Arithmetic equidistribution and elliptic curves

Myrto Mavraki

CIRM, September, 2018 (joint work with Laura DeMarco)

Outline of the talk

- Unlikely intersections Bogomolov's conjecture
- Our results (and work in progress)
 - A generalization of Bogomolov's conjecture related to Masser-Zannier's theorem on torsion points in families of elliptic curves.
 - 2 A equidistribution theorem for 'small points' (2017)
 - Its generalization to 'real' small points (2018).
 - Applications related to Barroero-Capuano's theorem on simultaneous relations (in progress)
- Proof strategy
 - A corollary of the equidistribution theorem
 - Silverman's results on a variation of heights

Lang's Theorem

- X : irreducible complex plane curve.
- μ : set of roots of unity.

Theorem (Ihara-Serre-Tate 1965)

If X contains infinitely many points with both coordinates roots of unity, then X is given by an equation of the form $x^n y^m - \omega = 0$ for $(n, m) \in \mathbb{Z}^2 \setminus \{(0, 0)\}$ and $\omega \in \mu$.

Lang's Theorem

- X : irreducible complex plane curve.
- μ : set of roots of unity.

Theorem (Ihara-Serre-Tate 1965)

If X contains infinitely many points with both coordinates roots of unity, then X is given by an equation of the form $x^n y^m - \omega = 0$ for $(n, m) \in \mathbb{Z}^2 \setminus \{(0, 0)\}$ and $\omega \in \mu$.

$$\begin{array}{cccc} (\xi,\zeta)\in \mu\times\mu &\leftrightarrow & {\rm torsion\ points\ of\ }(\mathbb{C}^*)^2 &\leftrightarrow & {\rm special\ points\ }\\ {\rm Curves\ } &\leftrightarrow & {\rm translates\ of\ algebraic\ subgroups\ }\leftrightarrow & {\rm special\ curves\ }\\ x^ny^m-\omega=0 & {\rm of\ }(\mathbb{C}^*)^2 \ {\rm by\ a\ torsion\ point\ } \end{array}$$

Philosophical restatement

If a curve has an infinite (Zariski dense) set of special points, then it is a special curve.

Philosophical restatement

If a curve has an infinite (Zariski dense) set of special points, then it is a special curve.

Question (Bogomolov)

What if we replace the special points by small points, that is points of small logarithmic Weil height $h: \overline{\mathbb{Q}} \to \mathbb{R}_{\geq 0}$?

Philosophical restatement

If a curve has an infinite (Zariski dense) set of special points, then it is a special curve.

Question (Bogomolov)

What if we replace the special points by small points, that is points of small logarithmic Weil height $h: \overline{\mathbb{Q}} \to \mathbb{R}_{\geq 0}$?

For $\alpha \in \overline{\mathbb{Q}} \setminus \{0\}$, $h(\alpha) \ge 0$ and $h(\alpha) = 0 \Leftrightarrow \alpha$ is a root of unity.

X: irreducible plane curve defined over number field K.

Theorem (Zhang 1992, Bombieri-Zannier 1995)

Assume that X is non-special. There is a constant c(X) > 0 such that

 $\{(x,y)\in X(\overline{K}) : h(x)+h(y)\leq c(X)\}$

is finite.

X: irreducible plane curve defined over number field K.

Theorem (Zhang 1992, Bombieri-Zannier 1995)

Assume that X is non-special. There is a constant c(X) > 0 such that

$$\{(x,y)\in X(\overline{K}) : h(x)+h(y)\leq c(X)\}$$

is finite.

In other words, if \exists infinitely many $(x_n, y_n) \in X(\overline{K})$ such that

$$h(x_n)+h(y_n)\to 0$$

as $n \to \infty$, then X is a special curve.

Bogomolov's Conjecture : Setting

A: abelian variety defined over K.

 \hat{h}_A : Nèron-Tate height corresponding to an ample and symmetric divisor on A.

Example

• For an elliptic curve *E* over *K* and $P \in E(\overline{K})$, we have

$$\hat{h}_E(P) = \frac{1}{2} \lim_{n \to \infty} \frac{h(x([n]P))}{n^2}$$

Bogomolov's Conjecture : Setting

A: abelian variety defined over K.

 \hat{h}_A : Nèron-Tate height corresponding to an ample and symmetric divisor on A.

Example

• For an elliptic curve *E* over *K* and $P \in E(\overline{K})$, we have

$$\hat{h}_E(P) = \frac{1}{2} \lim_{n \to \infty} \frac{h(x([n]P))}{n^2}$$

• If $A = E_1 \times E_2$ for two elliptic curves E_i , we may take

$$\hat{h}_A : E_1(\overline{K}) imes E_2(\overline{K}) o \mathbb{R}_{\geq 0}
onumber (P_1, P_2) \mapsto \hat{h}_{E_1}(P_1) + \hat{h}_{E_2}(P_2).$$

A: abelian variety defined over K.

 \hat{h}_A : Nèron-Tate height corresponding to an ample and symmetric divisor on A.

