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Neuronal model

Intracellular recording data of one single neuron

Intracelluar recording

Data i
@ Membrane potential: difference A
in voltage between the interior

and exterior of the cell g

@ High frequency records available AN
(A =0.1ms) '

“““ “ copyignte mottoto.con

Objectives <
@ Prediction of spike emission

@ Neuronal modeling with
stochastic models € s
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o Estimation/identification
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Neuronal model

Hypoelliptic model for intracellular neuronal data

Deterministic Morris-Lecar neuronal model

o Calcium, potassium, leakage ionic currents

. Ch‘la%r':els lons

® gca, &k, gL maximal conductances
o Ve, Vi, Vi reversal potential e
o / input current )
@ C; proportion of opened potassium channels X
@ Functions e and 3: opening and closing

rates

dV;

ar = —gcamoo(Vt)(Vt - VCa) - gKCt(Vt - VK) - gL(Vt - VL) +/

dC

T; = Oé( Vt)(]- — Ct) — 5( Vf)Cf
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Neuronal model

Stochastic Morris-Lecar model

@ N potassium gates
o Cp(t) proportion of open gates among N gates at time ¢
@ stochastic opening and closing at random times

a (V)

C —
closed open

B8 (V)

Between jumps of Cy, the trajectory of the continuous component V; follows

dV;

P —gcamoo(Ve)(Ve — Vi) — gk Cn(t) (Ve — Vi) — g (Ve — Vi) + 1

= Piecewise Deterministic Markov Process
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Neuronal model

o Diffusion approximation [Wainrib, Thieullen, Pakdaman, EJP 2012]

> (V4 Cn(t)) is approximated by

av, = (7gCam00(Vt)(Vt - VCS) - gKCt(V: - VK) - gL(Vt — VL) + /) dt
dé: = (o(Ve)(1 - G) — B(Ve)G) dt + o( Ve, C)dB:

@ Diffusion of dimension 2 driven by only one Brownian motion

Hypoellitic diffusion
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Neuronal model

Hypoelliptic Morris-Lecar model
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Morris-Lecar is highly non-linear = Difficult to study
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Neuronal model

Fitzhugh-Nagumo model: a simplest model !

[Lindner et al 1999, Gerstner and Kistler, 2002, Lindner et al 2004, Berglund and Gentz, 2006]

1
dv, = g(vt — V32— C —s)dt,
dCt = (’thi Cf+ﬁ) dt+5’dBt7

@ V; membrane potential of a single
neuron

o C; recovery variable / channel 51 o
kinetics _
@ ¢ time scale separation =

@ s stimulus input, 8 position of the
fixed point, v duration of excitation

@ B; Brownian motion, & diffusion IR IR
coefficient
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Neuronal model

Objectives of the talk

[Ledn and Samson, 2018]

1. Probabilistic properties of the
system e
» Hypoellipticity
» Stationary distribution
» [B-mixing EN
2. Parameter estimation
» Why it's difficult for hypoelliptic
SDE > °
» Problem of partial observations

3. Estimation by pseudo-likelihood
> Particle filter
» Stochastic Approximation EM
4. Estimation by ABC c

» Numerical splitting scheme
» Choice of the summaries

T T T T T
0 100 200 300 400

time (ms)
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1. Probabilistic properties

1. Probabilistic properties
[Ledn and Samson, 2018]
Hypoellipticity of the system

o Condition: drift of the first coordinate depends on C
@ Noise of the second coordinate propagates to the first one

No noise Noise on V Noise on C Noise on V, C

= Hypoellipticity has consequences on the generation of spikes
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1. Probabilistic properties

Other probabilist properties
A difficult task
@ Main results assume a non null noise

@ A class of well studied hypoelliptic systems is

th = Utdt,
dUt = 7(C(Vt) Ut +8VP(Vt))dt+UdBt,

with P(v) a potential, ¢(v) a damping force.

