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The Metropolis-Hastings Algorithm

Monte Carlo by Markov Chains

Running Monte Carlo via Markov Chains

Far from necessary to use a sample from the distribution f to
approximate the integral

I =

∫
h(x)f(x)dx ,

as sample from different target(s) g can be exploited in
importance sampling version:

Î = 1/n

n∑
i=1

h(xi) f(xi)/g(xi)︸ ︷︷ ︸
importance weight
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Monte Carlo by Markov Chains

Running Monte Carlo via Markov Chains

Far from necessary to use a sample from the distribution f to
approximate the integral

I =

∫
h(x)f(x)dx ,

as non-i.i.d. sample X1, . . . , Xn ∼ f produced by using an
ergodic Markov chain with stationary distribution f
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Monte Carlo by Markov Chains

Running Monte Carlo via Markov Chains (2)

Idea

For an arbitrary starting value x(0), an ergodic chain (X(t)) is
generated using a transition kernel with stationary distribution f

I Insures the convergence in distribution of (X(t)) to a random
variable from f .

I For a “large enough” T0, X(T0) can be considered as
distributed from limiting distribution f

I Produce a dependent sample X(T0), X(T0+1), . . ., which is
generated from f , sufficient for most approximation purposes
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The Metropolis-Hastings Algorithm

Monte Carlo by Markov Chains

Running Monte Carlo via Markov Chains (2)

I Insures the convergence in distribution of (X(t)) to a random
variable from f .

I For a “large enough” T0, X(T0) can be considered as
distributed from limiting distribution f

I Produce a dependent sample X(T0), X(T0+1), . . ., which is
generated from f , sufficient for most approximation purposes

Problem:

How can one build a Markov chain with a given stationary
distribution?
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The Metropolis–Hastings algorithm

Basics
The algorithm uses the objective
(target) density

f

and a conditional density

q(y|x)

called the instrumental (or proposal)
distribution

[Metropolis & al., 1953]
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The MH algorithm

Algorithm (Metropolis–Hastings)

Given x(t),

1. Generate Yt ∼ q(y|x(t)).

2. Take

X(t+1) =

{
Yt with prob. ρ(x(t), Yt),

x(t) with prob. 1− ρ(x(t), Yt),

where

ρ(x, y) = min

{
f(y)

f(x)

q(x|y)

q(y|x)
, 1

}
.
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Metropolis–Hastings

Features

I Independent of normalizing constants for both f and q(·|x)
(ie, those constants independent of x)

I Never move to values with f(y) = 0

I The chain (x(t))t may take the same value several times in a
row, even though f is a density wrt Lebesgue measure

I The sequence (yt)t is usually not a Markov chain
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Metropolis–Hastings

Convergence properties

1. The M-H Markov chain is reversible, with
invariant/stationary density f since it satisfies the detailed
balance condition

f(y)K(y, x) = f(x)K(x, y)

2. As f is a probability measure, the chain is positive recurrent

3. If

Pr

[
f(Yt) q(X

(t)|Yt)
f(X(t)) q(Yt|X(t))

≥ 1

]
< 1. (1)

that is, the event {X(t+1) = X(t)} is possible, then the chain
is aperiodic
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Metropolis–Hastings

Convergence properties (2)

4. If
q(y|x) > 0 for every (x, y), (2)

the chain is irreducible

5. For M-H, f -irreducibility implies Harris recurrence

6. Thus, for M-H satisfying (1) and (2)
(i) For h, with If |h(X)| <∞,

lim
T→∞

1

T

T∑
t=1

h(X(t)) =

∫
h(x)df(x) a.e. f.

(ii) and

lim
n→∞

∥∥∥∥∫ Kn(x, ·)µ(dx)− f
∥∥∥∥
TV

= 0

for every initial distribution µ, where Kn(x, ·) denotes the
kernel for n transitions.
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MCMC versions

The Independent Case

The instrumental distribution q is independent of X(t), and is
denoted g by analogy with Accept-Reject.

Algorithm (Independent Metropolis-Hastings)

Given x(t),

a Generate Yt ∼ g(y)

b Take

X(t+1) =

Yt with prob. min

{
f(Yt) g(x(t))

f(x(t)) g(Yt)
, 1

}
,

x(t) otherwise.
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The Metropolis-Hastings Algorithm

MCMC versions

Properties
The resulting sample is not iid

but there exist strong convergence
properties:

Theorem (Ergodicity)

The algorithm produces a uniformly ergodic chain if there exists a
constant M such that

f(x) ≤Mg(x) , x ∈ supp f.

In this case,

‖Kn(x, ·)− f‖TV ≤
(

1− 1

M

)n
.

[Mengersen & Tweedie, 1996]
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MCMC versions

Illustration

Example (Noisy AR(1))

Hidden Markov chain from a regular AR(1) model,

xt+1 = ϕxt + εt+1 εt ∼ N (0, τ2)

and observables
yt|xt ∼ N (x2t , σ

2)

The distribution of xt given xt−1, xt+1 and yt is

exp
−1

2τ2

{
(xt − ϕxt−1)2 + (xt+1 − ϕxt)2 +

τ2

σ2
(yt − x2t )2

}
.
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MCMC versions

Illustration

Example (Noisy AR(1))

Use for proposal the N (µt, ω
2
t ) distribution, with

µt = ϕ
xt−1 + xt+1

1 + ϕ2
and ω2

t =
τ2

1 + ϕ2
.

Ratio
π(x)/qind(x) = exp−(yt − x2t )2/2σ2

is bounded
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2
t ) distribution, with
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xt−1 + xt+1
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and ω2

t =
τ2
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Ratio
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MCMC versions

Illustration

(top) Last 500 realisations of the chain {Xk}k out of 10, 000
iterations; (bottom) histogram of the chain, compared with
the target distribution.
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MCMC versions

Random walk Metropolis–Hastings

Use of a local perturbation as proposal

Yt = X(t) + εt,

where εt ∼ g, independent of X(t).
The instrumental density is now of the form g(y − x) and the
Markov chain is a random walk if we take g to be symmetric
g(x) = g(−x)
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MCMC versions

Random walk Metropolis–Hastings

Algorithm (Random walk Metropolis)

Given x(t)

1. Generate Yt ∼ g(y − x(t))
2. Take

X(t+1) =

Yt with prob. min

{
1,

f(Yt)

f(x(t))

}
,

x(t) otherwise.
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MCMC versions

Random walk Metropolis–Hastings

Example (Random walk and normal target)

Generate N (0, 1) based on the uniform proposal [−δ, δ]
[Hastings (1970)]

The probability of acceptance is then

ρ(x(t), yt) = exp{(x(t)2 − y2t )/2} ∧ 1.
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MCMC versions

Random walk Metropolis–Hastings

Example (Mixture models)

π(θ|x) ∝
n∏
j=1

(
k∑
`=1

p`f(xj |µ`, σ`)

)
π(θ)

Metropolis-Hastings proposal:

θ(t+1) =

{
θ(t) + ωε(t) if u(t) < ρ(t)

θ(t) otherwise

where

ρ(t) =
π(θ(t) + ωε(t)|x)

π(θ(t)|x)
∧ 1

and ω scaled for good acceptance rate
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Random walk Metropolis–Hastings
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Random walk Metropolis–Hastings
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Random walk MCMC output for .7N (µ1, 1) + .3N (µ2, 1)
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Random walk Metropolis–Hastings

Example (probit model)

Likelihood of the probit model

n∏
i=1

Φ(yT
i β)xi Φ(−yT

i β)1−xi

Random walk proposal

β(t+1) = β(t) + εt εt ∼ Np(0,Σ)

where, for instance,
Σ = α(Y Y T)−1
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Random walk Metropolis–Hastings
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Likelihood surface and random walk Metropolis-Hastings
steps
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Convergence properties

Uniform ergodicity prohibited by random walk structure

At best, geometric ergodicity:

Theorem (Sufficient ergodicity)

For a symmetric density f , log-concave in the tails, and a positive
and symmetric density g, the chain (X(t)) is geometrically ergodic.