Example

• For an elliptic curve *E* over *K* and $P \in E(\overline{K})$, we have

$$\hat{h}_E(P) = \frac{1}{2} \lim_{n \to \infty} \frac{h(x([n]P))}{n^2}$$

• If $A = E_1 \times E_2$ for two elliptic curves E_i , we may take

$$\hat{h}_A : E_1(\overline{K}) imes E_2(\overline{K}) o \mathbb{R}_{\geq 0}$$

 $(P_1, P_2) \mapsto \hat{h}_{E_1}(P_1) + \hat{h}_{E_2}(P_2)$

For $P \in A(\overline{K})$, we have $\hat{h}_A(P) = 0 \iff P \in A_{\text{tors}}$.

Bogomolov's Conjecture : Abelian varieties

 $\begin{array}{ccc} \text{torsion points of } A & \leftrightarrow & \text{spec}\\ \text{translates of abelian subvarieties} \\ \text{by a torsion point} & \leftrightarrow & \text{special} \end{array}$

→ special points

 \leftrightarrow special subvarieties

Theorem (Zhang 1998, Ullmo 1998)

For each non-special subvariety X of A, there is a constant c(X) > 0 such that

 $\{x \in X(\overline{K}) : \hat{h}_A(x) \leq c(X)\}$

is not Zariski dense in X.

Bogomolov's Conjecture : Abelian varieties

 $\begin{array}{ccc} \text{torsion points of } A & \leftrightarrow & \text{special points} \\ \text{translates of abelian subvarieties} \\ \text{by a torsion point} & \leftrightarrow & \text{special subvarieties} \end{array}$

Theorem (Zhang 1998, Ullm<u>o 1998)</u>

For each non-special subvariety X of A, there is a constant c(X) > 0 such that

$$\{x \in X(\overline{K}) : \hat{h}_A(x) \leq c(X)\}$$

is not Zariski dense in X.

Remark

For a non-special X, the set $\{x \in X(\overline{K}) : \hat{h}_A(x) = 0\}$ is not Zariski dense in X by the Manin-Mumford Conjecture (Raynaud's theorem 1983). B smooth quasi-projective curve defined over a number field K. For i = 1, 2 we consider

 $\mathcal{E}_i \to B$ elliptic surfaces defined over $K \leftrightarrow E_i$ over E(K(B)). e.g. $\mathcal{E}_{1,t}: y^2 = x(x-1)(x-t)$ and $\mathcal{E}_{2,t}: y^2 = x(x-1)(x+t)$. *B* smooth quasi-projective curve defined over a number field *K*. For i = 1, 2 we consider

 $\mathcal{E}_i \to B$ elliptic surfaces defined over $K \leftrightarrow E_i$ over E(K(B)). e.g. $\mathcal{E}_{1,t}: y^2 = x(x-1)(x-t)$ and $\mathcal{E}_{2,t}: y^2 = x(x-1)(x+t)$.

 $P_i: B \to \mathcal{E}_i$ sections defined over $K \leftrightarrow P_i \in E_i(K(B))$. e.g. $P_{1,t} = (2, \sqrt{2(2-t)}) \in \mathcal{E}_{1,t}$ and $P_{2,t} = (2, \sqrt{2(2+t)}) \in \mathcal{E}_{2,t}$.

 $P = (P_1, P_2) : B \to \mathcal{E}_1 \times_B \mathcal{E}_2$ section of $\mathcal{E}_1 \times_B \mathcal{E}_2 \to B$.

A Bogomolov-type theorem in families of abelian varieties

Let $\mathcal{A} = \mathcal{E}_1 \times_{\mathit{B}} \mathcal{E}_2$ and

$$t\mapsto \hat{h}_{\mathcal{A}_t}(P_t)=\hat{h}_{\mathcal{E}_{1,t}}(P_{1,t})+\hat{h}_{\mathcal{E}_{2,t}}(P_{2,t}).$$

Theorem (DeMarco, M. 2017)

For each non-special section $P : B \to A$, there is a constant c = c(P) > 0 such that $\{t \in B(\overline{K}) : \hat{h}_{A_t}(P_t) < c\}$, is finite.

A Bogomolov-type theorem in families of abelian varieties

Let $\mathcal{A} = \mathcal{E}_1 \times_{\mathcal{B}} \mathcal{E}_2$ and

$$t\mapsto \hat{h}_{\mathcal{A}_t}(P_t)=\hat{h}_{\mathcal{E}_{1,t}}(P_{1,t})+\hat{h}_{\mathcal{E}_{2,t}}(P_{2,t}).$$

Theorem (DeMarco, M. 2017)

For each non-special section $P : B \to A$, there is a constant c = c(P) > 0 such that $\{t \in B(\overline{K}) : \hat{h}_{A_t}(P_t) < c\}$, is finite.

Remark

Let $E_1 \& E_2$ be fixed elliptic curves over K. Assume that $A_t = E_1 \times E_2$ for each t.

special sections \leftrightarrow special subvarieties of $\mathcal{A} = \mathcal{E}_1 \times \mathcal{E}_2$

Our theorem then reduces to Zhang's theorem.

Theorem (DeMarco, M. 2017)

If for a sequence $t_n \in B(\overline{K})$ we have

$$\lim_{n\to\infty}\hat{h}_{\mathcal{E}_{1,t_n}}(P_{1,t_n})=0 \& \lim_{n\to\infty}\hat{h}_{\mathcal{E}_{2,t_n}}(P_{2,t_n})=0,$$

then the section $P = (P_1, P_2)$ is special, i.e. one of the following holds.

