorize Qinto Q = LL' (Cholesky)
@ SolveQx =b,Lx =borL’x=b
e Computediag(Q™")
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properties

Numerical algorithms for sparse matrices: scaling

))

(((»

Cholesky factorization of “sparse” SPD' matrix
@ Time: O(n)

'Symmetric and positive definite
Havard Rue (haavard.rue@kaust.edu.sa)
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Summarising the Examples Gaussian Markov random fields

Numerical algorithms for sparse matrices: scaling &P
properties

Cholesky factorization of “sparse” SPD' matrix
@ Time: O(n)
@ Space: O(n3/?)

'Symmetric and positive definite
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Summarising the Examples Gaussian Markov random fields

Numerical algorithms for sparse matrices: scaling &P
properties

Cholesky factorization of “sparse” SPD' matrix
@ Time: O(n)
@ Space: O(n3/?)
@ Space-time: O(n?)

'Symmetric and positive definite
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Summarising the Examples Gaussian Markov random fields

Numerical algorithms for sparse matrices: scaling &P
properties

Cholesky factorization of “sparse” SPD' matrix
@ Time: O(n)
@ Space: O(n3/?)
@ Space-time: O(n?)

'Symmetric and positive definite
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Summarising the Examples Gaussian Markov random fields

Numerical algorithms for sparse matrices: scaling
properties

Cholesky factorization of “sparse” SPD' matrix
@ Time: O(n)
@ Space: O(n3/?)
@ Space-time: O(n?)

This is to be compared with general O(n®) algorithm for the Cholesky
factorization of a SPD dense matrix.

'Symmetric and positive definite
Havard Rue (haavard.rue@kaust.edu.sa) bayescomp.kaust.edu.sa Oct 2018
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Summarising the Examples

2

Gaussian Markov random fields Cn

)]

)

(

@ Gaussians with a sparse precision matrix are called Gaussian Markov
random fields (GMRFs)
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Summarising the Examples Gaussian Markov random fields

Gaussian Markov random fields

@ Gaussians with a sparse precision matrix are called Gaussian Markov
random fields (GMRFs)

@ Good computational properties through numerical algorithms for
sparse matrices
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Summarising the Examples Gaussian Markov random fields

Gaussian Markov random fields

D

(]

@ Gaussians with a sparse precision matrix are called Gaussian Markov
random fields (GMRFs)

@ Good computational properties through numerical algorithms for
sparse matrices

@ Very useful in other settings as well
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Summing up

2

Summary i

)]

)

G

Three main ingredients in INLA

@ Gaussian Markov random fields
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Summing up

2

Summary i

)]

)

G

Three main ingredients in INLA

@ Gaussian Markov random fields
@ Latent Gaussian models
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Summing up

2

Summary &

)]

)

G

Three main ingredients in INLA

@ Gaussian Markov random fields
@ Latent Gaussian models
@ Laplace approximations
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Summing up

2

Summary &

)]

)

G

Three main ingredients in INLA

@ Gaussian Markov random fields
@ Latent Gaussian models
@ Laplace approximations
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Summary

Three main ingredients in INLA

@ Gaussian Markov random fields
@ Latent Gaussian models
@ Laplace approximations

which together (and ++++...) gives a very very nice tool for Bayesian
inference

@ quick
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Summary

Three main ingredients in INLA

@ Gaussian Markov random fields
@ Latent Gaussian models
@ Laplace approximations

which together (and ++++...) gives a very very nice tool for Bayesian
inference

@ quick

@ accurate (relative error)
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Summary

»

(]

Three main ingredients in INLA

@ Gaussian Markov random fields
@ Latent Gaussian models
@ Laplace approximations

which together (and ++++...) gives a very very nice tool for Bayesian
inference

@ quick

@ accurate (relative error)

@ good scaling properties
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Summary

»

(]

Three main ingredients in INLA

@ Gaussian Markov random fields
@ Latent Gaussian models
@ Laplace approximations

which together (and ++++...) gives a very very nice tool for Bayesian
inference

@ quick
@ accurate (relative error)

@ good scaling properties

@ +++
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Illustrative Example

Spatial survival: example =

Leukaemia survival data (Henderson et al, 2002, JASA), 1043 cases.

Fig 1. Leukaemia survival data: districts of Northwest England and locations of the observations.
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Illustrative Example

Spatial survival: example

) ]

()

log(hazard) = log(baseline)
+f(

+f(deprivation index)
+f(spatial)

+sex

+age

white blood cell count)

Fig 1. Leukaemia survival data: districts of Northwest England and locations of the obse
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R-code

data(Leuk)
g = system.file("demodata/Leuk.graph", package="INLA")

formula = inla.surv(Leuk$time, Leuk$cens) ~ sex + age +
f(inla.group(wbc), model="rw2") +
f(inla.group(tpi), model="rw2") +
f(district, model="besag", graph = g) +

r = inla(formula, family="coxph", data = Leuk)

plot(r)
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Illustrative Example

PostDens [(Intercept)] PostDens [sex] PostDens [age]
v ©
- w0 3
2
o | < A
- S 4
o™ - —
wn -
S ] o 3 -
- 4
o | 4 4
° T T T T ° T T T T ° T T T T T
-1 -10 -9 -8 -02 00 02 04 0.025 0035  0.045
Mean = -9.407 SD = 0.265 Mean = 0.08 SD = 0.069 Mean = 0.036 SD = 0.002
=} = = E A
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Illustrative Example

inla.group(wbc)

15
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0.0
|

-05
|

-1.0
|

0 100 200 300 400 500

PostMean 0.025% 0.5% 0.975%
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Illustrative Example
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Illustrative Example
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Illustrative Example

baseline.hazard
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PostMean 0.025% 0.5% 0.975%
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Illustrative Example

Some internal statistics W

)]

)

(

Running time on my laptop: 2.3 seconds
@ Factorise Q (dim = 2453): 455 times
@ Solve Qx = b: 3160 times
@ Partially invert Q: 28 times
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Part |l

Theory and methods
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What is a GMRF?

What is a Gaussian Markov random field (GMRF)? Uon

)

(

A GMRF is a simple construct
@ Anormaldistributed random vector

x=(x,...,x)"
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What is a Gaussian Markov random field (GMRF)?

A GMRF is a simple construct
@ Anormaldistributed random vector

x=(x,...,x)"
@ Additional Markov properties:
Xi L x| X

x; and x; are conditional independent (ClI).

Havard Rue (haavard.rue@kaust.edu.sa) bayescomp.kaust.edu.sa
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What is a GMRF?

Ifx; L x; | x_j forasetof {i,j}, then we need to constrain the
parametrisation of the GMRF.
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What is a GMRF?

Ifx; L x; | x_j forasetof {i,j}, then we need to constrain the
parametrisation of the GMRF.

@ Covariance matrix: difficult
@ Precision matrix: easy

Havard Rue (haavard.rue@kaust.edu.sa) bayescomp.kaust.edu.sa



What is a GMRF?

Conditional independence and the precision matrix =

O

The density of a zero mean Gaussian

7(x)  |Q]"2 exp (—%xTox)
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Conditional independence and the precision matrix s

)]

)

(

The density of a zero mean Gaussian

7(x)  |Q]"2 exp (—%xTox)

Constraining the parametrisation to obey Cl properties

Theorem
XiLxj|x_j <= Q;=0 J
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T i
Global Markov property

Q.

Letx bea GMRFwrtG = (V,€).
The global Markov property:

XAJ_XB‘XC

for all disjoint sets A, B and C where C separates Aand B, and A and B are
non-empty.
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Simple example of a GMRF o

M

(X

Auto-regressive process of order 1
Xt | Xe—1y oo X1~ N(éxe—1,1), t=2,...,n
and x; ~ N(0,(1— ¢*)™).