[Mengersen & Tweedie, 1996]

no tail effect



Markov Chain Monte Carlo Methods

The Metropolis-Hastings Algorithm

MCMC versions

Convergence properties

Uniform ergodicity prohibited by random walk structure
At best, geometric ergodicity:

Theorem (Sufficient ergodicity)

For a symmetric density f , log-concave in the tails, and a positive
and symmetric density g, the chain (X(t)) is geometrically ergodic.

[Mengersen & Tweedie, 1996]

no tail effect



Markov Chain Monte Carlo Methods

The Metropolis-Hastings Algorithm

MCMC versions

Convergence properties

Example (Comparison of tail
effects)

Random-walk
Metropolis–Hastings algorithms
based on a N (0, 1) instrumental
for the generation of (a) a
N (0, 1) distribution and (b) a
distribution with density
ψ(x) ∝ (1 + |x|)−3
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Convergence properties

Example (Cauchy by normal)

Cauchy C (0, 1) target and Gaussian random walk proposal,
ξ′ ∼ N (ξ, σ2), with acceptance probability

1 + ξ2

1 + (ξ′)2
∧ 1 ,

Overall fit of the Cauchy density by the histogram satisfactory, but
poor exploration of the tails: 99% quantile of C (0, 1) equal to 3,
but no simulation exceeds 14 out of 10, 000!

[Roberts & Tweedie, 2004]
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Convergence properties

Again, lack of geometric ergodicity!
[Mengersen & Tweedie, 1996]

Slow convergence shown by the non-stable range after 10, 000
iterations.
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Convergence properties
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Range of 500 parallel runs for the same setup
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Comments

I [CLT, Rosenthal’s inequality...] h-ergodicity implies CLT
for additive (possibly unbounded) functionals of the chain,
Rosenthal’s inequality and so on...

I [Control of the moments of the return-time] The
condition implies (because h ≥ 1) that

sup
x∈C

Ex[r0(τC)] ≤ sup
x∈C

Ex

{
τC−1∑
k=0

r(k)h(Xk)

}
<∞,

where r0(n) =
∑n

l=0 r(l) Can be used to derive bounds for
the coupling time, an essential step to determine computable
bounds, using coupling inequalities

[Roberts & Tweedie, 1998; Fort & Moulines, 2000]
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Extensions

There are many other families of HM algorithms

◦ Adaptive Rejection Metropolis Sampling

◦ Reversible Jump (later!)

◦ Langevin algorithms

◦ not HMC (different H!)

to name just a few...
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Extensions

Langevin Algorithms

Proposal based on the Langevin diffusion Lt is defined by the
stochastic differential equation

dLt = dBt +
1

2
∇ log f(Lt)dt,

where Bt is the standard Brownian motion

Theorem

The Langevin diffusion is the only non-explosive diffusion which is
reversible with respect to f .
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Extensions

Discretization

Instead, consider the sequence

x(t+1) = x(t) +
σ2

2
∇ log f(x(t)) + σεt, εt ∼ Np(0, Ip)

where σ2 corresponds to the discretization step

Unfortunately, the discretized chain may be transient, for instance
when

lim
x→±∞

∣∣σ2∇ log f(x)|x|−1
∣∣ > 1
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Extensions

MH correction (MALA)

Accept the new value Yt with probability

f(Yt)

f(x(t))
·

exp

{
−
∥∥∥Yt − x(t) − σ2

2 ∇ log f(x(t))
∥∥∥2/2σ2

}
exp

{
−
∥∥∥x(t) − Yt − σ2

2 ∇ log f(Yt)
∥∥∥2/2σ2

} ∧ 1 .

Choice of the scaling factor σ
Should lead to an acceptance rate of 0.574 to achieve optimal
convergence rates (when the components of x are uncorrelated)

[Roberts & Rosenthal, 1998]



Markov Chain Monte Carlo Methods

The Metropolis-Hastings Algorithm

Extensions

Optimizing the Acceptance Rate

Problem of choice of the transition kernel from a practical point of
view
Most common alternatives:

(a) a fully automated algorithm like ARMS;
[Gilks and Wild, 1992]

(b) an instrumental density g which approximates f , such that
f/g is bounded for uniform ergodicity to apply;

(c) a random walk

In both cases (b) and (c), the choice of g is critical,
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Extensions

Optimizing the Acceptance Rate

Example (Noisy AR(1))

For a Gaussian random walk with scale ω small enough, the
random walk never jumps to the other mode. But if the scale ω is
sufficiently large, the Markov chain explores both modes and give a
satisfactory approximation of the target distribution.
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Extensions

Optimizing the Acceptance Rate

Markov chain based on a random walk with scale ω = .1.
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Extensions

Optimizing the Acceptance Rate

Markov chain based on a random walk with scale ω = .5.
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Rao–Blackwellisation

True Metropolis–Hastings sequence

Alternative representation of Metropolis–Hastings estimator δ as

δ =
1

n

n∑
t=1

h(x(t)) =
1

n

Mn∑
i=1

nih(zi) ,

where

I zi’s are the accepted yj ’s,

I Mn is the number of accepted yj ’s till time n,

I ni is the number of times zi appears in the sequence (x(t))t.
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Rao–Blackwellisation

The “accepted candidates”

Define

q̃(·|zi) =
α(zi, ·) q(·|zi)

p(zi)
≤ q(·|zi)

p(zi)

where p(zi) =
∫
α(zi, y) q(y|zi)dy

To simulate from q̃(·|zi)
1. Propose a candidate y ∼ q(·|zi)
2. Accept with probability

q̃(y|zi)
/(

q(y|zi)
p(zi)

)
= α(zi, y)

Otherwise, reject it and starts again.

I this is the transition of the HM algorithm
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Rao–Blackwellisation

The “accepted candidates”

Define

q̃(·|zi) =
α(zi, ·) q(·|zi)

p(zi)
≤ q(·|zi)

p(zi)

where p(zi) =
∫
α(zi, y) q(y|zi)dy

The transition kernel q̃ admits π̃ as a stationary distribution:

π̃(x)q̃(y|x) =
π(x)p(x)∫
π(u)p(u)du︸ ︷︷ ︸

π̃(x)

α(x, y)q(y|x)

p(x)︸ ︷︷ ︸
q̃(y|x)
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Rao–Blackwellisation

The “accepted candidates”

Define

q̃(·|zi) =
α(zi, ·) q(·|zi)

p(zi)
≤ q(·|zi)

p(zi)

where p(zi) =
∫
α(zi, y) q(y|zi)dy

The transition kernel q̃ admits π̃ as a stationary distribution:

π̃(x)q̃(y|x) = π̃(y)q̃(x|y) ,
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The Metropolis-Hastings Algorithm

Rao–Blackwellisation

The ”accepted chain”

The sequence (zi, ni) satisfies

1. (zi, ni)i is a Markov chain;

2. zi+1 and ni are independent given zi;

3. ni is distributed as a geometric random variable with
probability parameter

p(zi) :=

∫
α(zi, y) q(y|zi) dy ;

4. (zi)i is a Markov chain with transition kernel
Q̃(z, dy) = q̃(y|z)dy and stationary distribution π̃ such that

q̃(·|z) ∝ α(z, ·) q(·|z) and π̃(·) ∝ π(·)p(·) .