- P_1 is (identically) torsion in \mathcal{E}_1 .
- P_2 is torsion in \mathcal{E}_2 .
- There are isogenies $\phi : \mathcal{E}_1 \to \mathcal{E}_2$ and $\psi : \mathcal{E}_2 \to \mathcal{E}_2$, so that $\phi(P_1) = \psi(P_2)$.

Theorem (DeMarco, M. 2017)

If for a sequence $t_n \in B(\overline{K})$ we have

$$\lim_{n\to\infty}\hat{h}_{\mathcal{E}_{1,t_n}}(P_{1,t_n})=0 \& \lim_{n\to\infty}\hat{h}_{\mathcal{E}_{2,t_n}}(P_{2,t_n})=0,$$

then the section $P = (P_1, P_2)$ is special, i.e. one of the following holds.

- P_1 is (identically) torsion in \mathcal{E}_1 .
- P_2 is torsion in \mathcal{E}_2 .
- There are isogenies $\phi : \mathcal{E}_1 \to \mathcal{E}_2$ and $\psi : \mathcal{E}_2 \to \mathcal{E}_2$, so that $\phi(P_1) = \psi(P_2)$. In particular, for each $\lambda \in B(\overline{K})$ we have

$$\mathsf{P}_{1,\lambda} \in (\mathcal{E}_{1,\lambda})_{\mathrm{tors}} \ \Leftrightarrow \ \mathsf{P}_{2,\lambda} \in (\mathcal{E}_{2,\lambda})_{\mathrm{tors}}.$$

Masser and Zannier's theorems in unlikely intersections

Our theorem generalizes Masser-Zannier's theorem to 'small' points.

Theorem (Masser-Zannier 2010, 2012, 2014)

If for an infinite sequence $t_n \in B(\overline{K})$ we have

 $P_{1,t_n} \in (\mathcal{E}_{1,t_n})_{\mathrm{tors}}$ & $P_{2,t_n} \in (\mathcal{E}_{2,t_n})_{\mathrm{tors}}$,

then the section $P = (P_1, P_2)$ is special.

Remark

If $P_{1,t_n} \in (\mathcal{E}_{1,t_n})_{\mathrm{tors}}$ & $P_{2,t_n} \in (\mathcal{E}_{2,t_n})_{\mathrm{tors}}$, then

$$\hat{h}_{\mathcal{E}_{1,t_n}}(P_{1,t_n}) + \hat{h}_{\mathcal{E}_{2,t_n}}(P_{2,t_n}) = 0.$$

Masser and Zannier's theorems in unlikely intersections

Our theorem generalizes Masser-Zannier's theorem to 'small' points.

Theorem (Masser-Zannier 2010, 2012, 2014)

If for an infinite sequence $t_n \in B(\overline{K})$ we have

 $P_{1,t_n} \in (\mathcal{E}_{1,t_n})_{\mathrm{tors}}$ & $P_{2,t_n} \in (\mathcal{E}_{2,t_n})_{\mathrm{tors}}$,

then the section $P = (P_1, P_2)$ is special.

Remark

If $P_{1,t_n} \in (\mathcal{E}_{1,t_n})_{\mathrm{tors}}$ & $P_{2,t_n} \in (\mathcal{E}_{2,t_n})_{\mathrm{tors}}$, then

$$\hat{h}_{\mathcal{E}_{1,t_n}}(P_{1,t_n}) + \hat{h}_{\mathcal{E}_{2,t_n}}(P_{2,t_n}) = 0.$$

In fact, our proof uses Masser-Zannier's theorem!

Example: Special sections

Let $\mathcal{E}_1 = \mathcal{E}_2 = \mathcal{E} \to B$ be the Legendre surface.

$${\cal E}_t:y^2=x(x-1)(x-t),$$
 $P_{1,t}=(2,\sqrt{2(2-t)})$, $P_{2,t}=(3,\sqrt{6(3-t)}).$

Then (P_1, P_2) is a not special.

• Neither P_1 nor P_2 is identically torsion; and

Example: Special sections

Let $\mathcal{E}_1 = \mathcal{E}_2 = \mathcal{E} \rightarrow B$ be the Legendre surface.

$${\cal E}_t:y^2=x(x-1)(x-t),$$

 $P_{1,t}=(2,\sqrt{2(2-t)})$, $P_{2,t}=(3,\sqrt{6(3-t)}).$

Then (P_1, P_2) is a not special.