X1 (x2) /\/\/)
/\/\J\/\/\
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.l i e 2
Simple example of a GMRF

Auto-regressive process of order 1
Xt | Xe—1y oo X1~ N(éxe—1,1), t=2,...,n
and x; ~ N(0,(1— ¢*)™).

x1/xz\/\/x4\/xs\@
AN NN NN

Tridiagonal precision matrix

T =9
—¢ 1+¢* —¢
Q=
—¢ 1+¢* —¢
_¢) 1
Havard Rue (haavard.rue@kaust.edu.sa) bayescomp.kaust.edu.sa
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Part Il

Simulation algorithms for GMRFs.
Numerical methods for sparse matrices.
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Basic numerical linear algebra Cholesky factorisation and the Cholesky triangle

Cholesky factorisation =0

@ IfA > 0bean x n positive definite matrix, then there exists a unique
Cholesky triangle L, such that L is a lower triangular matrix, and

A=1LLT
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Basic numerical linear algebra Cholesky factorisation and the Cholesky triangle

Cholesky factorisation

@ IfA > 0bean x n positive definite matrix, then there exists a unique
Cholesky triangle L, such that L is a lower triangular matrix, and

A=1LL"

@ Computing L costs n®/3 flops.
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Basic numerical linear algebra Cholesky factorisation and the Cholesky triangle

Cholesky factorisation

(]

@ IfA > 0bean x n positive definite matrix, then there exists a unique
Cholesky triangle L, such that L is a lower triangular matrix, and

A=1LL"

@ Computing L costs n®/3 flops.
@ This factorisation is the basis for solving systems like

Ax=b or AX=B
for k right hand sides, or equivalently, computing

x=A"b or X=A"B
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Basic numerical linear algebra

Algorithm 1 Solving Ax = b where A > 0

1: Compute the Cholesky factorisation, A = LL”
2: Solvelv=>b

3: SolveLl’x =v

4: Returnx
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Basic numerical linear algebra Solving linear equations

Algorithm 1 Solving Ax = b where A > 0

1: Compute the Cholesky factorisation, A = LL"
2: Solvelv=0»b

3: SolveL’x =v

4: Returnx

Step 2 is called forward-substitution and cost O(n?) flops.

Al

The solution v is computed in a forward-loop

1 i—1 .
b= =Y t), =1 m
ii .
J=1
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Basic numerical linear algebra Solving linear equations

Algorithm 1 Solving Ax = b where A > 0

1: Compute the Cholesky factorisation, A = LL"
2: Solvelv=»>b

3: SolveL’x =v

4: Returnx

Step 3 is called back-substitution and costs O(n?) flops.

N

The solution x is computed in a backward-loop
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Basic numerical linear algebra

To compute A~'B where Bis an x k matrix, we do this by computing the
solution X of
AX; = B;

for each of the k columns of X.
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Basic numerical linear algebra Avoid computing the inverse

To compute A~'B where Bis an x k matrix, we do this by computing the
solution X of
AX; = B;

for each of the k columns of X.

Algorithm 2 Solving AX = Bwhere A > 0

: Compute the Cholesky factorisation, A = LL"
: forj=1tokdo
Solve Lv = B;
Solve L'X; = v
end for
: Return X

Havard Rue (haavard.rue@kaust.edu.sa) bayescomp.kaust.edu.sa Oct 2018 44 /135



Samplex ~ N (u, Q") &

M

(X

IfQ = LL" and z ~ N/(0, 1), then x defined by
L'x =z
has covariance

Cov(x) = Cov(L™"z) = (LL") ' = Q"
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Samplex ~ N (u, Q")

(]

IfQ = LL" and z ~ N/(0, 1), then x defined by
L'x =1z
has covariance

Cov(x) = Cov(L™"z) = (LL") ' = Q™"

Algorithm 3 Samplingx ~ N (u,Q ")

Compute the Cholesky factorisation, Q = LL"
Samplez ~ N(0,1)

SolveLl’v =1z

Computex =p+v

Return x

RANE R
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Unconditional sampling

The log-density is

n
n 1
log (x) = 3 log 2w + E log Lij — E(X — ) Qx — ©)
=1 .
=q
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Unconditional sampling

The log-density is

n
n 1
log (x) = 3 log 2w + E log Lij — E(X — ) Qx — ©)
=1 .
=q

If x is sampled, then
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Unconditional sampling Evaluating the log-density

The log-density is

n ! 1
log m(x) = 3 log 2 + Z log Ljj — E(X — ) Q(x — p)

i=1

=q
If x is sampled, then
otherwise, compute this term as
QuU=X—p

e v=Qu
eg=u'v
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Part IV

Numerical methods for sparse matrices
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Introduction

Numerical methods for sparse matrices &P

Computations on GMRFs can be expressed such that the main tasks are
@ compute the Cholesky factorisation of Q = LL, and
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Introduction

Numerical methods for sparse matrices

) ]

()

Computations on GMRFs can be expressed such that the main tasks are
@ compute the Cholesky factorisation of Q = LL, and
Q solvelv =bandL'x = z.
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Introduction

Numerical methods for sparse matrices

Computations on GMRFs can be expressed such that the main tasks are

@ compute the Cholesky factorisation of Q = LL, and
Q solvelv =bandL'x = z.

© The second task is much-faster than the first, but sparsity will be of
advantage also here.
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Introduction

The questions are
@ why a sparse Q allow for fast factorisation,
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Introduction

The questions are
@ why a sparse Q allow for fast factorisation,
@ how we can take advantage of it,
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Introduction

The questions are
@ why a sparse Q allow for fast factorisation,
@ how we can take advantage of it,
@ why we gain if we permute the vertics before factorising the matrix
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Cholesky factorisation

How to compute the Cholesky factorisation e

)]

)

(

Q=1LL"
J j1
Q=Y Lulw,  vi=Qj— > Lukj, i>],
k=1 k=1
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Cholesky factorisation

How to compute the Cholesky factorisation e

)]

)

(

Q=1LL"
J j1
Q=Y Lulw,  vi=Qj— > Lukj, i>],
k=1 k=1

Then
2 _ .
° Lﬁ-—»w,and
[+ L,'ijj =v;fori > J.
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How to compute the Cholesky factorisation

Q=1LL"

Jj—1
Qj = ZL,kL,k, Vi=Qj— Y Lilj, 1>},
k=1

Then
° L2 = vj,and
° LUL” =v;fori>j.
If we know {v;} for fixed j, then

ij:\/Vj and L,'j:Vf/\/vj, for i:j-|-1,...,n

This gives the jth columniin L.

Havard Rue (haavard.rue@kaust.edu.sa) bayescomp.kaust.edu.sa
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Cholesky factorisation

Cholesky factorization of Q > 0

Algorithm 4 Computing the Cholesky triangle L of Q
1. forj=1tondo

2 Vj:n - Qj:nj

32 fork=1toj—1doVv;, = Vs — LjniLik

4 I—j:nJ = an/\/vj

5

6

: end for
: ReturnlL

The overall process involves n®/3 flops.
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The Cholesky triangle Interpretation

Interpretation of L (l)

Let Q = LLT, then the solution of
L'x=2z where z~ N(0,1)

is A/(0,Q ") distributed.

Havard Rue (haavard.rue@kaust.edu.sa) bayescomp.kaust.edu.sa
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The Cholesky triangle Interpretation

Interpretation of L (l)

(]

Let Q = LLT, then the solution of
L'x=2z where z~ N(0,1) -

is A/(0,Q ") distributed.