[Douc & X., 2011]
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Importance sampling perspective

1. A natural idea:

δ∗ =
1

n

Mn∑
i=1

h(zi)

p(zi)
,
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Rao–Blackwellisation

Importance sampling perspective

1. A natural idea:

δ∗ '

∑Mn
i=1

h(zi)

p(zi)∑Mn
i=1

1

p(zi)

=

∑Mn
i=1

π(zi)

π̃(zi)
h(zi)∑Mn

i=1

π(zi)

π̃(zi)

.

2. But p not available in closed form.

3. The geometric ni is the replacement, an obvious solution that
is used in the original Metropolis–Hastings estimate since
E[ni] = 1/p(zi).
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Rao–Blackwellisation

The Bernoulli factory
The crude estimate of 1/p(zi),

ni = 1 +

∞∑
j=1

∏
`≤j

I {u` ≥ α(zi, y`)} ,

can be improved:

Lemma (Douc & X., 2011)

If (yj)j is an iid sequence with distribution q(y|zi), the quantity

ξ̂i = 1 +
∞∑
j=1

∏
`≤j
{1− α(zi, y`)}

is an unbiased estimator of 1/p(zi) which variance, conditional on
zi, is lower than the conditional variance of ni, {1− p(zi)}/p2(zi).
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Rao–Blackwellisation

Rao-Blackwellised, for sure?

ξ̂i = 1 +

∞∑
j=1

∏
`≤j
{1− α(zi, y`)}

1. Infinite sum but finite with at least positive probability:

α(x(t), yt) = min

{
1,

π(yt)

π(x(t))

q(x(t)|yt)
q(yt|x(t))

}
For example: take a symmetric random walk as a proposal.

2. What if we wish to be sure that the sum is finite?

Finite horizon k version:

ξ̂ki = 1 +

∞∑
j=1

∏
1≤`≤k∧j

{1− α(zi, yj)}
∏

k+1≤`≤j
I {u` ≥ α(zi, y`)}
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Rao–Blackwellisation

Variance improvement

Theorem (Douc & X., 2011)

If (yj)j is an iid sequence with distribution q(y|zi) and (uj)j is an
iid uniform sequence, for any k ≥ 0, the quantity

ξ̂ki = 1 +

∞∑
j=1

∏
1≤`≤k∧j

{1− α(zi, yj)}
∏

k+1≤`≤j
I {u` ≥ α(zi, y`)}

is an unbiased estimator of 1/p(zi) with an almost sure finite
number of terms.
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Variance improvement

Theorem (Douc & X., 2011)

If (yj)j is an iid sequence with distribution q(y|zi) and (uj)j is an
iid uniform sequence, for any k ≥ 0, the quantity

ξ̂ki = 1 +

∞∑
j=1

∏
1≤`≤k∧j

{1− α(zi, yj)}
∏

k+1≤`≤j
I {u` ≥ α(zi, y`)}

is an unbiased estimator of 1/p(zi) with an almost sure finite
number of terms. Moreover, for k ≥ 1,

Vξ̂ki zi =
1− p(zi)
p2(zi)

−
1− (1− 2p(zi) + r(zi))

k

2p(zi)− r(zi)

(
2− p(zi)
p2(zi)

)
(p(zi)− r(zi)) ,

where p(zi) :=
∫
α(zi, y) q(y|zi) dy. and r(zi) :=

∫
α2(zi, y) q(y|zi) dy.
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Rao–Blackwellisation

Variance improvement

Theorem (Douc & X., 2011)

If (yj)j is an iid sequence with distribution q(y|zi) and (uj)j is an
iid uniform sequence, for any k ≥ 0, the quantity

ξ̂ki = 1 +

∞∑
j=1

∏
1≤`≤k∧j

{1− α(zi, yj)}
∏

k+1≤`≤j
I {u` ≥ α(zi, y`)}

is an unbiased estimator of 1/p(zi) with an almost sure finite
number of terms. Therefore, we have

Vξ̂izi ≤ Vξ̂ki zi ≤ Vξ̂0i zi = Vnizi .
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Delayed acceptance

The “Big Data” plague

Simulation from posterior with large sample size n

I Computing time at least of order O(n)

I solutions using likelihood decomposition

n∏
i=1

`(θ|xi)

and handling subsets on different processors (CPU), graphical
units (GPU), or computers

[Scott et al., 2013, Korattikara et al., 2013]

I no consensus on method of choice, with instabilities from
removing most prior input and uncalibrated approximations

[Neiswanger et al., 2013]
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Delayed acceptance

Proposed solution
“There is no problem an absence of decision cannot solve.”

Anon.

Given α(x, y) := 1 ∧ r(x, y), factorise

r(x, y) =

d∏
k=1

ρk(x, y)

under constraint ρk(x, y) = ρk(y, x)−1

Delayed Acceptance Markov kernel given by

P̃ (x,A) :=

∫
A

q(x, y)α̃(x, y)dy +

(
1−

∫
X

q(x, y)α̃(x, y)dy

)
1A(x)

where

α̃(x, y) :=

d∏
k=1

{1 ∧ ρk(x, y)}.
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The Metropolis-Hastings Algorithm

Delayed acceptance

Proposed solution

Algorithm 1 Delayed Acceptance

To sample from P̃ (x, ·):

1. Sample y ∼ Q(x, ·).

2. For k = 1, . . . , d:

I with probability 1 ∧ ρk(x, y) continue
I otherwise stop and output x

3. Output y

Arrange terms in product so that most computationally intensive
ones calculated ‘at the end’ hence least often
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The Metropolis-Hastings Algorithm

Delayed acceptance

Proposed solution

Algorithm 1 Delayed Acceptance

To sample from P̃ (x, ·):

1. Sample y ∼ Q(x, ·).

2. For k = 1, . . . , d:

I with probability 1 ∧ ρk(x, y) continue
I otherwise stop and output x

3. Output y

Generalization of Fox & Nicholls (1997) and Christen & Fox
(2005), where testing for acceptance with approximation before
computing exact likelihood first suggested
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The Metropolis-Hastings Algorithm

Delayed acceptance

The “Big Data” plague

Delayed Acceptance intended for likelihoods or priors, but
not a clear solution for “Big Data” problems

1. all product terms must be computed

2. all terms previously computed either stored for future
comparison or recomputed

3. sequential approach limits parallel gains...

4. ...unless prefetching scheme added to delays
[Strid (2010)]
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The Metropolis-Hastings Algorithm

Adaptive MCMC

Adaptive MCMC may be hazardous to your ergodicity!

 Algorithms trained on-line usually invalid:

using the whole past of the “chain” implies that this is no longer a
Markov chain! !
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Adaptive MCMC may be hazardous to your ergodicity!