- Neither P_1 nor P_2 is identically torsion; and
- If for $n,m\in\mathbb{Z}\setminus\{0\}$ we have $[n]P_{1,t}=[m]P_{2,t}$ \forall $t\in B(\mathbb{C})$, then

$$P_{1,t} \in (\mathcal{E}_t)$$
 tors $\Leftrightarrow P_{2,t} \in (\mathcal{E}_t)$ tors

for each t. However,

$$P_{2,3} = (3,0) \in (\mathcal{E}_3)_{\text{ tors}} \& P_{1,3} = (2,\sqrt{-2}) \notin (\mathcal{E}_3)_{\text{ tors}}.$$

 $\exists \ c>0 \text{ such that } |\{t\in\overline{\mathbb{Q}}: \hat{h}_{\mathcal{E}_{1,t}}(P_{1,t}) + \hat{h}_{\mathcal{E}_{2,t}}(P_{2,t}) < c\}| < \infty \text{, when:}$

$$\mathcal{E}_{1,t} = \mathcal{E}_{2,t} : y^2 = x(x-1)(x-t),$$
 $P_{1,t} = \left(2t, \sqrt{2t^2(2t-1)}
ight), P_{2,t} = \left(3t, \sqrt{6t^2(3t-1)}
ight)$ or

 $\exists \ c>0 \text{ such that } |\{t\in\overline{\mathbb{Q}}: \hat{h}_{\mathcal{E}_{1,t}}(P_{1,t}) + \hat{h}_{\mathcal{E}_{2,t}}(P_{2,t}) < c\}| < \infty \text{, when:}$

$$\mathcal{E}_{1,t} = \mathcal{E}_{2,t} : y^2 = x(x-1)(x-t),$$
 $P_{1,t} = \left(2t, \sqrt{2t^2(2t-1)}
ight), P_{2,t} = \left(3t, \sqrt{6t^2(3t-1)}
ight)$ or
 $P_{1,t} = \left(\sqrt{t}, *
ight), P_{2,t} = \left(\sqrt{t}+1, *
ight).$

 $\exists \ c>0 \text{ such that } |\{t\in\overline{\mathbb{Q}}: \hat{h}_{\mathcal{E}_{1,t}}(P_{1,t}) + \hat{h}_{\mathcal{E}_{2,t}}(P_{2,t}) < c\}| < \infty \text{, when:}$

$$\mathcal{E}_{1,t} = \mathcal{E}_{2,t} : y^2 = x(x-1)(x-t),$$
 $P_{1,t} = \left(2t, \sqrt{2t^2(2t-1)}
ight), P_{2,t} = \left(3t, \sqrt{6t^2(3t-1)}
ight)$ or
 $P_{1,t} = \left(\sqrt{t}, *
ight), P_{2,t} = \left(\sqrt{t}+1, *
ight).$

$$\begin{aligned} \mathcal{E}_{1,t} : y^2 &= x(x-1)(x-t) \\ P_{1,t} &= (2,\sqrt{2(2-t)}) \end{aligned} \qquad \begin{aligned} \mathcal{E}_{2,t} &= \mathcal{E}_{1,-t} : y^2 &= x(x-1)(x+t) \\ P_{2,t} &= (2,\sqrt{2(2+t)}). \end{aligned}$$

The geometry of small points

E elliptic curve defined over K(B) $P \in E(K(B))$ non-torsion.

Theorem (DeMarco, M. 2017)

Let $t_n \in B(\overline{K})$ be such that $\hat{h}_{\mathcal{E}_{t_n}}(P_{t_n}) \to 0$. There is a collection of probability measures

 $\mu_P = \{\mu_{P,v}\}_{v \in M_K}$

on B_v^{an} such that for each $v \in M_K$ the discrete measures

$$\mu_{t_n} = \frac{1}{|\operatorname{Gal}(\overline{K}/K) \cdot t_n|} \sum_{t \in \operatorname{Gal}(\overline{K}/K) \cdot t_n} \delta_t$$

converge weakly to the measure $\mu_{P,v}$ on B_v^{an} .

Real equidistribution

Let *E* elliptic curve defined over K(B) and $P \in E(K(B)) P \in E(K(B)) \otimes \mathbb{R}$ non-trivial.

Theorem (DeMarco, M. 2018)

Let $t_n \in B(\overline{K})$ be such that $\hat{h}_{\mathcal{E}_{t_n}}(P_{t_n}) \to 0$. There is a collection of probability measures

 $\mu_P = \{\mu_{P,v}\}_{v \in M_K}$

on B_v^{an} such that for each $v \in M_K$ the discrete measures

$$\mu_{t_n} = \frac{1}{|\operatorname{Gal}(\overline{K}/K) \cdot t_n|} \sum_{t \in \operatorname{Gal}(\overline{K}/K) \cdot t_n} \delta_t$$

converge weakly to the measure $\mu_{P,v}$ on B_v^{an} .

To get the equidistribution result, we have to show that the function

 $t\mapsto \hat{h}_{\mathcal{E}_t}(P_t),$

is a 'good' height in the sense of the equidistribution theorem of Chambert-Loir, Thuillier and Yuan. This involves work of Silverman from 1992.

In the real case we also make use of work of Moriwaki.

Barroero-Capuano's theorem

 $\mathcal{E} \to B$ a non-isotrivial elliptic surface defined over K. $P_i: B \to \mathcal{E}$ sections defined over $K, i = 1, ..., m, m \ge 2$.

Theorem (Barroero-Capuano 2016)

Let P_1, \ldots, P_m be $m \ge 2$ linearly independent sections. Then, there are at most finitely many $t \in B(\overline{K})$ such that

 $P_{1,t}, \ldots, P_{m,t}$ satisty two independent linear relations in \mathcal{E}_t .

