
Introduction TGS Theory Application to variable selection

Scalable Importance Tempering and Bayesian Variable
Selection

Giacomo Zanella
joint work with Gareth Roberts

Department of Decision Sciences, BIDSA and IGIER
Bocconi University

Masterclass in Bayesian Statistics, CIRM, Marseille Luminy
22-26 October 2018



Introduction TGS Theory Application to variable selection

Introduction

Bayesian Computation

• Computational scalability is crucial to Bayesian Statistics’ applicability

• Here we focus on scalability with the number of parameters p, for example
Variable Selection problems with large p

Outline of the talk

1. Introduction

2. Combining Importance Sampling and MCMC in the context of Gibbs
Sampling

3. Analysis of the algorithm

4. Application to Bayesian Variable Selection
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Classical approaches to Bayesian computation
Aim: sampling from the posterior distribution f (x)

Importance Sampling (IS)
1. Sample x(1), x(2), · · · iid∼ g(x)

2. Weight samples with w(x) = f (x)
g(x)

IS estimators are consistent:

ĥ(IS)
n =

∑n
t=1 w(x(t))h(x(t))∑n

t=1 w(x(t))

n→∞−→ Ef [h] =

∫
h(x)f (x)dx .

Main weakness
Naive IS is fragile in high dimensions. In particular var(h, IS) :=

limn→∞ n var
(
ĥ

(IS)
n

)
= Ef [h̄2w ] can grow as exp(d) with dimension d .

h̄(x) = h(x)−Ef [h]
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Markov chain Monte Carlo
Simulate an ergodic Markov chain
x(1), x(2), . . . with stationary
distribution f (x).Then

1

n

n∑
t=1

h(x(t))
n→∞−→ Ef [h] .

Main weakness
Exposed to slow mixing. In particular

n var

(
1

n

n∑
t=1

h(x(t))

)
n→∞−→ varf (h)

(
1 + 2

∞∑
t=1

ρt

)

where ρt = Corr(h(x(s)), h(x(s+t)))  MCMC gets bad if
∑∞

t=1 ρt is large

”Importance tempering” is a way of combining Importance Sampling and MCMC.

Figure from Johansen,Evers,Whiteley(2010)
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Classical Gibbs Sampling

f (x) is d-dimensional, x = (x1, . . . , xd) ∈ X d

Gibbs Sampling (GS)
At each iteration:

1. Sample i from {1, . . . , d} uniformly

2. Update xi ∼ f (xi |x−i )

Main limitation: correlation in the posterior induces slow mixing

Plan: develop an importance tempering version of GS to alleviate slow mixing,
and use the one-dimensional nature of GS to have robustness to high-dimensions.
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Importance Tempering for the Gibbs Sampler

Classical importance tempering
β ∈ (0, 1]

g(x) = f (β)(x) =
f (x)β∫
f (x)βdx

Tempered Gibbs Sampling
Intuition: temper only the coordinate that is being updated.
Consider augmented state space: (x, i) ∈ X d × {1, . . . , d} and

f̃ (x, i) =
1

d
f (x−i )f

(β)(xi |x−i )

• target f̃ (x, i) by updating i ∼ f̃ (i |x) and xi ∼ f̃ (xi |x−i , i).

• Marginal distribution of x is 1
d

∑d
i=1 f (x−i )f (β)(xi |x−i )
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Tempered Gibbs Sampling

f (β)(xi |x−i ) can be replaced with any g(xi |x−i )

Tempered Gibbs Sampling (TGS)
At each iteration:

1. Sample i from {1, . . . , d} proportionally to pi (x) = g(xi |x−i )
f (xi |x−i )

2. Update xi ∼ g(xi |x−i )
3. Weight the new state x with w(x) = Z (x)−1, where Z (x) = 1

d

∑d
i=1 pi (x)

Induced x(1), x(2), . . . is invariant w.r.t. fZ (x) = 1
d

∑d
i=1 f (x−i )g(xi |x−i ). Thus∑n

t=1 w(x(t))h(x(t))∑n
t=1 w(x(t))

n→∞−→ Ef [h] ,

NB: g(xi |x−i ) = f (xi |x−i ) corresponds to standard GS
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Tempered Gibbs Sampling