 Algorithms trained on-line usually invalid:
using the whole past of the “chain” implies that this is no longer a
Markov chain! !
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Adaptive MCMC

Illustration

Example (Poly t distribution)

Consider a t-distribution T (3, θ, 1) sample (x1, . . . , xn) with a flat
prior π(θ) = 1
If we try fit a normal proposal from empirical mean and variance of
the chain so far,

µt =
1

t

t∑
i=1

θ(i) and σ2t =
1

t

t∑
i=1

(θ(i) − µt)2 ,

Metropolis–Hastings algorithm with acceptance probability

n∏
j=2

[
ν + (xj − θ(t))2

ν + (xj − ξ)2

]−(ν+1)/2
exp−(µt − θ(t))2/2σ2

t

exp−(µt − ξ)2/2σ2
t

,

where ξ ∼ N (µt, σ
2
t ).
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where ξ ∼ N (µt, σ
2
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Adaptive MCMC

Illustration

Example (Poly t distribution (2))

Invalid scheme:

I when range of initial values too small, the θ(i)’s cannot
converge to the target distribution and concentrates on too
small a support.

I long-range dependence on past values modifies the
distribution of the sequence.

I using past simulations to create a non-parametric
approximation to the target distribution does not work either
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Illustration
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Adaptive scheme for a sample of 10 xj ∼ T3 and initial
variances of (top) 0.1, (middle) 0.5, and (bottom) 2.5.
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Adaptive MCMC

Illustration

θ

−2 −1 0 1 2

0.0
0.1

0.2
0.3

0.4
0.5

0.6

Comparison of the distribution of an adaptive scheme sample
of 25, 000 points with initial variance of 2.5 and of the target
distribution.
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Adaptive MCMC

Illustration
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Sample produced by 50, 000 iterations of a nonparametric
adaptive MCMC scheme and comparison of its distribution
with the target distribution.



Markov Chain Monte Carlo Methods
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The Gibbs Sampler

The Metropolis-Hastings
Algorithm

Gibbs Sampling
General Principles
Completion
Convergence
The Hammersley-Clifford
theorem
Improper Priors

Hamiltonian Monte Carlo

Piecewise Deterministic Versions
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Gibbs Sampling

General Principles

General Principles

A very specific simulation algorithm based on the target
distribution f :

1. Uses the conditional densities f1, . . . , fp from f

2. Start with the random variable X = (X1, . . . , Xp)

3. Simulate from the conditional densities,

Xi|x1, x2, . . . , xi−1, xi+1, . . . , xp

∼ fi(xi|x1, x2, . . . , xi−1, xi+1, . . . , xp)

for i = 1, 2, . . . , p.
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General Principles

General Principles

Algorithm (Gibbs sampler)

Given x(t) = (x
(t)
1 , . . . , x

(t)
p ), generate

1. X
(t+1)
1 ∼ f1(x1|x(t)2 , . . . , x

(t)
p );

2. X
(t+1)
2 ∼ f2(x2|x(t+1)

1 , x
(t)
3 , . . . , x

(t)
p ),

. . .

p. X
(t+1)
p ∼ fp(xp|x(t+1)

1 , . . . , x
(t+1)
p−1 )

X(t+1) → X ∼ f
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Gibbs Sampling

General Principles

Properties

The full conditionals densities f1, . . . , fp are the only densities used
for simulation. Thus, even in a high dimensional problem, all of
the simulations may be univariate

The Gibbs sampler is not reversible with respect to f . However,
each of its p components is. Besides, it can be turned into a
reversible sampler, either using the Random Scan Gibbs sampler or
running instead the (double) sequence

f1 · · · fp−1fpfp−1 · · · f1
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Properties

The full conditionals densities f1, . . . , fp are the only densities used
for simulation. Thus, even in a high dimensional problem, all of
the simulations may be univariate
The Gibbs sampler is not reversible with respect to f . However,
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Markov Chain Monte Carlo Methods

Gibbs Sampling

General Principles

A Very Simple Example: Independent N (µ, σ2)
Observations

When Y1, . . . , Yn
iid∼ N (y|µ, σ2) with both µ and σ unknown, the

posterior in (µ, σ2) is conjugate outside a standard familly

But...

µ|Y 0:n, σ
2 ∼ N

(
µ
∣∣∣ 1n∑n

i=1 Yi,
σ2

n )

σ2|Y 1:n, µ ∼ IG
(
σ2
∣∣n
2 − 1, 12

∑n
i=1(Yi − µ)2

)
assuming constant (improper) priors on both µ and σ2

I Hence we may use the Gibbs sampler for simulating from the
posterior of (µ, σ2)
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∣∣n
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Gibbs Sampling

General Principles

A Very Simple Example: Independent N (µ, σ2)
Observations

R Gibbs Sampler for Gaussian posterior

n = length(Y);

S = sum(Y);

mu = S/n;

for (i in 1:500)

S2 = sum((Y-mu)^2);

sigma2 = 1/rgamma(1,n/2-1,S2/2);

mu = S/n + sqrt(sigma2/n)*rnorm(1);
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General Principles

Example of results with n = 10 observations from the
N (0, 1) distribution

Number of Iterations 1

, 2, 3, 4, 5, 10, 25, 50, 100, 500
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General Principles

Example of results with n = 10 observations from the
N (0, 1) distribution

Number of Iterations 1, 2, 3, 4

, 5, 10, 25, 50, 100, 500
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Gibbs Sampling

General Principles

Example of results with n = 10 observations from the
N (0, 1) distribution

Number of Iterations 1, 2, 3, 4, 5

, 10, 25, 50, 100, 500
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General Principles

Example of results with n = 10 observations from the
N (0, 1) distribution

Number of Iterations 1, 2, 3, 4, 5, 10, 25, 50, 100

, 500
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Example of results with n = 10 observations from the
N (0, 1) distribution

Number of Iterations 1, 2, 3, 4, 5, 10, 25, 50, 100, 500
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Gibbs Sampling

Completion

Latent variables

The Gibbs sampler can be generalized in much wider generality
A density g is a completion of f if∫

Z
g(x, z) dz = f(x)

Note

The variable z may be meaningless for the problem
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Gibbs Sampling

Completion

Purpose

g should have full conditionals that are easy to simulate for a
Gibbs sampler to be implemented with g rather than f

For p > 1, write y = (x, z) and denote the conditional densities of
g(y) = g(y1, . . . , yp) by

Y1|y2, . . . , yp ∼ g1(y1|y2, . . . , yp),
Y2|y1, y3, . . . , yp ∼ g2(y2|y1, y3, . . . , yp),

. . . ,

Yp|y1, . . . , yp−1 ∼ gp(yp|y1, . . . , yp−1).
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Gibbs Sampling

Completion

Purpose

The move from Y (t) to Y (t+1) is defined as follows:

Algorithm (Completion Gibbs sampler)

Given (y
(t)
1 , . . . , y

(t)
p ), simulate

1. Y
(t+1)
1 ∼ g1(y1|y(t)2 , . . . , y

(t)
p ),

2. Y
(t+1)
2 ∼ g2(y2|y(t+1)

1 , y
(t)
3 , . . . , y

(t)
p ),

. . .

p. Y
(t+1)
p ∼ gp(yp|y(t+1)

1 , . . . , y
(t+1)
p−1 ).
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A wee problem
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Completion

Slice sampler as generic Gibbs

If f(θ) can be written as a product

k∏
i=1

fi(θ),

it can be completed as

k∏
i=1

I0≤ωi≤fi(θ),

leading to the following Gibbs algorithm:
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Gibbs Sampling