Barroero-Capuano's theorem

 $\mathcal{E} \to B$ a non-isotrivial elliptic surface defined over K. $P_i: B \to \mathcal{E}$ sections defined over $K, i = 1, ..., m, m \ge 2$.

Theorem (Barroero-Capuano 2016)

Let P_1, \ldots, P_m be $m \ge 2$ linearly independent sections. Then, there are at most finitely many $t \in B(\overline{K})$ such that

 $P_{1,t}, \ldots, P_{m,t}$ satisty two independent linear relations in \mathcal{E}_t .

• The case m = 2 is Masser-Zannier's theorem.

Barroero-Capuano's theorem

 $\mathcal{E} \to B$ a non-isotrivial elliptic surface defined over K. $P_i: B \to \mathcal{E}$ sections defined over $K, i = 1, ..., m, m \ge 2$.

Theorem (Barroero-Capuano 2016)

Let P_1, \ldots, P_m be $m \ge 2$ linearly independent sections. Then, there are at most finitely many $t \in B(\overline{K})$ such that

 $P_{1,t}, \ldots, P_{m,t}$ satisty two independent linear relations in \mathcal{E}_t .

- The case m = 2 is Masser-Zannier's theorem.
- The constant case follows from work of Viada and Rémond (2003), Viada (2008) and Galateau (2010).

For i = 1, ..., m, let $P_i : \mathcal{E} \to B$ be linearly independent sections.

Silverman's 'specialization theorem' implies that the set

 $\{t \in B(\overline{K}) : P_{1,t}, \dots, P_{m,t} \text{ are linearly related in } \mathcal{E}_t\}$ has bounded height.

In particular, it is a 'sparse' set (think Northcott property.)

For i = 1, ..., m, let $P_i : \mathcal{E} \to B$ be linearly independent sections.

Silverman's 'specialization theorem' implies that the set

 $\{t \in B(\overline{K}) : P_{1,t}, \dots, P_{m,t} \text{ are linearly related in } \mathcal{E}_t\}$ has bounded height.

In particular, it is a 'sparse' set (think Northcott property.)

It is natural to expect that

Double sparseness \Rightarrow finiteness.

Assume that for an infinite sequence $t_n \in B(\overline{K})$ we have

$$a_{1,n}P_{1,t_n}+\cdots+a_{m,n}P_{m,t_n}=\mathcal{O}.$$

Passing to a subsequence, we may assume that $a_{1,n} \neq 0$ and

$$\frac{a_{i,n}}{a_{1,n}} \to x_i \in \mathbb{R}.$$

Then, using Silverman's specialization theorem and the bilinearity of the height pairing, we get

$$\hat{h}_{\mathcal{E}_{t_n}}(P_{1,t_n}+x_2P_{2,t_n}+\cdots+x_mP_{m,t_n})\to 0.$$

If now for an infinite sequence $t_n \in B(\overline{K})$ we have

$$a_{1,n}P_{1,t_n} + \dots + a_{m,n}P_{m,t_n} = \mathcal{O} \&$$

$$b_{1,n}P_{1,t_n} + \dots + b_{m,n}P_{m,t_n} = \mathcal{O}$$

for linearly independent $(a_{1,n}, \ldots, a_{m,n}), (b_{1,n}, \ldots, b_{m,n}) \in \mathbb{Z}^m$, then

$$\hat{h}_{\mathcal{E}_{t_n}}(x_1P_{1,t_n}+\cdots+x_mP_{m,t_n})\to 0 \& \hat{h}_{\mathcal{E}_{t_n}}(y_1P_{1,t_n}+\cdots+y_mP_{m,t_n})\to 0,$$

for linearly independent $\vec{x} = (x_1, \ldots, x_m), \vec{y} = (y_1, \ldots, y_m) \in \mathbb{R}^m$.

So we have a 'doubly small' sequence for these 'real' heights.

A conjectural generalization

 $P_i: \mathcal{E} \to B$ linearly independent sections, for $i = 1, \ldots, m$.

For
$$\vec{x} = (x_1, \dots, x_m) \in \mathbb{R}^m$$
 let $h_{\vec{x}} : B(\overline{K}) \to \mathbb{R}_{\geq 0}$
 $t \mapsto h_{\vec{x}}(t) = \hat{h}_{\mathcal{E}_t}(x_1 P_{1,t} + \dots + x_m P_{m,t})$
 $= \sum_{1 \leq i,j \leq m} x_i x_j \langle P_{i,t}, P_{j,t} \rangle_{\mathcal{E}_t}.$

Conjecture (DeMarco-M.)

If \vec{x} , $\vec{y} \in \mathbb{R}^m$ are linearly independent, then there is a constant $c = c(P_1, \dots, P_m, \vec{x}, \vec{y}) > 0$ such that the set

$$\{t \in B(\overline{K}) : h_{\overrightarrow{x}}(t) + h_{\overrightarrow{y}}(t) < c\},$$

is finite.

Conjecture (DeMarco-M.)

If \vec{x} , $\vec{y} \in \mathbb{R}^m$ are linearly independent, then there is a constant $c = c(P_1, \ldots, P_m, \vec{x}, \vec{y}) > 0$ such that the set

$$\{t \in B(\overline{K}) : h_{\overrightarrow{x}}(t) + h_{\overrightarrow{y}}(t) < c\},$$

is finite.