Since L is lower triangular then

1
Xn = 7Zn
Lnn
1
Xp—1 = — (Zn—l - Ln,n—lxn)
n—1,n—1
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Interpretation of L (11) ‘

M

=

) ]

(]

Theorem

Let x be a GMRF wrt to the labelled graph G, with mean 0 and precision matrix
Q > 0. Let L be the Cholesky triangle of Q. Then fori € V),

.l n
ECx [ X(iayn) = e Z Lix;  and
ji =i
Prec(x; | X(i11yn) = L7
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Determine the zero-patternin L (l) &P

Theorem

Let x be a GMRF wrt G, with mean 0 and precision matrix Q > 0. Let L be the
Cholesky triangle of Q and define for1 < | < j < n the set

F(i,jy={i+1,...,j—1j+1,...,n},
which is the future of i except j. Then

X,'J_Xj |XF(iJ) — Lj,'ZO.
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Determine the zero-patternin L (l) <D

Theorem

Let x be a GMRF wrt G, with mean 0 and precision matrix Q > 0. Let L be the
Cholesky triangle of Q and define for1 < | < j < n the set

F(i,jy={i+1,...,j—1j+1,...,n},
which is the future of i except j. Then

Xi Lxj| Xy <= Li=0.

If we can verify that Lj; is zero, we do not have to compute it when
factorising Q
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The Cholesky triangle The zero-patternin L

Proof &P

Assume = 0 and fix 1 < i < j < n. Theorem 3 gives that

2

m(Xin) o< exp ——Zka xk-l— ZL]kxj

k=i /k+1

1 n
= exp (_EX/?;-nQ(I.n)Xi:n> ’

where QI(ji:n) = L,‘,‘Lj,'.
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The Cholesky triangle The zero-patternin L

Proof

Assume p = 0 and fix1 < < j < n. Theorem 3 gives that

m(Xip) o< exp ffZka xk+ ZL/ka

k=i /k+1

= eXp ( 2 ,nQ(In >

where iji:”) = LiiLj. Then
Xi Lx | Xpijy <= Lilj =0,

which is equivalent to L; = O sinceL; > 0 as Q" > 0.

Havard Rue (haavard.rue@kaust.edu.sa)
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T2 0
(Global Markov property)

Letx bea GMRFwrtG = (V,€).
The global Markov property:

XAJ_XB‘XC

for all disjoint sets A, B and C where C separates Aand B, and A and B are
non-empty.
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The Cholesky triangle

Determine the zero-patternin L (l1) (e

)]

)

(

The global Markov property provide a simple and sufficient criteria for
checkingif L; = 0.
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Determine the zero-pattern in L (l1) :

M

=

) ]

(]

The global Markov property provide a simple and sufficient criteria for
checkingif L; = 0.

Corollary
IfF(i,j) separatesi < jin G, then L; = 0. J
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Determine the zero-pattern in L (l1) L

M

(X

The global Markov property provide a simple and sufficient criteria for
checkingif L; = 0.

Corollary
IfF(i,j) separatesi < jin G, then L; = 0.

Corollary

Ifi ~ jthen F(i,j) does not separates i < j.
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s
Determine the zero-patternin L (l1)

The global Markov property provide a simple and sufficient criteria for
checkingifL; = 0.

Corollary
IfF(i,j) separatesi < jin G, then L; = 0.

Corollary

Ifi ~ jthen F(i,j) does not separates i < j.

The idea is simple
@ Use the global Markov property to check if L;; = 0.
@ Compute only the non-zero termsin L, so that Q = LL'.
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The Cholesky triangle

a8

D

f

a
)

Example

((((
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The Cholesky triangle

)]

2

)

|

Example S

G

w
SN

X X X
X X X
X X X
X X X
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The Cholesky triangle

=

2

)

Example S

(

X X X
~ X X X
X =~ X
X X
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The Cholesky triangle

=

2

)

Example S

(

w
IS

X X X
X X X
X X X
X X X

X X X
X < X
X X
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The Cholesky triangle

Example: AR(1)-process =

)

(

Xt | Xi ey ~ N(dxer,0%), t=1,....n
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The Cholesky triangle

Example: AR(1)-process =

)]

)

(

Xt | Xi ey ~ N(dxer,0%), t=1,....n

X X
X X X
X X X
X X X
X X X

X X X
X X
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The Cholesky triangle

A
Example: AR(1)-process v
Xt |Xl:(t71) NN(¢XI’—1702)7 t:17"'an

X X X

X X X X X

X X X X X
Q= X X X L= N
X X X X X
X X X X X
X X X X
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Band matrices

Bandwidth is preserved o

M

(X

Similarly, for an AR(p)-process
@ Q have bandwidth p.
@ L have lower-bandwidth p.
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Gl
Bandwidth is preserved

(]

Similarly, for an AR(p)-process
@ Q have bandwidth p.
@ L have lower-bandwidth p.

Theorem

Let Q > 0 be a band matrix with bandwidth p and dimension n, then the
Cholesky triangle of Q has (lower) bandwidth p.
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Gl
Bandwidth is preserved

(]

Similarly, for an AR(p)-process
@ Q have bandwidth p.
@ L have lower-bandwidth p.

Theorem

Let Q > 0 be a band matrix with bandwidth p and dimension n, then the
Cholesky triangle of Q has (lower) bandwidth p.

...easy to modify existing Cholesky-factorisation code to use only entries
where |i — j| < p.
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Reordering schemes Introduction

Reorder the vertices

We can permute the vertexes;

select one of the n! possible permutations, define the corresponding
permutation matrix P, such that i” = Pi, wherei = (1,...,n)7, is
the new ordering of the vertexes.
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Reordering schemes Introduction

Reorder the vertices &P
We can permute the vertexes;
select one of the n! possible permutations, define the corresponding
permutation matrix P, such that i” = Pi, wherei = (1,...,n)7, is
the new ordering of the vertexes.
Chose P, if possible, such that
Q" = PeP’ (3)

is a band-matrix with a small bandwidth.
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Reordering schemes

@ Impossible in general to obtain the optimal permutation, n! is to large!
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Reordering schemes

@ Impossible in general to obtain the optimal permutation, n! is to large!
@ Asub-optimal ordering will do as well.
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Reordering schemes Introduction

@ Impossible in general to obtain the optimal permutation, n! is to large!
@ Asub-optimal ordering will do as well.
@ Solve Qu = b as follows:

o b” = Pb.

o Solve Q°u” = b°

e Map the solution back, pu = PT pi”.
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Reordering schemes Reordering to band-matrices

Reordering to band-matrices

(]

-

P Tar S AN
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W s N S AT
C AN,
MERRT 7O UP NS
PRIy Y
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SR
SN
KNS
VA A
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Reordering schemes Reordering to band-matrices

Reordering to band-matrices

((
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Reordering schemes Reordering to band-matrices

Reordering to band-matrices
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Reordering schemes

)]

)

More optimal reordering schemes y)

(
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Reordering schemes

)]

2

)

|

More optimal reordering schemes )

G

X X X X X X
X
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Reordering schemes

)]

2

)

More optimal reordering schemes ©Cn

(

e e X X X X x x\ [x
° X X X X
@ @ |~ x x VvV x
X x) \X v vV vV X
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Reordering schemes

)]

2

More optimal reordering schemes o

)

X X X X X X
X X X X X X
LU X
L X
LU X

<

X

3
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Reordering schemes

)]

2

)

More optimal reordering schemes )

(

X X X X x x\ [x
9 e X X X X
X X X /X
0 X X x\/\/
@ @ |~ x x VvV x
3 X x) \x vV v vV Vv x
e 0 X X
X X
O X «
° Q X X
X X
0 X X X X X X
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Reordering schemes Reordering using the idea of nested dissection

More optimal reordering schemes )

(

LU X
L X
LU X

w‘
X X X X X X
X
X
X
X
X
X X X X X X

X
X

X

X
X
X
X
X
X
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Reordering schemes Reordering using the idea of nested dissection

Nested dissection reordering (1) )

(

The idea generalise as follows.