» Stochastic Damping Hamiltonian system [Wu 2001]
» Langevin Equation [Wu 2001]
» Hypocoercif model [Villani, 2009]

Good news!

@ We enter the previous class by setting Uy = %(Vt — V,_b3 — G —s):
th == Utdt,
1 -
dUs = — (U1 —e=3V2) = Vi(y 1) = VP — (s + B3)) dt - gdBt,
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1. Probabilistic properties

Stationary distribution

e Existence of Lyapounov function V(v, u) = eF(vu)=infe2 B \ith explicit F

@ Existence and uniqueness of the stationary density [wu, 2001]

[B-mixing

@ Process (V;, U;) is S-mixing [wu, 2001]

Same properties for process (V;, C;)
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Estimation

2. Estimation of parameters

1
dv, = g(vt — V32— C —s)dt,
dCt = (’thf Ct+ﬂ) dt+5'dBt,
Observations
o Data: discrete observations Vg, = (Vo, ..., V,) at times

th=0<t =A<...<t,=nA
o Hidden coordinate (C;)

Difficult because
o Hypoellipticity
@ No explicit transition density of the SDE

@ Hidden coordinate C
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Estimation
Ideal case of complete observations and noise on both coordinates X; = (V;, G;):

op O
dX: = b,(X:)dt + ¥dB;, ¥ = ( 01 o )

Discretization with Euler-Maruyama of X; ;1 = (Vii1, Ui1):

Xis1 = Xi + Dbu(X:) + VAXn;, 1 ~ig N(0,1)

Minimum contrast estimator [Genon-Catolot, Jacod, 1993; Kessler 1996]
Set [ =Y'Y.

n—1 n—1
0 = arg min (Z (Xiz1 — Xi = Dby (X)) T™1 (Xip1 — X; — Abu(X)) + > log det r>

i=1 i=1

° I asymptotically normal
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Estimation

What about hypoelliptic SDE ?
Impossible to apply because

= ( 0 02 ) not invertible

Previous contrast

n—1

D (Xigr = Xi — Dby (X)) T (Xiqx — X; — Dby ( Z log det T

i=1

is not defined...

Idea: change of variable

@ Assume = known, and change the system with U, = 1(V; — V2 — G, — s)
o New system:

th — Utdt,
X -
dUe = = (Ui(1—e=3V) = Vi(y—1) =V~ (s + ) dt — ZdB,
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Estimation

Class of Hamiltonian (hypoelliptic) SDE

th == Utdt
dUt == bu(Vt, Ut)dt+0'2dBt

Estimation
@ Martingale estimating functions [Ditlevsen, Sorensen, 2004]
@ Gibbs sampler [Pokern et al, 2010]
@ Euler contrast [Gloter 2006, Samson, Thieullen, 2012];
o

Higher order contrast [Ditlevsen, Samson, 2018]
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Estimation

Partial observations

@ U; not observed but can be replaced by

oo Vin-Vi_ Ja e
P= A = A ~ Uia

o Contrast function on the second equation with plug-in V/
> p=(87,s)

__ — — 2
11 (Viga = Vi = 8bu(Vio1, Vi) )

n—1

é = i | 2

e g | 2 2 s
i= i=

> [i is unbiased, asymptotically normal

» & is biased (because V; is not Markovian)
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Estimation
Partial observations

@ U; not observed but can be replaced by

o Vi — Vi f.(H—l)A Usds y
i= A = A ~ Uia

o Contrast function on the second equation with plug-in V/
> p=(87,s)

— 2
3222 (Visa = Vi— Bbu(Vie1, Vicy)) o2
=argmin | -

+ log o3
he6 | 2 & A2 ; 872

>

> (i is unbiased, asymptotically normal
> & is unbiased, asymptotically normal [Gloter 2006]
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Estimation