Completion

Slice sampler

Algorithm (Slice sampler)

Simulate

1. ω
(t+1)
1 ∼ U[0,f1(θ(t))]

;

. . .

k. ω
(t+1)
k ∼ U[0,fk(θ(t))]

;

k+1. θ(t+1) ∼ UA(t+1) , with

A(t+1) = {y; fi(y) ≥ ω(t+1)
i , i = 1, . . . , k}.
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Example of results with a truncated N (−3, 1) distribution
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Gibbs Sampling

Completion

Good slices

The slice sampler usually enjoys good theoretical properties (like
geometric ergodicity and even uniform ergodicity under bounded f
and bounded X ).
As k increases, the determination of the set A(t+1) may get
increasingly complex.
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Gibbs Sampling

Completion

Slice sampler: illustration

Example (Stochastic volatility core distribution)

Difficult part of the stochastic volatility model

π(x) ∝ exp−
{
σ2(x− µ)2 + β2 exp(−x)y2 + x

}
/2 ,

simplified in exp−
{
x2 + α exp(−x)

}

Slice sampling means simulation from a uniform distribution on

A =
{
x; exp−

{
x2 + α exp(−x)

}
/2 ≥ u

}
=

{
x;x2 + α exp(−x) ≤ ω

}
if we set ω = −2 log u.
Note Inversion of x2 + α exp(−x) = ω needs to be done by
trial-and-error.
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Completion

Slice sampler: illustration
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Gibbs Sampling

Convergence

Properties of the Gibbs sampler

Theorem (Convergence)

For
(Y1, Y2, · · · , Yp) ∼ g(y1, . . . , yp),

if either
[Positivity condition]

(i) g(i)(yi) > 0 for every i = 1, · · · , p, implies that
g(y1, . . . , yp) > 0, where g(i) denotes the marginal distribution
of Yi, or

(ii) the transition kernel is absolutely continuous with respect to g,

then the chain is irreducible and positive Harris recurrent.



Markov Chain Monte Carlo Methods

Gibbs Sampling

Convergence

Properties of the Gibbs sampler (2)

Consequences

(i) If
∫
h(y)g(y)dy <∞, then

lim
nT→∞

1

T

T∑
t=1

h1(Y
(t)) =

∫
h(y)g(y)dy a.e. g.

(ii) If, in addition, (Y (t)) is aperiodic, then

lim
n→∞

∥∥∥∥∫ Kn(y, ·)µ(dx)− f
∥∥∥∥
TV

= 0

for every initial distribution µ.
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Gibbs Sampling

Convergence

Slice sampler

fast on that slice

For convergence, the properties of Xt and of f(Xt) are identical

Theorem (Uniform ergodicity)

If f is bounded and suppf is bounded, the simple slice sampler is
uniformly ergodic.

[Mira & Tierney, 1997]
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Gibbs Sampling

The Hammersley-Clifford theorem

Hammersley-Clifford theorem

An illustration that conditionals determine the joint distribution

Theorem

If the joint density g(y1, y2) have conditional distributions
g1(y1|y2) and g2(y2|y1), then

g(y1, y2) =
g2(y2|y1)∫

g2(v|y1)/g1(y1|v) dv
.

[Hammersley & Clifford, circa 1970]
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Gibbs Sampling

The Hammersley-Clifford theorem

General HC decomposition

Under the positivity condition, the joint distribution g satisfies

g(y1, . . . , yp) ∝
p∏
j=1

g`j (y`j |y`1 , . . . , y`j−1
, y′`j+1

, . . . , y′`p)

g`j (y
′
`j
|y`1 , . . . , y`j−1

, y′`j+1
, . . . , y′`p)

for every permutation ` on {1, 2, . . . , p} and every y′ ∈ Y .
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Gibbs Sampling

The Hammersley-Clifford theorem

Rao-Blackwellization

If (y1, y2, . . . , yp)
(t), t = 1, 2, . . . T is the output from a Gibbs

sampler

δ0 =
1

T

T∑
t=1

h
(
y
(t)
1

)
→
∫
h(y1)g(y1)dy1

and is unbiased.

The Rao-Blackwellization replaces δ0 with its conditional
expectation

δrb =
1

T

T∑
t=1

I
[
h(Y1)|y(t)2 , . . . , y(t)p

]
.
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The Hammersley-Clifford theorem
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sampler
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T∑
t=1

h
(
y
(t)
1

)
→
∫
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expectation

δrb =
1
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I
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h(Y1)|y(t)2 , . . . , y(t)p

]
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Gibbs Sampling

The Hammersley-Clifford theorem

Rao-Blackwellization (2)

Then

◦ Both estimators converge to I[h(Y1)]

◦ Both are unbiased,

◦ and
var
(
I
[
h(Y1)|Y (t)

2 , . . . , Y (t)
p

])
≤ var(h(Y1)),

so δrb is uniformly better (for Data Augmentation)
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(
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2 , . . . , Y (t)
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Gibbs Sampling

The Hammersley-Clifford theorem

Examples of Rao-Blackwellization

Example

Bivariate normal Gibbs sampler

X | y ∼ N (ρy, 1− ρ2)
Y | x ∼ N (ρx, 1− ρ2).

Then

δ0 =
1

T

T∑
i=1

X(i) and δ1 =
1

T

T∑
i=1

I[X(i)|Y (i)] =
1

T

T∑
i=1

%Y (i),

estimate I[X] and σ2δ0/σ
2
δ1

= 1
ρ2
> 1.
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The Hammersley-Clifford theorem

Examples of Rao-Blackwellization (2)

Example (Poisson-Gamma Gibbs cont’d)

Näıve estimate

δ0 =
1

T

T∑
t=1

λ(t)

and Rao-Blackwellized version

δπ =
1

T

T∑
t=1

I[λ(t)|x1, x2, . . . , x5, y(i)1 , y
(i)
2 , . . . , y

(i)
13 ]

=
1

360T

T∑
t=1

(
313 +

13∑
i=1

y
(t)
i

)
,

back to graph
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Gibbs Sampling

The Hammersley-Clifford theorem

NP Rao-Blackwellization & Rao-Blackwellized NP

Another substantial benefit of Rao-Blackwellization is in the
approximation of densities of different components of y without
nonparametric density estimation methods.

Lemma

The estimator

1

T

T∑
t=1

gi(yi|y(t)j , j 6= i) −→ gi(yi),

is unbiased.
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Improper Priors

Improper priors

 Unsuspected danger resulting from careless use of MCMC
algorithms:

It may happen that

◦ all conditional distributions are well defined,

◦ all conditional distributions may be simulated from, but...