Remark

• The conjecture implies Baroerro-Capuano's theorem.

Conjecture (DeMarco-M.)

If \vec{x} , $\vec{y} \in \mathbb{R}^m$ are linearly independent, then there is a constant $c = c(P_1, \ldots, P_m, \vec{x}, \vec{y}) > 0$ such that the set

$$\{t \in B(\overline{K}) : h_{\overrightarrow{x}}(t) + h_{\overrightarrow{y}}(t) < c\},$$

is finite.

Remark

- The conjecture implies Baroerro-Capuano's theorem.
- If $\vec{x}, \vec{y} \in \mathbb{Q}^m$, then we get our theorem (2017).

Conjecture (DeMarco-M.)

If \vec{x} , $\vec{y} \in \mathbb{R}^m$ are linearly independent, then there is a constant $c = c(P_1, \ldots, P_m, \vec{x}, \vec{y}) > 0$ such that the set

$$\{t \in B(\overline{K}) : h_{\overrightarrow{x}}(t) + h_{\overrightarrow{y}}(t) < c\},$$

is finite.

Remark

- The conjecture implies Baroerro-Capuano's theorem.
- If $\vec{x}, \vec{y} \in \mathbb{Q}^m$, then we get our theorem (2017).
- When m = 2 the conjecture holds true by our theorem and the parallelogram law.

Towards our Conjecture for 'real' points

So far, we recover Barroero-Capuano's theorem for 3 sections $P_1, P_2, P_3 : B \to \mathcal{E}$ defined over K.

Towards our Conjecture for 'real' points

So far, we recover Barroero-Capuano's theorem for 3 sections $P_1, P_2, P_3 : B \to \mathcal{E}$ defined over K.

Theorem (DeMarco-M.)

Let $\vec{x} = (x_1, x_2, x_3)$ and $\vec{y} = (y_1, y_2, y_3) \in \mathbb{R}^3$ be linearly independent. Assume that

1 \exists an infinite sequence $t_n \in B(\overline{K})$ such that

$$h_{\vec{x}}(t_n) \rightarrow 0$$
 & $h_{\vec{y}}(t_n) \rightarrow 0$,

and that

② ∃ $\lambda \in B(\overline{K})$ such that $P_{1,\lambda}, P_{2,\lambda}, P_{3,\lambda}$ satisfy exactly two independent linear relations in \mathcal{E}_{λ} (over \mathbb{Z}).

Then P_1, P_2, P_3 are linearly related.

$P,Q\in E(K(B))\otimes \mathbb{R}$

The Arakelov-Zhang-Moriwaki pairing for metrized line bundles induces a non-negative, symmetric 'pairing' between the 'heights'

$$h_P \cdot h_Q \in \mathbb{R}_{\geq 0}.$$

 $P,Q\in E(K(B))\otimes \mathbb{R}$

The Arakelov-Zhang-Moriwaki pairing for metrized line bundles induces a non-negative, symmetric 'pairing' between the 'heights'

 $h_P \cdot h_Q \in \mathbb{R}_{\geq 0}.$

 $h_P \cdot h_Q = 0 \ \Leftrightarrow \ \exists \ t_n \in B(\overline{K}) \text{ such that } \hat{h}_{\mathcal{E}_{t_n}}(P_{t_n}) + \hat{h}_{\mathcal{E}_{t_n}}(Q_{t_n}) \to 0.$

Let $\Lambda = E(K(B))$. The assignment

$$egin{array}{cc} (\Lambda\otimes\mathbb{R}) imes (\Lambda\otimes\mathbb{R}) o&\mathbb{R}_{\geq 0}\ (P,Q)&\mapsto&h_P\cdot h_Q \end{array}$$

is 'biquadratic', in the sense that it is a quadratic form if P (or $\mathsf{Q})$ are fixed.

Let $\Lambda = E(K(B))$. The assignment

$$egin{array}{lll} (\Lambda\otimes\mathbb{R}) imes(\Lambda\otimes\mathbb{R}) o&\mathbb{R}_{\geq 0}\ (P,Q)&\mapsto&h_P\cdot h_Q \end{array}$$

is 'biquadratic', in the sense that it is a quadratic form if P (or $\mathsf{Q})$ are fixed.

By our theorem (2017), we know that it 'doesn't degenerate' in Λ in the sense that

$$h_P \cdot h_Q = 0 \Leftrightarrow P \& Q$$
 are linearly related.

We conjecture that it also 'doesn't degenerate' in $\Lambda \otimes \mathbb{R}$.

In other words, that our assignment can be compared with the 'biquadratic' assignment

$$egin{aligned} & (\Lambda\otimes\mathbb{R}) imes(\Lambda\otimes\mathbb{R}) o&\mathbb{R}_{\geq 0}\ & (P,Q) &\mapsto& \hat{h}_E(P)\hat{h}_E(Q)-\langle P,Q
angle_E^2. \end{aligned}$$

Conjecture (DeMarco, M. - reformulation)

For $P, Q \in E(K(B)) \otimes \mathbb{R}$ the following are equivalent.

$$\bullet h_P \cdot h_Q = 0.$$

$$\widehat{h}_E(P)\widehat{h}_E(Q) - \langle P, Q \rangle_E^2 = 0.$$

For
$$\vec{x} = (x_1, \ldots, x_m) \in \mathbb{R}^m$$
, $h_{\vec{x}}(t) = \hat{h}_{\mathcal{E}_t}(x_1 P_{1,t} + \cdots + x_m P_{m,t})$.