Why it doesn't work assuming £ unknown

What can not be applied
@ Change of variable
o Euler contrast

Alternatives
@ Pseudo-likelihood

» Higher order discrete scheme that propagates the noise to the first coordinate

Contrast for complete observations as in the "ideal” case of non null
Particle filter for the partial observations
Stochastic Approximation EM algorithm coupled to Particle filter

v vy

o Approximate Bayesian Computation (ABC)

> Likelihood free method
» Numerical scheme to simulate from the hypoelliptic SDE
» Higher order discrete scheme or Splitting scheme
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Pseudo-likelihood and particle filter

3. Pseudo-likelihood and particle filter approach

th = bl(\/h Ct,/,L)dt
dCt = bQ(\/t7 Cthu)dt"'O'QdBQt

Vi

@ Previous trick where C; is replaced by V"*% not available

@ We want to filter G; and compute 7w, of = E (f(C,)|Vo:n; 6)
» Kalman filter when SDE is linear and Gaussian

» Particle filter/Sequential Monte Carlo (SMC)
[Del Moral et al, 2001; Doucet et al, 2001; Chopin, 2004; ...]
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Pseudo-likelihood and particle filter

Particle filter/Sequential Monte Carlo

o lterative algorithm

e Simulation of K particles C§,, and computation of weights w,(CK,)
.. K K k
e Empirical measure Wpp =3, 1 wa(Cgp) 1

Attimej=1,...,n Vk=1,...,K:
. . k k
1. simulation of Cj( )~ q(-|V;, C}_{;e)
2. calculation of weights
0 _ p(Vo,, C310)
W( 0y ) - G CRVECE
p(Voyj—1, CO:jflg)q(Cj Vi, Gou 0)
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Pseudo-likelihood and particle filter

Particle filter for hypoelliptic SDE

o Degenerate Hidden Markov Model:

» (V;, G) Markovian but not (C;)
» Set X; = (Vi, Gi), with Markov kernel p(dV;, dGi|Vi_1, Ci—1)

» V= Xl.(l) with transition kernel 1;,,_yq), (zero almost everywhere)
@ Discretization of the SDE [Ditlevsen, Samson, 2018]

» High order Taylor-lto development
» Propagation of the noise to the first coordinate

AV
M=o 3 2
2 A
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Pseudo-likelihood and particle filter

FitzHugh-Nagumo model
dv, = 1(vt — V32— C —s)dt

€
dCt ('thf Ct+ﬂ) dt+0‘2d82t

- -
2
S s 16 a5  Zo > A 76 as o
time time
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Pseudo-likelihood and particle filter

Filtering with the hypoelliptic neuronal FitzHugh-Nagumo

Parameter 6 fixed at the true value

filtered normalized conductance, U(t)
" '
M A
Ao I\
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e
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Pseudo-likelihood and particle filter

Estimation by Expectation-Maximization (EM) algorithm
o Likelihood non explicit, even with the discretisation scheme

pa(Verit) = [ [ palVii GlVics, Gi6)dGan
i=1

@ Incomplete data model

» Observed data (Vo.p)
» Complete data (Vo.n, Con)

@ EM algorithm [Dempster, Laird, Rubin, 1977], iteration m
» E Step: computation of Qm4+1(0) = Ea [Iog pa(Von, Con; 0) | Vo;n,é\m}
» M Step: update §m+1 = argmax Qm+1(0)
0

@ Convergence results [wu, 1983]
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Pseudo-likelihood and particle filter

Stochastic Approximation (SAEM) algorithm [Delyon, Lavielle, Moulines, 1999, Ditlevsen,

Samson, 2014]
o E Step
- S Step: simulation of Céf’,:) under pa(Co:n|Vo:n; 5,,,) with particle filter
- SA Step: stochastic approximation of Qm+1
Qm1(0) = (1 — 0m) Qm(0) + aim log pa(Von, CI77: 6)

o M Step: §m+1 = argmax Qm41(0)
0

Convergence [Ditlevsen, Samson, 2014, 2018]