@ Select a (small) set of nodes whose removal divides the graph into two
disconnected subgraphs of almost equal size.
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Reordering schemes Reordering using the idea of nested dissection

Nested dissection reordering (1)

(]

The idea generalise as follows.

@ Select a (small) set of nodes whose removal divides the graph into two
disconnected subgraphs of almost equal size.

@ Order the nodes chosen after ordering all the nodes in both subgraphs.

D
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Reordering schemes Reordering using the idea of nested dissection

Nested dissection reordering (1)

The idea generalise as follows.

@ Select a (small) set of nodes whose removal divides the graph into two
disconnected subgraphs of almost equal size.

@ Order the nodes chosen after ordering all the nodes in both subgraphs.
@ Apply this procedure recursively to the nodes in each subgraph.
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Reordering schemes Reordering using the idea of nested dissection

Nested dissection reordering (1)

The idea generalise as follows.

@ Select a (small) set of nodes whose removal divides the graph into two
disconnected subgraphs of almost equal size.

@ Order the nodes chosen after ordering all the nodes in both subgraphs.
@ Apply this procedure recursively to the nodes in each subgraph.

Havard Rue (haavard.rue@kaust.edu.sa) bayescomp.kaust.edu.sa Oct 2018 68/135



Reordering using the idea of nested dissection
Nested dissection reordering (1)

(]

The idea generalise as follows.

@ Select a (small) set of nodes whose removal divides the graph into two
disconnected subgraphs of almost equal size.

@ Order the nodes chosen after ordering all the nodes in both subgraphs.
@ Apply this procedure recursively to the nodes in each subgraph.

Costs in the spatial case
e Factorisation O(n®/?)
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Reordering using the idea of nested dissection
Nested dissection reordering (1)

(]

The idea generalise as follows.

@ Select a (small) set of nodes whose removal divides the graph into two
disconnected subgraphs of almost equal size.

@ Order the nodes chosen after ordering all the nodes in both subgraphs.
@ Apply this procedure recursively to the nodes in each subgraph.

Costs in the spatial case
e Factorisation O(n®/?)
@ Fill-in O(nlogn)
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Reordering using the idea of nested dissection
Nested dissection reordering (1)

(]

The idea generalise as follows.

@ Select a (small) set of nodes whose removal divides the graph into two
disconnected subgraphs of almost equal size.

@ Order the nodes chosen after ordering all the nodes in both subgraphs.
@ Apply this procedure recursively to the nodes in each subgraph.

Costs in the spatial case
e Factorisation O(n®/?)
@ Fill-in O(nlogn)
@ Optimalin the order sense.
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Reordering schemes Reordering using the idea of nested dissection

Nested dissection reordering (I1)

Havard Rue (haavard.rue@kaust.edu.sa) bayescomp.kaust.edu.sa Oct 2018 69 /135



Reordering schemes Reordering using the idea of nested dissection

Nested dissection reordering (I1)

(]
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Reordering schemes Reordering using the idea of nested dissection

Nested dissection reordering (I1)

(]
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How to deal with sparse matrices?

How to deal with sparse matrices? &

)]

)

(

@ Use existing software.

@ InRuse (recomended) package Matrix, create sparse matrices with
sparseMatrix () etc...
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Marginal variance
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Computing marginal variances for GMRFs

2

Computing marginal variances for GMRFs* Y=

)]

)

(

Let
Q=vopv’

@ where D is a diagonal matrix, and
@ Vis alower triangular matrix with ones on the diagonal.
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Computing marginal variances for GMRFs*

Let
Q=vpv’

@ where D is a diagonal matrix, and
@ Visa lower triangular matrix with ones on the diagonal.
The matrix identity
=DV '+(-vHX
define recursions which can be used to compute
@ Var(x;) and Cov(x;, x;) fori ~ j
essentially without cost when the Cholesky triangle L is known (TFC '73).
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FORMATION OF A SPARSE BUS IMPEDANCE MATRIX AND ITS APPLICATION TO SHORT CIRCUIT STUDY

Kazuhiro Takahashi, John Fagan and Mo-Shing Chen

ABSTRACT

This paper a new 1 method for
the formation of a sparse bus impedance matrix. An al-
gorithm is introduced which generates only the relevant
terms of the bus impedance matrix for short circuit
calculation. The algorithm is presented as it applies
to the solution of short circuit problems. The method
offers a decrease in execution time and a reduction in
core memory requirements for the digital computer.
These advantages are superior to conventional methods
of short circuit calculation such as the ordinary 2z
matrix and the factorized Y matrix methods.

A small sample system is provided to illustrate
the computational procedure. Application to practical
large power systems has been proven by the development
of a digital computer program based upon the proposed
method.

The following considerations are made to extend
the method for more practical usage; 1) Mutual coupl-
ing of transmission lines, 2) Short circuit currents
more than 2 busses away, 3) Asymmetric fault analysis,
4) Modification of the matrix elements due to the net-
work configuration change, and 5) Inversion of asymmet-
ric sparse matrix.

Tes = V2 £
TE 2

where I g is the three phase short circuit current at
the faulted bus s
Ist is the current of the connecting line (st)
due to the fault
Fst is the impedance of the connecting line (st)
Zgg is the driving point impedance at the faulted
bus s
Zgy is the transfer impedance of the faulted bus
s to the adjacent bus t

Ige = Tss © (ss

These system parameters are normally complex.
However, real numbers are used in this paper to illus-
trate the method.

The driving point and transfer impedances given
in egs. (1) and (2) are normally obtained by calculat-
ing all the terms of the bus impedance matrix. The
bus impedance matrix, or simply Z matrix, is defined
by the inverse of the bus admittance matrix Y . Both
matrices are symmetric. The Y matrix is generally
sparse for practical power systems while the Z matrix
is full.

A small DC network is provided in Fig. 2, which

bayescomp.kaust.edu.sa




Statistical derivation

D)}

~

Q)

Recall for a zero mean GMRF that

Xi | Xizy ooy Xn ~ N(—— Z Liixi, 1/L3),  i=n,... 1.

" k=it

provides a sequential representation of the GMRF backward in “time” i.
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Computing marginal variances for GMRFs Statistical derivation

Multiply by x;, j > i, and taking expectation yields

1« L
fozéif/Lizi_FZkazkf’ JZii=n,...1,
" kez(i)
where Z(/) as those k where Ly; is non-zero,
I(i) = {k >0 o0 Ly 7'5 0}

and ¢; isone if i = j and zero otherwise.
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Computing marginal variances for GMRFs

We can use

1 < L
ZU:(SU/L%—FZLMZM, _[zl,lzn,...,'l7
" kez(i)
to compute ¥; for each jj:
@ Outerloopi=n,...,1
@ Innerloopj=n,... i
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Computing marginal variances for GMRFs

Example
Letn = 3,Z(1) = {2,3},Z(2) = {3}, then we get

1 1

233 = LT 223 = —E (Lszzaa)
33
10 1

2y = LT — L_ (L32232) X3 = _L_ (L21223 =+ L31Z33)
2 22 1

1 1

E L (LnXy + L31X3)

:
Y= I (LnX + L31X32) =
N

where we also need to use that X is symmetric.
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Computing marginal variances for GMRFs

@ Assume we want to compute all marginal variances.
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Computing marginal variances for GMRFs

@ Assume we want to compute all marginal variances.
@ Todo so, we need to compute ¥ (or ¥;) forall jj in some set S.
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Computing marginal variances for GMRFs Statistical derivation

@ Assume we want to compute all marginal variances.
@ Todo so, we need to compute ¥ (or ¥;) forall jj in some set S.

@ Ifthe recursions can be solved by only computing ¥ forallij € S we
say that the recursions are solvable using S.
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Computing marginal variances for GMRFs
From

1 ¢ .