Simplest version: g(xi |x−i ) = f (β)(xi |x−i ) for β ∈ (0, 1].
At each iteration:

1. Sample i from {1, . . . , d} proportionally to pi (x) = 1
f (1−β)(xi |x−i )

2. Update xi ∼ f (β)(xi |x−i )
3. Assign to the new state x a weight w(x) = Z (x)−1

Intuition

• Step 1 chooses the “best” coordinate to update at each iteration (“greedy”
behavior)

• Step 2 tempers the conditional distribution of the updated variable to make
longer moves and overcome correlation

• Modifications in Steps 1&2 compensate each other and keep Var(w(x)) low.
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TGS and correlation

Figure: GS&TGS on a correlated Gaussian. Dots are proportional to importance weights.

 Improving mixing by allowing some variance of the importance weights
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TGS can mix faster because the importance distribution has weaker correlation
than the original one.

Figure: Target f (x) and importance distribution f (x)Z(x), for increasing correlation.

NB: standard tempering would not reduce correlation here!
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Remark: difference from classical tempering

• Most MCMC schemes try to sample
exactly from f

• “Importance Tempering”: run
Markov chain on g and reweight
samples with w(x). However, plain
importance tempering rarely used!

• More common tempering schemes
(simulated tempering, parallel
tempering, SMC samplers,. . . ) build
a sequence f (β0)(x), . . . , f (βk )(x)
and keep samples from f (β0) = f .

• Very different in spirit from TGS
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Theoretical guarantees?

Measure of efficiency: asymptotic variances

var(h,TGS) := lim
n→∞

n var

(∑n
t=1 w(x(t))h(x(t))∑n

t=1 w(x(t))

)
where x(1), x(2), . . . is the Markov chain generated by TGS.

Importance sampling & MCMC contribution
We have

var(h,TGS) = var(h, IS)

(
1 + 2

∞∑
t=1

ρt

)
var(h, IS) is the asymptotic variance of importance sampling with proposal fZ
ρt is the lag t autocorrelation of (w(x(i))h(x(i)))∞i=1
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Theoretical guarantees (IS)

• Concern with classical IS is that var(h, IS) could grow as exp(d)

• In TGS we are tempering one coordinate at a time
 we don’t pay a dimensionality price in var(h, IS).

Robustness to high-dimensionality
Given the importance distribution fZ (x) = 1

d

∑d
i=1 f (x−i )g(xi |x−i )

1.
Var (h, IS) ≤ c ,

where c is a constant independent of d . In applications c = 2.

2. For “nice” targets Var (w(x))→ 0 as d →∞.

Intuition: w(x) = ( 1
d

∑d
i=1 pi (x))−1 is an average and stabilizes for large d .

 IS variance does not harm here.
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Theoretical Guarantees (MCMC)

Mixing of the Markov chain

1. The mixing of TGS can never be significantly worse than the one of GS

var(h,TGS) ≤ c2var(h,GS) + c2varf (h)

In applications c2 = 4. (Proof involves continuous-time formulation of the
chains, Peskun ordering and control on the importance weights.)

 The mixing is never worse, but when is it better?

2. For simple bivariate cases one can show that the mixing time of TGS is
uniformly bounded over the correlation ρ ∈ (0, 1).
(Proof involves notion of “deinitializing” Markov chain.)
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When does TGS help? (and when it doesn’t?)

Whether or not TGS overcomes correlation depends on the geometry of the target:
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Figure: Log-log plots of var(h,GS) and var(h,TGS) for Gaussian targets with difference
covariance structures.

TGS effective for targets with pairwise and high-order negative correlations, but
not for high-order positive correlations  indication of which models to use it for!
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Application to Bayesian Variable Selection

Classical linear regression: given an n × p design matrix X

Y |β, σ2 ∼N(Xβ, σ2In)

β|σ2 ∼ N(0, σ2Σ) , p(σ2) ∝ 1

σ2
.

Bayesian Variable Selection (BVS)
Introduce binary indicators: γi = 1 if the i-th regressor is “active” and γi = 0
otherwise. Place prior distribution on γ = (γ1, . . . , γp) ∈ {0, 1}p.

Y |βγ , γ, σ2 ∼N(Xγβγ , σ
2In)

βγ |γ, σ2 ∼ N(0, σ2Σγ) , p(σ2) ∝ 1

σ2
.