Assumptions
1. Y, am=00, 3, a2 < oco.
2. Number of particles K(m) = log(m't9)

Om —22 (local) max of likelihood pa(Vo:n;0)

Tool: convergence of Robbins-Monroe scheme and inequality deviation for the particle filter
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Pseudo-likelihood and particle filter

Some estimation results obtained from 100 simulated data sets

¢ fixed ¢ fixed ¢ estimated

True New contrast Euler Contrast New contrast

e 0.100 - - 0.105 (0.010)
~ 1500 1.523(0.130) 1.499 (0.196) 1.592 (0.160)
f 0.800 0.821 (0.110) 0.779 (0.107) 0.866 (0.130)
o 0.300 0.293 (0.008) 0.381 (0.038) 0.306 (0.020)

A. Samson
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Approximate Bayesian Computation

4. Approximate Bayesian Computation (ABC)

Posterior distribution
m(0)V) x =w(V|0) =(0)
N—— ——

posterior likelihood  prior
intractable

Approximate Bayesian Computation
1. Simulate 6% ~ 7(0) for k =1,..., K

2. Generate pseudo-data Vj from the SDE model for each 6*

3. Introduce summaries s(V) and s(Vj) of the data

4. Approximate the posterior

m(0|V) = may,s(0]V) = 7( 0| d(s(V),s(Ve)) <)

for a 'small' 5
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Approximate Bayesian Computation

Difficulties with hypoelliptic SDE

th = b]_(vt, Ct,ll,)dt
dCt = bz(\/f7 Ct,ﬂ)dt+02d82t

@ Transition density unknown

» No explicit scheme to simulate a solution

@ Discretization schemes

» Euler scheme does not preserve the structure of the noise

> Higher order schemes do not preserve the structure of the invariant measure

@ Choice of the summaries for temporal series
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Approximate Bayesian Computation

Numerical splitting scheme

[Samson, Tamborrino, Tubikanec, work in progress]

The FHN equation can be splitted into two subsystems.
1. Subsystem a: Linear SDE

(€)= (v ) 2+ (5) weo

2. Subsystem b: Non-linear (decoupled) ODE

d(wn)_(awn;vxm)ﬁ

Numerical splitting scheme with time step A

X = Xg/z °oX3o Xﬁ/z
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pproxi Bayesian Cq ion

Comparison of Splitting and Order 1.5 Strong Taylor Scheme

o |
caat w |
— Splitting  ©
— 1.5 scheme & 4 A=10"2
©
S
e |
T T T T T T
0 20 40 60 80 100
|
o |
— Splitting  ©
— 1.5 scheme & - A=5-10"2
w0
-
e
' T T T T T T
0 20 40 60 80 100
e
v
— Splitting €
— 1.5 scheme 3 A A=10"1
©
S
o |
! T T T T T T
0 20 40 60 80 100
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Approximate Bayesian Computation

Choice of the summaries in ABC

How to account for the variability in the data for identical 67

= Transform the data from time to frequency domain
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Approximate Bayesian Computation

Spectral Density (Periodogram)

@ Stationary stochastic process: Vg = (Vp(t))¢>o0
@ Autocovariance function: Cov(Vp(t), Vo(s)) = re(t =t —s)

Suy(w = 27F) = / r(r)e= " dr, we [ 7]

— 00

Definition (Periodogram)

s(V) = Sv(w) =

S|

W]
Vie

Jj=1

@ Time domain: Discrete data V = (V4, ..., V,)

@ Frequency domain: R-function spectrum (Fast Fourier Transform)
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Simulated Data and Periodogram Estimates