Y= 6;/L5 » Z LTy, >0, i=n,...1,
" kez(i)

it is evident that S must satisfy

(4)
jeSandkeZ(i) — kieS

Havard Rue (haavard.rue@kaust.edu.sa)
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Computing marginal variances for GMRFs
From

1 ¢ .

Y= 6;/L5 » Z Ly, >0, i=n,...,1
" kez(i)

it is evident that S must satisfy

(4)
jeSandkeZ(i) — kieS
we also need thatii € Sfori=1,...,n

Havard Rue (haavard.rue@kaust.edu.sa)

bayescomp.kaust.edu.sa
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Computing marginal variances for GMRFs

@ S =V x Visavalid set, but we want |S| to be small to avoid
unnecessary computations.
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Computing marginal variances for GMRFs Statistical derivation

@ S =V x Visavalid set, but we want |S| to be small to avoid
unnecessary computations.

@ aminimal set depends however on the numerical valuesin L, or Q
implicitly.
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Computing marginal variances for GMRFs Statistical derivation

@ S =V x Visavalid set, but we want |S| to be small to avoid
unnecessary computations.

@ aminimal set depends however on the numerical valuesin L, or Q
implicitly.

@ aslightly larger set, that contains the minimal, turn out to be the one
used to compute L!!!
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Computing marginal variances for GMRFs Statistical derivation

@ S =V x Visavalid set, but we want |S| to be small to avoid
unnecessary computations.

@ aminimal set depends however on the numerical valuesin L, or Q
implicitly.

@ aslightly larger set, that contains the minimal, turn out to be the one
used to compute L!!!

Theorem (TFC’73)

S={ijeVxV :j>i, iandjarenotseparated by F(i,j)}

is solvable.
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Computing marginal variances for GMRFs

2

)]

Main idea of the proof: e
jeSandkeI(i) — ki€ S, i<j, k<j (6)

@ ij € S, says thereis a path fromitoj where all nodes < /.
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Computing marginal variances for GMRFs

Main idea of the proof: (e
jeSandkeI(i) — ki€ S, i<j, k<j (6)

@ jj € S, says thereis a path fromitoj where all nodes < i.
@ k € I(i),says thereis path from i to k where all nodes < i.
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Computing marginal variances for GMRFs Statistical derivation

Main idea of the proof:

)]

(]

jeSandkeZ(i) — ki€ S, i<j, k<j (6)

@ ij € S, says thereis a path fromitoj where all nodes < /.
@ k € I(i),says thereis path from i to k where all nodes < i.

@ then there must be some path from k to j to j where all nodes are < i,
hencekj € S.
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Computing marginal variances for GMRFs

2

Interpretation of S Cw

)]

)

G

@ Sisthe set of all possible non-zero elements in L based on G only.
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Computing marginal variances for GMRFs Statistical derivation

Interpretation of S <

@ Sisthe set of all possible non-zero elements in L based on G only.
@ thisis the set of L;’s that are computed when computing Q = LLT.
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Computing marginal variances for GMRFs Statistical derivation

Interpretation of S

@ Sisthe set of all possible non-zero elements in L based on G only.
@ thisis the set of L;’s that are computed when computing Q = LLT.

@ sinceL; # 0in general when i ~ j, then we compute also Cov/(x;, x;) for
i~j.
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Se il dariian
Interpretation of S

(]

@ Sisthe set of all possible non-zero elements in L based on G only.
@ thisis the set of L;’s that are computed when computing Q = LLT.

@ sinceL; # 0in general when i ~ j, then we compute also Cov/(x;, x;) for
i~j.

@ some of the L;’s might turn out to be zero depending on the
conditional independence properties of the marginal density for x;.,,
fori=n,...,1.
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Computing marginal variances for GMRFs

2

General algorithm ©Cn

)]

)

G

fori=n,...,1
for decreasing j in Z(i)
compute ¥ from eq. (4)
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Computing marginal variances for GMRFs

2

band matrices I

)]

)

G

fori=n,... 1
forj = min(i + by, n),...,i
compute ¥ from eq. (4).

equivalent to Kalman-recursions for smoothing.
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Part VI

INLA
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Latent Gaussian models G

)]

)

(

Latent Gaussian models is a model of the following form
@ Observed datay, yi|x; ~ 7(yj|xi, @)
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Overview Latent Gaussian models

Latent Gaussian models

Latent Gaussian models is a model of the following form
@ Observed datay, yilx; ~ w(yi|x;, @)
@ Latent Gaussian field x ~ N(-,Q(0)™")

Havard Rue (haavard.rue@kaust.edu.sa) bayescomp.kaust.edu.sa
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Overview Latent Gaussian models

Latent Gaussian models

Latent Gaussian models is a model of the following form
@ Observed datay, yi|x; ~ 7(yj|xi, @)
@ Latent Gaussian field x ~ N(-,Q(0)™")
@ Hyperparameters 60
e variability

e length/strength of dependence
e parameters in the likelihood

Havard Rue (haavard.rue@kaust.edu.sa) bayescomp.kaust.edu.sa
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Overview Latent Gaussian models

Latent Gaussian models

Latent Gaussian models is a model of the following form
@ Observed datay, yi|x; ~ 7(yj|xi, @)
@ Latent Gaussian field x ~ N(-,Q(0)™")
@ Hyperparameters 60
e variability

e length/strength of dependence
e parameters in the likelihood

w(x,0 | y) o w(0) n(x | 0) [[7(vi | x,6)
i€l
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Tasks &

)]

)

(

Compute from

m(x,0 | y) o m(6) w(x | 6) [ [ m(yi | %))

i€z
the posterior marginals:
(x| y), for some or all
and/or
w(0; | y), for some or all
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Our approach: Approximate Bayesian Inference &

M

(X

@ Can we compute (approximate) marginals directly without using
MCMC?
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Our approach: Approximate Bayesian Inference &

M

(X

@ Can we compute (approximate) marginals directly without using
MCMC?

@ YES!
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Our approach: Approximate Bayesian Inference

@ Can we compute (approximate) marginals directly without using
MCMC?

@ YES!

@ Gain

e Huge speedup & accuracy
o The ability to treat latent Gaussian models properly ;-)
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Asimple example: The Gaussian case

Smoothing noisy observations (1) (O

)]

)

(

Observations
y;:m(i)+e,-, i=1,...,n

for Gaussian iid noise ¢; with known precision.
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Smoothing noisy observations (1) o

)]

)

(

Observations
y,-:m(i)+e,-, i=1,...,n

for Gaussian iid noise ¢; with known precision.

Will assume m(i) is a smooth function wrt i
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Asimple example: The Gaussian case

Smoothing noisy observations (Il)

n = 50

idx

= 1:n

fun = 100*((idx-n/2)/n)~3
y = fun + rnorm(n)
plot(idx, y)

10

5

~10

)]

2

)

()

10 20 30 40 50
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Asimple example: The Gaussian case

Smoothing noisy observations (lll) )

)]

)

(

Likelihood Gaussian observations with known precision

Yilxi,0 ~ N(xi,70)
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Asimple example: The Gaussian case

Smoothing noisy observations (lIl) )

(

Likelihood Gaussian observations with known precision
YilXi, 0 ~ N(xi,10)

Latent A Gaussian model for the smooth function?

n
7(x]0) x 00"2)/2 exp <_§ > = 21+ x,~_2)2>

i=2

“model="rw2"
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Asimple example: The Gaussian case

Smoothing noisy observations (lIl)

Likelihood Gaussian observations with known precision
YilXi, 0 ~ N(xi,10)
Latent A Gaussian model for the smooth function?
7(x]0) x 00"2)/2 exp (—0 i(xi —2X1+ x,_z)z)
25

Hyperparameter The smoothing parameter 6 which we assignal'(a, b)
prior
7(0) < 0 Texp (—b6), 6>0

“model="rw2"
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Asimple example: The Gaussian case

Smoothing noisy observations (IV) e

)]

)

(

Since

X,yw ~ N(7 )

we can compute (numerically) all marginals, using that
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Asimple example: The Gaussian case

Smoothing noisy observations (IV) ‘e

M

(X

Since

X,yw ~ N(7 )

we can compute (numerically) all marginals, using that

Gaussian
——
m(x,y|6) 7(6)

m(x|y,0)
—

Gaussian

m(0ly) ox
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Asimple example: The Gaussian ca

Posterior marginal for theta

e .
b .
© _|
=)
L]

PR
2 ° .
[}
°
(=
o
g
s <

< .