Xγ is the n × |γ| matrix containing only the columns of the active regressors
βγ is the |γ| × 1 vector containing only the coefficients of the active regressors
Σγ is a |γ| × |γ| prior covariance matrix. Here |γ| =

∑p
i=1 γi
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Bayesian Variable Selection

• Joint posterior distribution p(γ, β, σ|Y ). Posterior inclusion probability of
i-th variable given by p(γi = 1|Y )

• BVS has many attractive properties (UQ, interpretability, consistency, good
predictions,...) but the bottleneck is posterior computation

• Cost driven by p, not n. Many applications involve p � n

• After integrating out β and σ analytically you’re left with p(γ|Y ), with
γ ∈ {0, 1}p. Computation done by Gibbs Sampling on (γ1, . . . , γp)|Y .

• (γ1, . . . , γp)|Y is high-dimensional target with only pairwise and negative
correlation  theory suggests TGS should mix well here!
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TGS for Bayesian Variable Selection

Parameter space: γ ∈ {0, 1}p
Target: f (γ) = p(γ|Y )
Tempered conditionals: g(γi |γ−i ) = Unif({0, 1})

TGS for Variable Selection
At each iteration

1. Sample i from {1, . . . , p} proportionally to pi (γ) = 1
p(γi |γ−i ,Y )

2. Flip γi to 1− γi
3. Assign to the new state γ a weight w(γ) = Z (γ)−1
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Illustrative example

Simulated data with p = 100 and variables 1 and 2 strongly correlated.
GS gets stuck in the local modes (γ1, γ2) = (1, 0) and (γ1, γ2) = (0, 1).

Figure: Running estimates of posterior inclusion probabilities for variables 1 and 2
produced by GS and TGS. Horizontal line is the truth.
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Speed-up trick: weighted TGS (wTGS)

Multiply pi (x) with weight function ηi (x−i ) without affecting algorithms’ validity

1. Sample i from {1, . . . , p} proportionally to pi (x) = ηi (x−i )
g(xi |x−i)
f (xi |x−i)

,

2. Sample xi ∼ g(xi |x−i ),

3. Weight the new state x with a weight Z (x)−1

Now the i-th coordinate gets updated with frequency E[ηi (x−i )] 6= 1/p

wTGS for Variable Selection
In BVS, set ηi (γ−i ) = p(γi = 1|γ−i ,Y ) so that E[ηi (γ−i )] ∝ p(γi = 1|Y )
 “focus” computational effort on more important variables.

At each iteration

1. Sample i from {1, . . . , p} proportionally to pi (γ) = p(γi=1|γ−i ,Y )
p(γi |γ−i ,Y )

2. Flip γi to 1− γi
3. Assign to the new state γ a weight w(γ) = Z (γ)−1
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Illustrative example

Simulated data with p = 1000 and variables 1 and 2 strongly correlated.
GS gets stuck in the local modes (γ1, γ2) = (1, 0) and (γ1, γ2) = (0, 1).

Figure: Running estimates of posterior inclusion probabilities for variables 1 and 2
produced by GS, TGS and wTGS. Horizontal line is the truth.
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Computational complexity?

Complexity = (Cost per iteration)× ( # iterations)

Cost per iteration

• TGS has a higher cost per iteration in computing {pi (γ)}pi=1

• For BVS {pi (γ)}pi=1 can be computed with single matrix multiplication

 GS cost per iteration1 O(|γ|2), where |γ| =
∑p

i=1 γi

 TGS cost per iteration2 O(|γ|p)

• Values of {pi (γ)}pi=1 can be recycled to compute Rao-Blackwellized
estimators.

1computing Cholesky decomposition of |γ| × |γ| matrix
2doing a |γ| × |γ| times |γ| × p matrix product
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Number of iterations?
# iterations depends on the mixing properties of the Markov chain. We will study
the relaxation time. For example, for GS:

tGS = Gap(PGS)−1 ⇒ var(h,GS)

varf (h)
≤ 2 tGS

Interpretation: one “effective sample” every 2 tGS iterations.