◦ the system of conditional distributions may not correspond to
any joint distribution

Warning The problem is due to careless use of the Gibbs sampler
in a situation for which the underlying assumptions are violated
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Improper Priors

Improper posteriors

Example (Conditional exponential distributions)

For the model

X1|x2 ∼ E xp(x2) , X2|x1 ∼ E xp(x1)

the only candidate f(x1, x2) for the joint density is

f(x1, x2) ∝ exp(−x1x2),

but ∫
f(x1, x2)dx1dx2 =∞

c© These conditionals do not correspond to a joint
probability distribution
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Improper Priors

Improper posteriors

Example (Improper random effects)

Consider

Yij = µ+ αi + εij , i = 1, . . . , I, j = 1, . . . , J,

where
αi ∼ N (0, σ2) and εij ∼ N (0, τ2),

the Jeffreys (improper) prior for the parameters µ, σ and τ is

π(µ, σ2, τ2) =
1

σ2τ2
.
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Gibbs Sampling

Improper Priors

Improper posteriors

Example (Improper random effects 2)

The conditional distributions

αi|y, µ, σ2, τ2 ∼ N
(
J(ȳi − µ)

J + τ2σ−2
, (Jτ−2 + σ−2)−1

)
,

µ|α, y, σ2, τ2 ∼ N (ȳ − ᾱ, τ2/JI) ,

σ2|α, µ, y, τ2 ∼ IG

(
I/2, (1/2)

∑
i

α2
i

)
,

τ2|α, µ, y, σ2 ∼ IG

IJ/2, (1/2)
∑
i,j

(yij − αi − µ)2

 ,

are well-defined and a Gibbs sampler can be easily implemented in
this setting.
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Improper Priors

Improper posteriors
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Example (Improper random
effects 2)

The figure shows the sequence of
µ(t)’s and its histogram over
1, 000 iterations. They both fail
to indicate that the
corresponding “joint distribution”
does not exist
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Improper Priors

Final notes on impropriety

The improper posterior Markov chain
cannot be positive recurrent

The major task in such settings is to find indicators that flag that
something is wrong. However, the output of an “improper” Gibbs
sampler may not differ from a positive recurrent Markov chain.

Example

The random effects model was initially treated in Gelfand & al
(1990) as a legitimate model
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Hamiltonian Monte Carlo

The Metropolis-Hastings
Algorithm

Gibbs Sampling

Hamiltonian Monte Carlo

Piecewise Deterministic Versions
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Hamiltonian Monte Carlo

Continuous time Markov process

Hamiltonian (or hybrid) Monte Carlo (HMC) auxiliary variable
technique that takes advantage of a continuous time Markov
process to sample from target π(θ)

Auxiliary variable ϑ ∈ Rd introduced along with a density $(ϑ|θ)
so that the joint distribution of (θ, ϑ) enjoys π(θ) as its marginal

π(θ) =

∫
π(θ)$(ϑ|θ)dϑ
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Hamiltonian Monte Carlo

Continuous time Markov process

Based on representation of joint distribution

ω(θ, ϑ) = π(θ)$(ϑ|θ) ∝ exp{−H(θ, ϑ)} ,

where H(·) called Hamiltonian
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Hamiltonian Monte Carlo

Continuous time Markov process

Based on representation of joint distribution

ω(θ, ϑ) = π(θ)$(ϑ|θ) ∝ exp{−H(θ, ϑ)} ,

where H(·) called Hamiltonian
Hamiltonian Monte Carlo (HMC) associated with the continuous
time process (θt, ϑt) generated by the so-called Hamiltonian
equations

dθt
dt

=
∂H

∂ϑ
(θt, ϑt)

dϑt
dt

= −∂H
∂θ

(θt, ϑt) ,
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Hamiltonian Monte Carlo

Continuous time Markov process

Based on representation of joint distribution

ω(θ, ϑ) = π(θ)$(ϑ|θ) ∝ exp{−H(θ, ϑ)} ,

where H(·) called Hamiltonian
Keep Hamiltonian target stable over time, as

dH(θt, ϑt)

dt
=
∂H

∂ϑ
(θt, ϑt)

dϑt
dt

+
∂H

∂θ
(θt, ϑt)

dθt
dt

= 0 .
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Hamiltonian Monte Carlo

Background

Approach from physics (Duane et al., 1987) popularised in
statistics by Neal (1996, 2002)

[Lan et al., 2016]
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Hamiltonian Monte Carlo

Background

I Above continuous time Markov process is deterministic

I Only explores single given level set

{(θ, ϑ) : H(θ, ϑ) = H(θ0, ϑ0)} ,

instead of the whole augmented state space R2×d

I Meaning lack of irreducibility

I Solution out is to refresh momentum,

ϑt ∼ $(ϑ|θt−)

at random times τn with {τn − τn−1} exponential variates

I Specific piecewise deterministic Markov process using
Hamiltonian dynamics
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Hamiltonian Monte Carlo

Practical implementation

Free conditional density $(ϑ|θ), usually chosen as Gaussian with
either a constant covariance matrix M corresponding to target
covariance or as local curvature depending on θ in Riemannian and
Lagrangian HMC (Girolami and Calderhead, 2011; Lan et al.,
2016)
For fixed covariance matrix M , Hamiltonian equations

dθt
dt

= M−1ϑt
dϑt
dt

= ∇L(θt) ,

equal to the score function
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Practical implementation

For fixed covariance matrix M , Hamiltonian equations

dθt
dt

= M−1ϑt
dϑt
dt

= ∇L(θt) ,

equal to the score function
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Hamiltonian Monte Carlo

Leapfrog integrator

Discretisation simulation technique: symplectic integrator
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Hamiltonian Monte Carlo

Leapfrog integrator

One version in the independent case with constant covariance M
made of leapfrog steps

ϑt+ε/2 = ϑt + ε∇L(θt)/2,

θt+ε = θt + εM−1ϑt+ε/2,

ϑt+ε = ϑt+ε/2 + ε∇L(θt+ε)/2,

where ε is time-discretisation step
Using proposal on ϑ0 drawn from Gaussian auxiliary target and
deciding on acceptance of the value of (θTε, ϑTε) by a
Metropolis–Hastings step



Markov Chain Monte Carlo Methods

Hamiltonian Monte Carlo

Leapfrog integrator

One version in the independent case with constant covariance M
made of leapfrog steps

ϑt+ε/2 = ϑt + ε∇L(θt)/2,

θt+ε = θt + εM−1ϑt+ε/2,

ϑt+ε = ϑt+ε/2 + ε∇L(θt+ε)/2,

where ε is time-discretisation step
Note that first two leapfrog steps induce a Langevin move on θt:

θt+ε = θt + ε2M−1∇L(θt)/2 + εM−1ϑt ,
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Hamiltonian Monte Carlo

Leapfrog integrator

One version in the independent case with constant covariance M
made of leapfrog steps

ϑt+ε/2 = ϑt + ε∇L(θt)/2,

θt+ε = θt + εM−1ϑt+ε/2,

ϑt+ε = ϑt+ε/2 + ε∇L(θt+ε)/2,

where ε is time-discretisation step
Discretising Hamiltonian dynamics introduces two free parameters,
step size ε and trajectory length Tε, both to be calibrated.
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Hamiltonian Monte Carlo

no U turns

I empirically successful and popular version of HMC:
“no-U-turn sampler” (NUTS) adapts value of ε based on
primal-dual averaging

I and eliminates need to choose trajectory length T via a
recursive algorithm that builds a set of candidate proposals for
a number of forward and backward leapfrog steps, stopping
automatically when simulated path traces back

[Hoffman and Gelman, 2014]
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Piecewise Deterministic Versions

Piecewise Deterministic Versions

The Metropolis-Hastings
Algorithm

Gibbs Sampling

Hamiltonian Monte Carlo

Piecewise Deterministic Versions
Motivations
Versions of PDMP
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Piecewise Deterministic Versions

Motivations

Generic issue

Goal: sample from a target known up to a constant, defined over
Rd,

π(x) ∝ γ(x)

with energy U(x) = − log π(x), U ∈ C1.
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Piecewise Deterministic Versions