L]
N
o L]
L] L]
o ° L]
S| e o e ©® e o
T T T T T T
1 2 3 4 5 6
log.prec
=] (=) = E DAy
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Asimple example: The Gaussian ca

Posterior marginal for theta, interpolated

e
© _|
=)
©
w o ]
2
[}
°
(=
o
g
s <
o
N
o
o
S
T T T T T T
1 2 3 4 5 6
log.prec
=] (=) = E DAy
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Asimple example: The Gaussian case

2

Smoothing noisy observations (V) o

)]

)

(

X|y79 ~ N(:)
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Asimple example: The Gaussian case

Smoothing noisy observations (V) )

D)

0,

X|y79 ~ N(:)
so that
w(uly) = [ 2lul0.y) n(oly) do
———

Gaussian
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Asimple example: The Gaussian ca

Posterior marginal for theta

e .
b .
© _|
=)
L]

PR
2 ° .
[}
°
(=
o
g
s <

< .

L]
N
o L]
L] L]
o ° L]
S| e o e ©® e o
T T T T T T
1 2 3 4 5 6
log.prec
=] (=) = E DAy
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Asimple example: The Gaussian case

Posterior marginals for x[1] for each theta (unweighted)

@ |
S}
© |
S}

=

‘@

<

@

°
o
S}
N
S}
e
=}
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Asimple example: The Gaussian case

Posterior marginals for x[1] for each theta (weighted)

density

= —

o
S
IS}
T
-8

~14 -12
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Asimple example: The Gaussian case

Posterior marginals for x[1]

@ |
S}
© |
S}

=

‘@

<

@

°
o
S}
N
S}
e
=}

-14 -12 -10 -8
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Asimple example: The Gaussian case

Extensions L

)]

)

(

This is the basic idea behind INLA. It is really really simple.
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Asimple example: The Gaussian case Extensions

Extensions =

This is the basic idea behind INLA. It is really really simple.

However, we need to extend this basic idea so we can deal with
@ More than one hyperparameter
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Asimple example: The Gaussian case Extensions

Extensions

This is the basic idea behind INLA. It is really really simple.

However, we need to extend this basic idea so we can deal with
@ More than one hyperparameter
@ Non-Gaussian observations
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Asimple example: The Gaussian case Extensions

Extensions

This is the basic idea behind INLA. It is really really simple.

However, we need to extend this basic idea so we can deal with
@ More than one hyperparameter
@ Non-Gaussian observations
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Extensions

This is the basic idea behind INLA. It is really really simple.

However, we need to extend this basic idea so we can deal with
@ More than one hyperparameter
@ Non-Gaussian observations

Complications... Mostly practical
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Asimple example: The Gaussian case

2

More than one hyperparameter =

)]

)

((

Step | Explore w(0|y)
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Asimple example: The Gaussian case

More than one hyperparameter &

)]

)

(

Step | Explore w(0|y)
@ Locate the mode
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Asimple example: The Gaussian case

More than one hyperparameter &

)]

)

(

Step | Explore w(8]y)
@ Locate the mode
@ Use the Hessian to construct new variables
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Asimple example: The Gaussian case

More than one hyperparameter L

)]

)

(

Step | Explore w(8]y)
@ Locate the mode
@ Use the Hessian to construct new variables
@ Grid-search

Havard Rue (haavard.rue@kaust.edu.sa) bayescomp.kaust.edu.sa



Asimple example: The Gaussian case Extensions

More than one hyperparameter

Step | Explore w(8]y)
@ Locate the mode
@ Use the Hessian to construct new variables
@ Grid-search
Step Il From these integration points++, approximate the marginals
for each 6;
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Asimple example: The Gaussian case

Non-Gaussian observations (I) Cn

In this case

m(0ly) o<

)]

2

)

(

Non-Gaussian, BUT KNOWN
—
w(x,y|0) 7(0)

m(x|y,0)
——
Non-Gaussian and UNKNOWN

Havard Rue (haavard.rue@kaust.edu.sa)
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Asimple example: The Gaussian case Non-Gaussian observations

Non-Gaussian observations (l)

In this case
Non-Gaussian, BUT KNOWN

——
m(x,y|0) (6)
(xly,0)
——
Non-Gaussian and UNKNOWN

m(0ly) o<

SO we use an Gaussian approximation to the conditional

m(x,y|0) (6)

7(0]y) =~ norm.const X1y 0)

x=xmode(0)
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Asimple example: The Gaussian case

2

Non-Gaussian observations (ll) =

)]

)

(

For the marginals for x;|y, 8, we do similarly

m(x,y]0)

7(xly, 8) ~ norm.const———>—~__
(xily, 0) m6(X_i|x;,y,0)

x_;=xmode(6,x;)

Havard Rue (haavard.rue@kaust.edu.sa) bayescomp.kaust.edu.sa



e T
Non-Gaussian observations (ll) "

For the marginals for x;|y, 8, we do similarly

m(x,y|0)

m(xjly,0) =~ norm.const—————
(xily, 0) m6(X_i|x;,y,0)

x_;=xmode(6,x;)

This is the hard part, as this is potentially very slow.
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Asimple example: The Gaussian case

2

Main ideas (1) C

)]

)

(

Main ideas are simple and based on the identity

(X, 2)
7(x|2)

_m(x,2) . N
7(z) = ) leading to 7(z) =
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e
Main ideas (l) <!l

(

Main ideas are simple and based on the identity

(X, 2)
7(x|2)

_m(x,2) . N
7(z) = ) leading to 7(z) =

When 7(x|z) is the Gaussian-approximation, this is the
Laplace-approximation.
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Asimple example: The Gaussian case

2

Main ideas (II) Cw

)]

)

G

Construct the approximations to
@ 7(0ly)
Q 7(xi6.y)
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Asimple example: The Gaussian case

Main ideas (I1) G

)]

)

(

Construct the approximations to
@ 7(0ly)
Q 7(xi6.y)

then we integrate

(ly) = /W(0|y) (x10.y) dO
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Asimple example: The Gaussian case

Main ideas (II) Cnw

M

(X

Construct the approximations to
@ 7(0ly)
Q 7(xi6.y)

then we integrate

(ly) = /W(0|y) (x10.y) dO

() = / ~(0ly) do_;
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The GMRF-approximation

The Gaussian/GMRF-approximation &

M

(X

1
7(x |¥,0) < exp (—szox 3 logw(y,wx,-))

~ exp (500 )T(Q + lag(e)x — ) ) = 7e(x19.9)
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The Gaussian/GMRF-approximation

:
T(x |y, 8) o< exp <2XTQX +> IOgW(Yi’Xi))

~ exp (500 )T(Q + lag(e)x — ) ) = 7e(x19.9)

Constructed as follows:
@ Locate the mode x*
@ Expand to second order

Markov properties are preserved!
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The Laplace approximation (classical)

P

)

The Laplace approximation: The classic case e

(

Compute and approximation to the integral

/ exp(ng(x)) dx

where n is the parameter going to cc.
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The Laplace approximation (classical)

The Laplace approximation: The classic case

Compute and approximation to the integral

[ exptng(x)) ox
where n is the parameter going to cc.