The 'real' equidistribution theorem yields

Proposition (DeMarco-M. 2017, 2018) Assume that for infinitely many $t_n \in B(\overline{K})$ we have that

 $h_{\vec{x}}(t_n) \rightarrow 0 \& h_{\vec{v}}(t_n) \rightarrow 0.$

Then for all $t \in B(\overline{K})$ we have

 $h_{\vec{x}}(t) = \alpha h_{\vec{y}}(t),$

with $\alpha = \frac{\hat{h}_E(x_1P_1 + \dots + x_mP_m)}{\hat{h}_E(y_1P_1 + \dots + y_mP_m)}.$

Rational case - reduction to Masser-Zannier's theorem

Assume \vec{x} , $\vec{y} \in \mathbb{Q}^m$ are linearly independent.

$$P = x_1P_1 + \cdots + x_mP_m \& Q = y_1P_1 + \cdots + y_mP_m$$

such that $h_P \cdot h_Q = 0$. Then $\hat{h}_{\mathcal{E}_t}(P_t) = \alpha \hat{h}_{\mathcal{E}_t}(Q_t)$ for all $t \in B(\overline{K})$.

In particular, for each $t \in B(\overline{K})$ we have

 $\hat{h}_{\mathcal{E}_t}(P_t) = 0 \iff \hat{h}_{\mathcal{E}_t}(Q_t) = 0$

Rational case - reduction to Masser-Zannier's theorem

Assume \vec{x} , $\vec{y} \in \mathbb{Q}^m$ are linearly independent.

$$P = x_1P_1 + \cdots + x_mP_m \& Q = y_1P_1 + \cdots + y_mP_m$$

such that $h_P \cdot h_Q = 0$. Then $\hat{h}_{\mathcal{E}_t}(P_t) = \alpha \hat{h}_{\mathcal{E}_t}(Q_t)$ for all $t \in B(\overline{K})$.

In particular, for each $t \in B(\overline{K})$ we have $\hat{h}_{\mathcal{E}_t}(P_t) = 0 \iff \hat{h}_{\mathcal{E}_t}(Q_t) = 0$

Then, we can find infinitely many $t'_n \in B(\overline{K})$ such that

$$\hat{h}_{\mathcal{E}_{t'_n}}(P_{t'_n}) = 0 \& \hat{h}_{\mathcal{E}_{t'_n}}(Q_{t'_n}) = 0.$$

Invoking Masser-Zannier's theorem we get that

 $(P,Q): B \rightarrow \mathcal{A}$ is a special section.

A 'good' height: Variation of the canonical height (VCH)

 h_B : Weil height on B relative to a divisor of degree 1. $\hat{h}_E(P)$: 'geometric' Néron-Tate height of $P \in E(k)$.

Remark

$$\hat{h}_E(P) = 0 \Leftrightarrow P$$
 is a torsion section.

Theorem (Silverman 1983)

$$\lim_{t\in B(\overline{K}),\ h_B(t)\to\infty}\frac{\hat{h}_{\mathcal{E}_t}(P_t)}{h_B(t)}=\hat{h}_E(P).$$

Theorem (Tate 1983)

There is a divisor $D = D(E, P) \in Pic(C) \otimes \mathbb{Q}$ of degree $\hat{h}_E(P)$ such that

 $\hat{h}_{\mathcal{E}_t}(P_t) = h_D(t) + O_P(1),$

as $t \in C(\overline{K})$ varies.

In particular, if $C = \mathbb{P}^1$ we have

$$\hat{h}_{\mathcal{E}_t}(P_t) = \hat{h}_E(P)h(t) + O_P(1).$$

Let $v \in M_K$. For $t_0 \in C(\mathbb{C}_v)$, fix a uniformizer u at t_0 .

To describe the variation of $t \mapsto \hat{h}_{\mathcal{E}_t}(P_t)$ in a more precise way, Silverman considered the 'local components' of VCH

$$V_{P,t_0,v}(t) := \hat{\lambda}_{\mathcal{E}_t}(P_t;v) + \hat{\lambda}_E(P;\operatorname{ord}_{t_0}) \log |u(t)|_v.$$

Theorem (Silverman 1992)

- $V_{P,t_0,v}(t)$ extends to a continuous function in a neighborhood of t_0 .
- ② $V_{P,t_0,v}(t) \equiv 0$ for all but finitely many $v \in M_K$ in a v-adic neighborhood of t_0 .

Silverman's results + dynamical perspective + ingredients from Silverman's proof $\Rightarrow \hat{h}_{\mathcal{E}_t}(P_t)$ is a 'good height' for equidistribution.

The end

Thank you!