Motivations

Marketing arguments

Current default workhorse: reversible MCMC methods

Non-reversible MCMC algorithms based on piecewise deterministic
Markov processes perform well empirically
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Piecewise Deterministic Versions

Motivations

Marketing arguments

Non-reversible MCMC algorithms based on piecewise deterministic
Markov processes perform well empirically
Quantitative convergence rates and variance now available

I Physics (Peters & De With, 2012; Krauth et al., 2009, 2015,
2016) roots

I Mesquita and Hespanha (2010) show geometric ergodicity for
exponentially decaying tail targets

I Monmarch (2016) gives sharp results for compact state-spaces

I Bierkens et al. (2016a,b) show ergodicity targets on the real
line
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Piecewise Deterministic Versions

Motivations

Motivation: piecewise deterministic Markov process

PDMP sampler is a (new?) continuous-time, non-reversible
MCMC method based on auxiliary variables

1. particle physics simulation
[Peters et al., 2012]

2. empirically state-of-the-art performances
[Bouchard et al., 2017]

3. exact subsampled in big data
[Bierkens et al., 2017]

4. geometric ergodicity for a large class of distribution
[Deligiannidis et al., 2017, Bierkens et al., 2017]

5. Ability to deal with intractable potential U(x) =
∫
Uω(x)µ(dω)

[Pakman et al., 2016]



Markov Chain Monte Carlo Methods

Piecewise Deterministic Versions

Motivations

Older versions

Use of alternative methodology based on Birth–&-Death (point)
process

Idea: Create Markov chain in continuous time, i.e. a Markov jump
process
Time till next modification (jump) exponentially distributed with
intensity q(θ, θ′) depending on current and future states.
[Preston, 1976; Ripley, 1977; Geyer & Møller, 1994; Stevens, 1999]
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process
Idea: Create Markov chain in continuous time, i.e. a Markov jump
process
Time till next modification (jump) exponentially distributed with
intensity q(θ, θ′) depending on current and future states.
[Preston, 1976; Ripley, 1977; Geyer & Møller, 1994; Stevens, 1999]
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Piecewise Deterministic Versions

Motivations

Older versions

Difference with MH-MCMC: Whenever jump occurs, corresponding
move always accepted. Acceptance probabilities replaced with
holding times.
Implausible configurations

L(θ)π(θ)� 1

die quickly.

Sufficient to have detailed balance

L(θ)π(θ)q(θ, θ′) = L(θ′)π(θ′)q(θ′, θ) for all θ, θ′

for π̃(θ) ∝ L(θ)π(θ) to be stationary.
[Cappé et al., 2000]
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die quickly.
Sufficient to have detailed balance

L(θ)π(θ)q(θ, θ′) = L(θ′)π(θ′)q(θ′, θ) for all θ, θ′

for π̃(θ) ∝ L(θ)π(θ) to be stationary.
[Cappé et al., 2000]
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Motivations

Setup

I All MCMC schemes presented here target an extended
distribution on Z = Rd × Rd

ρ(z) = π(x)× ψ(v) = exp(−H(z))

where z = (x, v) extended state and Ψ(v) [by default]
multivariate standard Normal

I Physics takes v as velocity or momentum variables allowing
for a deterministic dynamics on Rd

I Obviously sampling from ρ provides samples from π
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Piecewise deterministic Markov process

Piecewise deterministic Markov process {zt ∈ Z}t∈[0,∞), with
three ingredients,

1. Deterministic dynamics: between events, deterministic
evolution based on ODE

dzt/dt = Φ(zt)

2. Event occurrence rate: λ(t) = λ(zt)

3. Transition dynamics: At event time, τ , state prior to τ
denoted by zτ−, and new state generated by zτ ∼ Q(·|zτ−).

[Davis, 1984, 1993]
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Motivations

Implementation

Algorithm 2 Simulation of PDMP

Input: Starting point z0, τ0 ← 0.
for k = 1, 2, 3, · · ·

Sample inter-event time ηk from distribution

P(ηk > t) = exp

{
−
∫ t

0

λ(zτk−1+s)ds

}
.

τk ← τk−1 + ηk, zτk−1+s ← Ψs(zτk−1
), for s ∈ (0, ηk), where

Ψ ODE flow of Φ.

zτk− ← Ψηk(zτk−1
), zτk ∼ Q(·|zτk−).
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Motivations

Simulation of PDMP: constraints

Requires being able to

I compute exactly flow zt = Φt(z0)

existing algorithms use Φ(z) = (v; 0d) so thatt
Φ(z0) = (x0 + v0t; v0)
except for Hamiltonian BPS that uses the
Hamiltonian dynamics for a proxy Gaussian
Hamiltonian (Vanetti et al., 2017).

I simulate event times (Inversion, thinning, superposition,
Devroye, 1986)

I simulate from Q
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Versions of PDMP

Basic bouncy particle sampler

Simulation of continuous-time piecewise linear trajectory (xt)t with
each segment in trajectory specified by

I initial position x

I length τ

I velocity v

[Bouchard et al., 2017]
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Versions of PDMP

Basic bouncy particle sampler

Simulation of continuous-time piecewise linear trajectory (xt)t with
each segment in trajectory specified by

I initial position x

I length τ

I velocity v

length specified by inhomogeneous Poisson point process with
intensity function

λ(x, v) = max{0, < ∇U(x), v >}

[Bouchard et al., 2017]
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Versions of PDMP

Basic bouncy particle sampler

Simulation of continuous-time piecewise linear trajectory (xt)t with
each segment in trajectory specified by

I initial position x

I length τ

I velocity v

new velocity after bouncing given by Newtonian elastic collision

R(x)v = v − 2
< ∇U(x), v >

||∇U(x)||2
∇U(x)

[Bouchard et al., 2017]
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Versions of PDMP

Basic bouncy particle sampler

[Bouchard et al., 2017]
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Versions of PDMP

Implementation hardships

Generally speaking, the main difficulties of implementing PDMP
come from

1. Computing the ODE flow Ψ: linear dynamic, quadratic
dynamic

2. Simulating the inter-event time ηk: many techniques of
superposition and thinning for Poisson processes

[Devroye, 1986]
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Versions of PDMP

Poisson process on R+

Definition (Poisson process)

Poisson process with rate λ on R+ is sequence

τ1, τ2, · · ·

of rv’s when intervals

τ1, τ2 − τ1, τ3 − τ2, · · ·

are iid with

P(τi − τi−1 > T ) = exp

{
−
∫ τi−1+T

τi−1

λ(t)dt

}
, τ0 = 0
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Versions of PDMP

Poisson process on R+

Definition (Poisson process)

Poisson process with rate λ on R+ is sequence

τ1, τ2, · · ·

of rv’s when intervals

τ1, τ2 − τ1, τ3 − τ2, · · ·

are iid with a rarely available cdf
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Versions of PDMP

Simulation by thinning

Theorem (Lewis et al., 1979)

Let
λ,Λ : R+ → R+

be continuous functions such that λ(·) ≤ Λ(·). Let

τ1, τ2, · · · ,

be the increasing sequence of a Poisson process with rate Λ(·). For
all i, if τi is removed from the sequence with probability

1− λ(t)/Λ(t)

then the remaining τ̃1, τ̃2, · · · form a non-homogeneous Poisson
process with rateλ(·)
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Simulation by thinning

Theorem (Lewis et al., 1979)

Let
λ,Λ : R+ → R+

be continuous functions such that λ(·) ≤ Λ(·). Let

τ1, τ2, · · · ,

be the increasing sequence of a Poisson process with rate Λ(·).