Let xo be the mode of g(x) and assume g(xo) = O:

9(x) = %g”(xo)(x X

Havard Rue (haavard.rue@kaust.edu.sa) bayescomp.kaust.edu.sa
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The Laplace approximation (classical)

-
=
(S

0,

The Laplace approximation: The classic case... »

Then
27

[ explngo0) dx = [+
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The Laplace approximation (classical)

P
=

=

The Laplace approximation: The classic case... »

(]

Then
27

[ explngo0) dx = [+

@ Asn — oo, then the integrand gets more and more peaked.
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The Laplace approximation (classical)

The Laplace approximation: The classic case...

Then
27

[ explngo0) dx = [+

@ Asn — oo, then the integrand gets more and more peaked.
@ Error should tends to zeroasn — oo
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The Laplace approximation (classical)

The Laplace approximation: The classic case...

Then

2T
exp(ng(x))dx = | ——F+—~ +
[ explngo) ax = [
@ Asn — oo, then the integrand gets more and more peaked.
@ Error should tends to zeroasn — oo
@ Detailed analysis gives

Estimate(n)

Toe 14+ 0(1/n)

so the relative erroris O(1/n).

Havard Rue (haavard.rue@kaust.edu.sa)
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The Laplace approximation (classical)

A

=

Extension | L

(

gn(x) = % Zgi(X)

then the mode xo depends on n as well.
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The Laplace approximation (classical)

A

2

)

Extension Il L

(

/ exp(ng(x)) dx

and x is multivariate,
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The Laplace approximation (classical)

)]

2

Extension Il (Y

)

(

/ exp(ng(x)) dx

and x is multivariate, then

[ exelngt) ax = [ 2T

where H is the hessian (matrix) at the mode

32
Hijj = mg(x)

X=Xo
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The Laplace approximation (classical)

)]

2

Computing marginals )

S

)

@ Our main issue is to compute marginals
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The Laplace approximation (classical)

)]

2

)

Computing marginals )

G

@ Our main issue is to compute marginals
@ We can use the Laplace-approximation for this issue as well
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The Laplace approximation (classical)

Computing marginals

@ Our main issue is to compute marginals
@ We can use the Laplace-approximation for this issue as well
@ A more “statistical” derivation might be appropriate
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The Laplace approximation (classical)

)]

2

Computing marginals... ©Cn

S

)

Consider the general problem
@ 0 is hyper-parameter with prior 7(6)
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The Laplace approximation (classical)

Computing marginals...

Consider the general problem
@ 0 is hyper-parameter with prior 7(6)
@ x is latent with density 7(x|6)

)]

2

‘éw)

)
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The Laplace approximation (classical)

Computing marginals...

Consider the general problem
@ 0 is hyper-parameter with prior 7(6)
@ x is latent with density 7(x|6)
@ yisobserved with likelihood 7(y|x)

then (x.0ly)
(x, 0y
w(0ly) = —=
W)= 2(xi6.y)
for any x!

Havard Rue (haavard.rue@kaust.edu.sa) bayescomp.kaust.edu.sa
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The Laplace approximation (classical)

Computing marginals...

G,

Some details

m(x, 0ly)
m(x]0,y)
m(0) m(x|0) 7(y|x)
m(x]0,y)
m(0) m(x|0) m(v|x)
m6(x10,y)

Q

x=x*(0)

where 7 (x|6, y) is the Gaussian approximation of w(x|6, y) and x*(8) is the
mode.
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The Laplace approximation (classical)
Errors in the approximations

Result:3

)]

)

N

(((A

7(0ly,)

With n repeated measurements y of the same x, then
m(6y,)
after renormalisation.

=1+0(n"%?)

*Tierney & Kadane, JASA, 1986
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The Laplace approximation (classical)

Errors in the approximations

Result:3
With n repeated measurements y of the same x, then
T(6ly,) -3/2
=l — 14 O(n3?)
m(0]yn)
after renormalisation.

Relative error is a very very very nice property!

*Tierney & Kadane, JASA, 1986
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The Laplace approximation (classical)

Errors in the approximations

Result:3
With n repeated measurements y of the same x, then
T(6ly,) -3/2
=l — 14 O(n3?)
m(0]yn)
after renormalisation.

Relative error is a very very very nice property!

The error-rate is impressive!

*Tierney & Kadane, JASA, 1986
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The Laplace approximation (classical)

Errors in the approximations D

(]

Result:3
With n repeated measurements y of the same x, then
T(6ly,) -3/2
=l — 14 O(n3?)
m(0]yn)
after renormalisation.

Relative error is a very very very nice property!
The error-rate is impressive!

Unfortunately, the assumptions made are not usually valid...

*Tierney & Kadane, JASA, 1986
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Summary Qp

@ This are the basic ideas
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Summary

Summary )

)]

)

(

@ This are the basic ideas
@ The rest are just details, but there are a lot of them...
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Extensions

2

Extensions )

)]

)

G

@ Model choice/selection
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Extensions

Extensions L

)]

)

(

@ Model choice/selection
@ Automatic detection of “surprising” observations
@ High(er) number of hyperparameters
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Model choice

Chose/compare various model is important but difficult
@ Bayes factors (general available)
@ Deviance information criterion (DIC) (hierarchical models)
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Extensions

A
Marginal likelihood e
Marginal likelihood is the normalising constant for 77(80|y),
F(y) = / W(9)71(X|9397T(YIX7 0) 4o, -
WG(X| ’y) x=x*(0)
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Marginal likelihood =0
Marginal likelihood is the normalising constant for 77(80|y),
~ 0)r(x|6 X, 0
#(y) = / ( )77;( (LILW(J;‘ ) do. (7)
G 4 X=x*(8)

I many hierarchical GMRF models the prior is intrinsic/improper, so this is
difficult to use.
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Deviance Information Criteria 0

M

(X

Based on the deviance
D(x;0) = —2) _log(yi | x;, 6)
i

and
DIC = 2 x Mean (D(x; 8)) — D(Mean(x); 8™)

This is quite easy to compute
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PG e
Bayesian Cross-validation

Easy to compute using the INLA-approach

w01y = [ { [ 7001500 w1100 a0y o

Xi
where
7T(Xf|ya 0)
m(yilxi, @)

Require a one-dimensional integral for each i and 6.

ﬂ-(XI' | Y_i 0) (&S
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Extensions

))

O

Automatic detection of “surprising” observations

Compute
Prob(y{" < yi | y_;)

Look for unusual large or small values

Havard Rue (haavard.rue@kaust.edu.sa)
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Part VIl

Gaussian fields and GMRFs
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Gaussian fields and GMRFs

Gaussian fields =

(

Gaussian fields is central in spatial statistics!
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Gaussian fields and GMRFs

Gaussian fields <D

(

Gaussian fields is central in spatial statistics!

@ Covariance function, often
depends only on distances
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Gaussian fields and GMRFs

Gaussian fields <D

(

Gaussian fields is central in spatial statistics!

@ Covariance function, often
depends only on distances

@ Matérn family
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Gaussian fields

Gaussian fields is central in spatial statistics!
@ Covariance function, often
depends only on distances

@ Matérn family

@ Dense covariance matrix
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Gaussian fields

Gaussian fields is central in spatial statistics!
@ Covariance function, often
depends only on distances
@ Matérn family
@ Dense covariance matrix

@ Known marginal properties
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Gaussian fields

Gaussian fields is central in spatial statistics!
@ Covariance function, often
depends only on distances
@ Matérn family
@ Dense covariance matrix
@ Known marginal properties
@ No boundaryissues

Havard Rue (haavard.rue@kaust.edu.sa) bayescomp.kaust.edu.sa Oct 2018 19/135



Gaussian fields

Gaussian fields is central in spatial statistics!
@ Covariance function, often

depends only on distances

Matérn family

Dense covariance matrix

Known marginal properties

No boundary issues

Resolution consistent
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Gaussian fields

Gaussian fields is central in spatial statistics!
@ Covariance function, often
depends only on distances
Matérn family
Dense covariance matrix
Known marginal properties
No boundary issues
Resolution consistent

Computational properties are
not good: O(n?)