Torsion parameters for $P_2 = (2, \sqrt{2(2-t)})$

Torsion parameters for $P_5 = (5, \sqrt{20(5-t)})$

A 'good' metrized line bundle

Assume $\hat{h}_E(P) \neq 0$. We want to show that $t \mapsto \hat{h}_{\mathcal{E}_t}(P_t)$ comes from a 'good' metric in the sense of equidistribution. Let $D_E(P) = \sum_{\gamma \in C(\overline{K})} \hat{\lambda}_{E, \operatorname{ord}_{\gamma}}(P) \cdot (\gamma) \in \operatorname{Div}(C) \otimes \mathbb{Q}$. \mathcal{L}_P : the line bundle on C corresponding to $mD_E(P) \in \operatorname{Div}(C)$.

We give a collection of metrics $\|\cdot\| = \{\|\cdot\|_v\}_{v \in M_K}$ on \mathcal{L}_Q .

Let $U \subset C_v^{an}$ open. Each section $s \in \mathcal{L}_P(U)$ is identified with a meromorphic function f on U such that $(f) \ge -mD_E(P)$. We set

$$\|s(t)\|_{v} = \begin{cases} e^{-m\hat{\lambda}_{E_{t,v}}(P_{t})}|f(t)|_{v} & \text{if } f(t) \text{ is finite and nonzero} \\ 0 & \text{if } \operatorname{ord}_{t} f > -m\hat{\lambda}_{E,\operatorname{ord}_{t}}(P) \\ e^{-m V_{P,t,v}(t)} & \text{otherwise.} \end{cases}$$

taking the locally-defined uniformizer $u = f^{1/\text{ord}_t f}$ at t in the definition of $V_{P,t,v}$.

Parameters yielding small height

$$\mathcal{E}_t: y^2 = x(x-1)(x-t),$$

 $P_t = (2, \sqrt{2(2-t)}), \ Q_t = (3, \sqrt{6(3-t)}); \ t \in \mathbb{C} \setminus \{0, 1\}.$
Claim: If $t_n \in B(\overline{K})$ is such that $[n]P_{t_n} - Q_{t_n} = \mathcal{O}$, then
 $\hat{h}_{\mathcal{E}_{t_n}}(P_{t_n}) \to 0.$

Parameters yielding small height

$$\mathcal{E}_t: y^2 = x(x-1)(x-t),$$

 $P_t = (2, \sqrt{2(2-t)}), \ Q_t = (3, \sqrt{6(3-t)}); \ t \in \mathbb{C} \setminus \{0, 1\}.$
Claim: If $t_n \in B(\overline{K})$ is such that $[n]P_{t_n} - Q_{t_n} = \mathcal{O}$, then
 $\hat{h}_{\mathcal{E}_{t_n}}(P_{t_n}) \to 0.$

To see this note that

$$[n]P_{t_n} = Q_{t_n} \Rightarrow \hat{h}_{\mathcal{E}_{t_n}}(P_{t_n}) = \frac{\hat{h}_{\mathcal{E}_{t_n}}(Q_{t_n})}{n^2}.$$

Parameters yielding small height

$$\hat{h}_{\mathcal{E}_{t_n}}(P_{t_n}) = \frac{\hat{h}_{\mathcal{E}_{t_n}}(Q_{t_n})}{n^2}.$$

By Silverman's specialization theorem we know that

 ${h(t_n)}$ is bounded.

Moreover, by Tate's theorem we get that

 ${\hat{h}_{\mathcal{E}_{t_n}}(Q_{t_n})}_{n\in\mathbb{N}}$ is bounded.

Hence,

$$\hat{h}_{\mathcal{E}_{t_n}}(P_{t_n}) \to 0 \text{ as } n \to \infty.$$

By work of Chambert-Loir, Thuillier and Moriwaki, we know that if $t_n \in B(\overline{K})$ is such that

$$\hat{h}_{\mathcal{E}_{t_n}}(P_{t_n}) \to 0,$$

then

$$\hat{h}_{\mathcal{E}_{t_n}}(Q_{t_n})
ightarrow rac{h_P \cdot h_Q}{\hat{h}_E(P)}.$$

So the assignment $(P, Q) \mapsto h_P \cdot h_Q$ inherites properties of the canonical heights.

Unlikely intersections: A conjecture

C smooth projective curve defined over a number field Kk = K(C)

Conjecture (Baker-DeMarco, Ghioca-Hsia-Tucker)

Consider $\mathbf{f} \in K(z)$ and $\mathbf{c}_1, \mathbf{c}_2 \in K$. Assume that for an infinite sequence $t_n \in C(\overline{K})$ we have

 $\hat{h}_{f_{t_n}}(c_1(t_n)) + \hat{h}_{f_{t_n}}(c_2(t_n)) = 0.$

Then one of the following is true;

1 $\exists i \in \{1, 2\}$ such that \mathbf{c}_i is preperiodic for **f**.

② ∃ a Zariski open $Y \subset X$ such that $\forall t \in Y(\overline{K})$ we have $c_1(t)$ is preperiodic for $f_t \Leftrightarrow c_2(t)$ is preperiodic for f_t . Moreover, c_1 and c_2 are 'dynamically related'. (e.g. for $n, m \in \mathbb{N}$, we have $\mathbf{f}^n(\mathbf{c}_1) = \mathbf{f}^m(\mathbf{c}_2)$.)