Simulation from upper bound
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Versions of PDMP

Simulation by superposition theorem

Theorem (Kingman,1992)

Let Π1,Π2, · · · , be countable collection of independent Poisson
processes on R+ with resp. rates λn(·). If

∑∞
n=1λn(t) <∞ for all

t’s, then superposition process

Π =

∞⋃
n=1

Πn

is Poisson process with rate

λ(t) =
∞∑
n=1

λn(t)
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Versions of PDMP

Simulation by superposition theorem

Theorem (Kingman,1992)

Let Π1,Π2, · · · , be countable collection of independent Poisson
processes on R+ with resp. rates λn(·). If

∑∞
n=1λn(t) <∞ for all

t’s, then superposition process is Poisson process with rate
lambda(t)

Decomposition of U =
∑

j Uj plus thinning
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Simulation by superposition plus thinning

Almost all implementations of discrete-time schemes of consist of
sampling a Bernoulli of parameter α(z)
For Φ(z) = (x+ vε, v) and α(z) = 1 ∧ π(x+ vε)/π(x), sampling
inter-event time for strictly convex U can be obtained by solving
t? = arg minU(x+ vt) and additional randomization

I thinning: if there exists ᾱ such that α(Φk(z)) ≥ ᾱ(x, k),
accept-reject

I superposition and thinning: when α(z) = 1 ∧ ρ(Φ(z))/ρ(z)
and ρ(·) =

∏
i ρi(·) then ᾱ(z, k) =

∏
i ᾱi(z, k)
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Extended generator

Definition

For D(L) set of measurable functions f : Z → R such that there
exists a measurable function h : Z → R with t→ h(zt) Pz-a.s. for
each z ∈ Z and the process

Cft = f(zt)− f(z0)−
∫ t

0
h(zs)ds

a local martingale. Then we write h = Lf and call (L,D(L)) the
extended generator of the process {zt}t≥0.
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Versions of PDMP

Extended Generator of PDMP

Theorem (Davis, 1993)

The generator, L, of above PDMP is, for f ∈ D(L)

Lf(z) = ∇f(z) · Φ(z) + λ(z)

∫
z′

[
f(z′)− f(z)

]
Q(dz′|z)

Furthermore, µ(dz) is an invariant distribution of above PDMP, if∫
Lf(z)µ(dz) = 0, for all f ∈ D(L)
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PDMP-based sampler

PDMP-based sampler is an auxiliary variable technique

Given target π(x),

1. introduce auxiliary variable V ∈ V along with a density
π(v|x),

2. choose appropriate Φ, λ and Q

for π(x)π(v|x) to be unique invariant distribution of Markov
process
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Bouncy Particle Sampler (Bouchard et al., 2017)

V = Rd, and π(v|x) = ϕ(v) for N (0, Id)

1. Deterministic dynamics:

dxt/dt = vt, dvt/dt = 0

2. Event occurrence rate: λ(x,v) = 〈v,∇U(x)〉+ + λref

3. Transition dynamics:

Q((dx′, dv′)|(x,v))

=
〈v,∇U(x)〉+
λ(x,v)

δx(dx
′)δR∇U(x)v(dv

′) +
λref

λ(x,v)
δx(dx

′)ϕ(dv′)

where R∇U(x)v = v − 2 〈∇U(x),v〉
〈∇U(x),∇U(x)〉∇U(x)
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Zig-Zag Sampler (Bierkens et al., 2016)
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Zig-Zag Sampler (Bierkens et al., 2016)

V = {+1,−1}d, and π(v|x) ∼ Uniform({+1,−1}d)
1. Deterministic dynamics:

dxt/dt = vt, dvt/dt = 0

2. Event occurrence rate:
λ(x,v) =

∑d
i=1 λi(x,v) =

∑d
i=1

[
{vi∇iU(x)}+ + λref

i

]
3. Transition dynamics:

Q((dx′, dv′)|(x,v)) =

d∑
i=1

λi(x,v)

λ(x,v)
δx(dx′)δFiv(dv′)

where Fi operator that flips i-th component of v and keep others
unchanged
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Continuous-time Hamiltonian Monte Carlo (Neal, 1999)

V = Rd, and π(v|x) = ϕ(v) ∼ N (0, Id)

1. Deterministic dynamics:

dxt/dt = vt, dvt/dt = −∇U(xt)

2. Event occurrence rate: λ(x,v) = λ0(x)

3. Transition dynamics:

Q((dx′, dv′)|(x,v)) = δx(dx′)ϕ(dv′)
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Continuous-time Riemannian Manifold HMC (Girolami
& Calderhead, 2011)

V = Rd, and π(v|x) = N (0, G(x)), the Hamiltonian is

H(x,v) = U(x) + 1/2vTG(x)−1v + 1/2 log(|G(x)|)

1. Deterministic dynamics:

dxt/dt = ∂H/∂v(xt,vt), dvt/dt = −∂H/∂x(xt,vt)

2. Event occurrence rate: λ(x,v) = λ0(x)

3. Transition dynamics:

Q((dx′, dv′)|(x,v)) = δx(dx′)ϕ(dv′|x′)
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Randomized BPS

Define

a =
〈v,∇U(x)〉

〈∇U(x),∇U(x)〉
∇U(x), b = v − a

Regular BPS, move v′ = −a + b
Alternatives

1. (Fearnhead et al., 2016):
v′ ∼ Qx(dv′|v) = max {0, 〈−v′,∇U(x)〉} dv′

2. (Wu & X, 2017): v′ = −a + b′, where b′ Gaussian variate
over the space orthogonal to ∇U(x) in Rd.
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HMC-BPS (Vanetti et al., 2017)
ρ(x) ∝ exp{−V (x)} is a Gaussian approximation of the target
π(x).

Ĥ(x,v) = V (x) + 1/2vTv, Ũ(x) = U(x)− V (x)

1. Deterministic dynamics:

dxt/dt = vt, dvt/dt = −∇V (xt)

2. Event occurrence rate: λ(x,v) = 〈v,∇Ũ(x)〉+ + λref

3. Transition dynamics:

Q((dx′, dv′)|(x,v))

=
〈v,∇Ũ(x)〉+
λ(x,v)

δx(dx′)δR∇Ũ(x)v
(dv′) +

λref

λ(x,v)
δx(dx′)ϕ(dv′)
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Discretisation

1. Sherlock & Thiery (2017) considers delayed rejection
approach with only point-wise evaluations of target, by
making speed flip move once proposal involving flip in speed
and drift in variable of interest rejected. Also add random
perturbation for eergodicity, plus another perturbation based
on a Brownian argument. Requires calibration

2. Vanetti et al. (2017)

Benefit: bypassing the generation of inter-event time of
inhomogeneous Poisson processes.
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Discretisation

1. Sherlock & Thiery (2017)

2. Vanetti et al. (2017) unifies many threads and relates PDMP,
HMC, and discrete versions, with convergence results. Main
idea improves upon existing deterministic methods by
accounting for target. Borrows from earlier slice sampler idea
of Murray et al. (AISTATS, 2010), exploiting exact
Hamiltonian dynamics for approximation to true target.
Except that bouncing avoids the slice step. Eight discrete BPS
both correct against target and do not simulating event times.

Benefit: bypassing the generation of inter-event time of
inhomogeneous Poisson processes.
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The End
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