Havard Rue (haavard.rue@kaust.edu.sa)
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Gaussian fields

Gaussian fields is central in spatial statistics!
@ Covariance function, often
depends only on distances
Matérn family
Dense covariance matrix
Known marginal properties
No boundary issues
Resolution consistent

Computational properties are

not good: O(n?) Rl
o Difficulties: non-stationarity,
space-time and curved spaces
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Gaussian fields and GMRFs

Full conditionals G«

X))

</

(]

@ xj|x_; only depends on the (few nearest) neighbours

0co0o0o0o0 0coo0o0o0 0coeo0o0
1 ocoeo0o0 oceoe®o0 00000
E(XU’X*U):_ 8 ceoeo —2 ocoooo —] eococoe
20 coeo0o0 ceoeo 00000

0coo0o0o0 0oo0o0o0 ocoeo0o0

Prec(x; | X_;) = 20k.
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Gaussian fields and GMRFs

Full conditionals

@ xj|x_; only depends on the (few nearest) neighbours

E(xi [ x—j)

Prec(x; | X_j)

ocooo0o0

1 ocoeo0o0

— ceoceo — 2

20 ocoeoo
0co0o0o0oO0

= 20k.

@ Simple conditional interpretation

Havard Rue (haavard.rue@kaust.edu.sa)
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Gaussian fields and GMRFs

Full conditionals

@ xj|x_; only depends on the (few nearest) neighbours

1

E(X,'j|X,,'j) = % 8

-2

00000
[eliel Nele}
OeOeo
[N Nele}
00000

Prec(x; | X_;) = 20k.

@ Simple conditional interpretation

@ Small memory footprint
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Gaussian fields and GMRFs

Full conditionals

@ xj|x_; only depends on the (few nearest) neighbours

1
E(X,'j|X,,'j) = % 8

-2

00000
[eliel Nele}
OeOeo
[N Nele}
00000

Prec(x; | X_;) = 20k.

@ Simple conditional interpretation
@ Small memory footprint
@ Fast computations: O(n%/?) in R?
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Why should we care about GMRFs?

@ Conditional modeling

a
(W)Y
-
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Gaussian fields and GMRFs

Why should we care about GMRFs?

D)

-

@ Conditional modeling
@ Strongest argument: Computational speed!
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Why should we care about GMRFs? g

()
-

@ Conditional modeling
@ Strongest argument: Computational speed!

@ Sparse matrices allow for faster computation,
general algorithms
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Gaussian fields and GMRFs

2

Why should we care about GMRFs? &

)]

)

(

@ Conditional modeling
@ Strongest argument: Computational speed!

@ Sparse matrices allow for faster computation,
general algorithms

@ Also relevant for sampling based inference
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Gaussian fields and GMRFs

The downside...

)

-

@ Not easy to specify GMRFs to get “what you
want”
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The downside...

Gaussian fields and GMRFs

l

-
=
@ Not easy to specify GMRFs to get “what you
want”
@ The link from

to

{m(xilx—i)}

Cov(x;, ;)
is “difficult” (without computing it)
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Gaussian fields and GMRFs

)

A

-

The downside...

@ Not easy to specify GMRFs to get “what you
want”

@ The link from

{m(xilx—i)}

to
Cov(xj, x;)

is “difficult” (without computing it)

@ Boundary issues
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Gaussian fields and GMRFs

The downside...

»

A
A
>

S

@ Not easy to specify GMRFs to get “what you
want”

@ The link from

{m(xilx—i)}

to
Cov(xj, x;)

is “difficult” (without computing it)

@ Boundary issues
@ Irregular lattices are even more difficult
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Gaussian fields and GMRFs

2

The downside... i

)]

)

(

@ Not easy to specify GMRFs to get “what you
want”

@ The link from

{m(xilx—i)}

to
Cov(xj, x;)

is “difficult” (without computing it)

@ Boundary issues
@ Irregular lattices are even more difficult

@ Commonly used GMRF models are not
resolution consistent!
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Gaussian fields and SPDEs

Matérn fields and the reference SPDE ¢

X))

=

D

(]

The solution of this SPDE (Whittle 1954/1963)
(k2 — A)*/2x(s) = €(s), a=wv+dim/2

is a Gaussian field with Matérn Covariance function. A is the
Laplacian and e(s) is spatial Gaussian white noise.
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Gaussian fields and SPDEs

Matérn fields and the reference SPDE

M

D

()

The solution of this SPDE (Whittle 1954/1963)
(k2 — A)*/2x(s) = €(s), a=wv+dim/2

is a Gaussian field with Matérn Covariance function. A is the
Laplacian and e(s) is spatial Gaussian white noise.

The SPDE js harder to work with, but when we know how
then

@ manifolds (easy!)

@ non-stationary (easy!)
@ computational properties (very good!)
@ +++
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Main result

aussian fields and SPDEs

(0
-
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Main result

aussian fields and SPDEs

(0
-

Numerical
solution
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Gaussian fields and SPDEs

Main result

0

@ A numerical solution to the SPDE can be constructed as

x(s) = Z wig;(s)

for local basis/”tent” functions {¢;(s)} where the
weights is a local GMRF with precision matrix Q(-), for
a=12.3,...
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Gaussian fields and SPDEs

Main result &

@ A numerical solution to the SPDE can be constructed as
n
X(S) = Z W,'gb,'(S)
i=1

for local basis/”tent” functions {¢;(s)} where the
weights is a local GMRF with precision matrix Q(-), for
a=12.3,...

© We can construct Q from a triangulation at no cost.
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Gaussian fields and SPDEs

2

How to “work” with the SPDE? )

()

Hilbert space representation/finite element method

x(u) = Zwk(u)wk

k=1

for basis-functions {tx } and (Gaussian) weights {wj}
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Gaussian fields and SPDEs

2

Piecewise linear representations o

)]

)

(

x(u) = cos(uy) + sin(uz)
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Gaussian fields and SPDEs

Piecewise linear representations D

D)

x(u) = cos(uy) + sin(uy) x(u) =>4 Ur(u) xi
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Gaussian fields and SPDEs

(Stochastic) Weak solution )

M

(X

(k? — 8)*2x(s) = (s)

(Stochastic) Weak solution

{0 (2 =0y} 2 (o0

for all test functions { ¢y }«-

(o [ o as )
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Gaussian fields and SPDEs

Resultsforaa =1,2,...(l) N

D)}

(Q

a=1: qﬁk—(/i — )Vziﬁk
a=2: Q=1

Define matrices C, G and K

K=#r’C+6G
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Gaussian fields and SPDEs

Results fora=1,2,...(ll) <

(

The weights are Gaussian with precision matrix Q,, ,,
Q],n = Kk’C+G
Q,.=KC 'K

Qa,n = KC™! Qa—Z,NC_1K

Replace € with a appropriate diagonal matrix: This is OK
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Gaussian fields and SPDEs

2

Result )

)]

)

G

Can “solve”
(k2 — A)*/2x(s) = €(s), a=1,2,3,..., a=v+dim/2

for

@ any k

@ any triangulation
at no cost!!!
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Result

»

(]

Can “solve”
(k2 — A)*?x(s) = €(s), «=1,2,3,..., a=v+dim/)2

for

@ any kK

@ any triangulation
at no cost!!!

“solve” means: we can write down the corresponding precision matrix for
the weights, and the precision matrix is (very-)sparse/a-GMRF.
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G, elds and SPDE

This was just the beginning...
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