Approximate Bayesian Computation

The Splitting Scheme preserves the Periodogram

A=103

A=2.10"3

A. Samson

Splitting Euler-Maruyama
I ! ! ! I I ! ! ! I I I I
0 10 15 20 25 30 0 5 10 15 20 25 30
f f
I T T T T T T I T T T T T
0 10 15 20 25 30 0 5 10 15 20 25 30
f f
T T T T I I T ! ! ! I I I
0 10 15 20 25 30 0 5 10 15 20 25 30
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Approximate Bayesian Computation

Structure-Preserving ABC-Algorithm

@ Precompute the periodograms s(V) = (S, ..., Sv,,) = (51, ..., sm)
@ Choose prior distribution 7(6) and tolerance n

for k=1:N
e Draw 0¥ from the prior 7(f)
@ Simulate new data \79k using the numerical splitting approach
e Compute the periodogram s( V) = &
e Calculate D(s( V), 85)

o Store samples (DK, 0%)

If DX < 1, keep 6 as a sample of the posterior 7, .y, (6]V)
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Approximate Bayesian Computation

ABC for the FHN Model

o Estimated parameters: 0 = (e,v,/3,0)

True values: ¢ =0.1,v=15,5=0.8,0=0.3

e Priors: ¢ ~ U(0.01,0.31), v ~ U(0.5,2.5), B ~ U(0.3,1.3),
o ~ U(0.01,1.01)

Observed data: M = 30 paths of V for A =7.5-10"2 and T = 10*.

Simulated data in ABC: N = 10° paths of V with same A and T.

Kept samples fom the posterior: 0.01%" percentile
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App Bayesian C ion
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Approximate Bayesian Computation

From intra to extracellular recording data

Intra-cellular records

i
(]
Tee:

PRI W NN T w,_,ﬁ,\l‘& -.Al'\r.}“\-’m.a.}“- . w’\h_,..__...l' "L\-“».__ o

Extra-cellular records
| | | | |
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Approximate Bayesian Computation

Extracellular recordings of several neurons

SRR E N ]
g2 [ NTIOCLLEL] [
D I

Objectives
@ Understanding connexion between neurons
@ Neuronal modeling with stochastic models

o Estimation/identification
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Approximate Bayesian Computation

Extracellular stochastic models
A Multi-timescale Adaptive Threshold model[Samson, Tamborrino, work in progress]

o Potential of a model neuron u;, modeled by an Ornstein-Uhlenbeck process

du, = (—% n u) dt + odW,

» 7 membrane time constant
> u, o positiv drift and diffusion coefficients

@ Decaying threshold 6,(t)
» If ur > 0,(t) = emits a spike at time t
» Threshold linearly modulated by spikes

0u(t) =000 + > Hu(t —t), Hu(t) =) ajexp(—Ajt)

|
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Approximate Bayesian Computation

Estimation for Multi-timescale Adaptive Threshold model

Difficulties

@ Process is not renewal, consecutive inter-times intervals t, — t,_1 are not iid
@ Potential u; and threshold 6,(t) are not observed

o Conditioned on hitting times, 6,(t) is deterministic
@ Not a hidden Markov model

ABC
@ Choice of the summaries

@ Similarity between two point processes

» Periodogram
» Kolmogorov Smirnov two sample hypothesis test
> k-Nearest Neighbors
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Approximate Bayesian Computation

First results

Prior vs Posterior for a4 =0.5 Prior vs Posterior for co =0.2
g 1 —— LogNorm prior
—  post p—val (99q, >=5 data)
w | —— post pval (99q, >=10-data)
o ---- post pval (98q, >=10 data)
post 2-nn Dag; (>=10 data)
2
v _|
o |
wo_|
(=]
o _
(=]
T T T T T
15 00 05 1.0 15
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Conclusion

Conclusion /Perspectives

@ Hypoelliptic FHN system
» Existence of stationary density

» Parametric estimation

\4

Particle filter

» EM algorithm

» Numerical splitting scheme: more complex models?
» ABC and choice of the summaries

@ Models for spike trains

» Point processes, MAT models
» Choice of the summaries??
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