How do tGS , tTGS and twTGS scale with p?
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Computational complexity of GS, TGS and wTGS
Consider two extreme scenarios

1. Uncorrelated variables (XTX diagonal)

tGS = O(p) , tTGS = O(p) , twTGS = O(s)

where s is the average number of active variables. Thus

ComplGS = O(p s2) , ComplTGS = O(p2 s) , ComplwTGS = O(p s2)

2. Maximally correlated variables (m collinear, p −m noise)

tGS ≥ O(c1/2h−1p) ≈ O(p3) , tTGS = O(p) , twTGS = O(s) .

Thus

ComplGS = O(p3 s2) , ComplTGS = O(p2 s) , ComplwTGS = O(p s2)
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Simulation study
3 simulated scenarios (varying strength and types of correlation)
Various levels of n, p and signal-to-noise.

TGS-vs-GS wTGS-vs-GS
SNR SNR

(p,n) 0.5 1 2 3 0.5 1 2 3

sc
en

.1 (100,50) 7.2e1 1.8e1 2.8e2 5.8e2 4.2e2 3.1e3
(200,200) 4.9e3 6.6e1 1.9e2 1.1e4 1.8e3 1.6e4

(1000,500) 2.7e2 6.3e2 1.4 8.1e1 8.8e3 2.5e4 5.8e2 1.9e4

sc
en

.2 (100,50) 4.8 1.4e1 3.3 2.0e1 1.3e2 2.4e2 1.8e1 1.4e2
(200,200) 8.6e1 4.7e1 3.4 2.5e6 2.3e3 2.1e3 6.0e1 4.1e2

(1000,500) 4.6e1 3.7e1 1.3e1 4.5e2 1.1e4 7.6e3 1.1e3 1.8e4

sc
en

.3 (100,50) 2.7 5.3 9.2 2.5e1 6.7e1 2.1e1
(200,200) 1.1e2 6.6e1 1.3e3 4.6e2

(1000,500) 1.6e1 6.8e2 1.1e3 9.4e3

Table: Mean efficiency improvement of TGS and wTGS over GS. Empty values
corresponds to large values with no reliable estimate available.

TGS-vs-GS
SNR

(p,n) 0.5 1 2 3

sc
en

.1 (100,50) 5.8e2 4.2e2 3.1e3
(200,200) 1.1e4 1.8e3 1.6e4

(1000,500) 8.8e3 2.5e4 5.8e2 1.9e4

sc
en

.2 (100,50) 1.3e2 2.4e2 1.8e1 1.4e2
(200,200) 2.3e3 2.1e3 6.0e1 4.1e2

(1000,500) 1.1e4 7.6e3 1.1e3 1.8e4

sc
en

.3 (100,50) 2.5e1 6.7e1 2.1e1
(200,200) 1.3e3 4.6e2

(1000,500) 1.1e3 9.4e3

Table: Mean efficiency improvement of TGS over GS. Empty values corresponds to large
values with no reliable estimate available.
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Large p genomic dataset5

p = 10172. Compare TGS with GS and Hamming Ball Sampler3 (HBS)

Figure: Points close to the diagonal line indicate estimates agreeing across different runs.

• Runtime less than 2 minutes with pure R on single desktop computer4

• p ≈ 104 often considered computationally infeasible for Bayesian approach to
Variable Selection (most available R packages require hours to fit this model).

3Titsias and Yau (2017) The Hamming Ball Sampler. JASA
4R code available at https://github.com/gzanella/TGS
5Human microarray gene expression data in colon cancer patients from Calon et al. (2012)
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Discussion

• Proposed a combination of IS&MCMC that is robust to high-dimensionality.

• Theoretical results, e.g. guarantees of improving convergence over GS, but
with higher cost per iteration.

• TGS will work well if:
(a) posterior exhibits negative and/or pairwise correlation;
(b) computing the selection probabilities {pi (γ)}pi=1 can be done efficiently.

• Simple and scalable sampler for spike and slab Bayesian Variable Selection.
Computational complexity results in simple scenarios.

• Many extensions and variations of the algorithmic scheme possible.

Arxiv preprint: G.Zanella&G.O.Roberts (2018) Scalable Importance Tempering
and Bayesian Variable Selection.
Acknowledgements: support by the European Research Council (ERC) through
starting grant ”N-BNP”, PI. Igor Prünster.
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