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Outline of the talk

Unlikely intersections - Bogomolov’s conjecture

Our results (and work in progress)
1 A generalization of Bogomolov’s conjecture related to

Masser-Zannier’s theorem on torsion points in families of
elliptic curves.

2 A equidistribution theorem for ‘small points’ (2017)
3 Its generalization to ‘real’ small points (2018).
4 Applications related to Barroero-Capuano’s theorem on

simultaneous relations (in progress)

Proof strategy
1 A corollary of the equidistribution theorem
2 Silverman’s results on a variation of heights



Lang’s Theorem

X : irreducible complex plane curve.
µ : set of roots of unity.

Theorem (Ihara-Serre-Tate 1965)

If X contains infinitely many points with both coordinates roots of
unity, then X is given by an equation of the form xnym − ω = 0 for
(n,m) ∈ Z2 \ {(0, 0)} and ω ∈ µ.

(ξ, ζ) ∈ µ× µ ↔ torsion points of (C∗)2 ↔ special
points

Curves ↔ translates of algebraic subgroups ↔ special
curves

xnym − ω = 0 of (C∗)2 by a torsion point
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Bogomolov’s Conjecture : Tori

Philosophical restatement

If a curve has an infinite (Zariski dense) set of special points, then
it is a special curve.

Question (Bogomolov)

What if we replace the special points by small points, that is
points of small logarithmic Weil height h : Q→ R≥0?

For α ∈ Q \ {0}, h(α) ≥ 0 and h(α) = 0⇔ α is a root of unity.
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Bogomolov’s Conjecture : Tori

X : irreducible plane curve defined over number field K .

Theorem (Zhang 1992, Bombieri-Zannier 1995)

Assume that X is non-special. There is a constant c(X ) > 0 such
that

{(x , y) ∈ X (K ) : h(x) + h(y) ≤ c(X )}

is finite.

In other words, if ∃ infinitely many (xn, yn) ∈ X (K ) such that

h(xn) + h(yn)→ 0

as n→∞, then X is a special curve.
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Bogomolov’s Conjecture : Setting

A : abelian variety defined over K .
ĥA: Nèron-Tate height corresponding to an ample and symmetric
divisor on A.

Example

For an elliptic curve E over K and P ∈ E (K ), we have

ĥE (P) =
1

2
lim
n→∞

h(x([n]P))

n2
.

If A = E1 × E2 for two elliptic curves Ei , we may take

ĥA : E1(K )× E2(K )→ R≥0
(P1,P2) 7→ ĥE1(P1) + ĥE2(P2).

For P ∈ A(K ), we have ĥA(P) = 0 ⇔ P ∈ Ators.
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Bogomolov’s Conjecture : Abelian varieties

torsion points of A ↔ special points
translates of abelian subvarieties

by a torsion point
↔ special subvarieties

Theorem (Zhang 1998, Ullmo 1998)

For each non-special subvariety X of A, there is a constant
c(X ) > 0 such that

{x ∈ X (K ) : ĥA(x) ≤ c(X )}

is not Zariski dense in X .

Remark

For a non-special X , the set {x ∈ X (K ) : ĥA(x) = 0} is not
Zariski dense in X by the Manin-Mumford Conjecture (Raynaud’s
theorem 1983).
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Setting: An analog in families of abelian varieties

B smooth quasi-projective curve defined over a number field K .
For i = 1, 2 we consider

Ei → B elliptic surfaces defined over K ↔ Ei over E (K (B)).
e.g. E1,t : y2 = x(x − 1)(x − t) and E2,t : y2 = x(x − 1)(x + t).

Pi : B → Ei sections defined over K ↔ Pi ∈ Ei (K (B)).
e.g. P1,t = (2,

√
2(2− t)) ∈ E1,t and P2,t = (2,

√
2(2 + t)) ∈ E2,t .

P = (P1,P2) : B → E1 ×B E2 section of E1 ×B E2 → B.
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A Bogomolov-type theorem in families of abelian varieties

Let A = E1 ×B E2 and

t 7→ ĥAt (Pt) = ĥE1,t (P1,t) + ĥE2,t (P2,t).

Theorem (DeMarco, M. 2017)

For each non-special section P : B → A, there is a constant
c = c(P) > 0 such that {t ∈ B(K ) : ĥAt (Pt) < c}, is finite.

Remark

Let E1 & E2 be fixed elliptic curves over K. Assume that
At = E1 × E2 for each t.

special sections ↔ special subvarieties of A = E1 × E2

Our theorem then reduces to Zhang’s theorem.
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Special sections

Theorem (DeMarco, M. 2017)

If for a sequence tn ∈ B(K ) we have

lim
n→∞

ĥE1,tn (P1,tn) = 0 & lim
n→∞

ĥE2,tn (P2,tn) = 0,

then the section P = (P1,P2) is special, i.e. one of the following
holds.

P1 is (identically) torsion in E1.

P2 is torsion in E2.

There are isogenies φ : E1 → E2 and ψ : E2 → E2, so that
φ(P1) = ψ(P2).

In particular, for each λ ∈ B(K ) we have

P1,λ ∈ (E1,λ)tors ⇔ P2,λ ∈ (E2,λ)tors.



Special sections

Theorem (DeMarco, M. 2017)

If for a sequence tn ∈ B(K ) we have

lim
n→∞
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Masser and Zannier’s theorems in unlikely intersections

Our theorem generalizes Masser-Zannier’s theorem to ‘small’
points.

Theorem (Masser-Zannier 2010, 2012, 2014)

If for an infinite sequence tn ∈ B(K ) we have

P1,tn ∈ (E1,tn)tors & P2,tn ∈ (E2,tn)tors,

then the section P = (P1,P2) is special.

Remark

If P1,tn ∈ (E1,tn)tors & P2,tn ∈ (E2,tn)tors, then

ĥE1,tn (P1,tn) + ĥE2,tn (P2,tn) = 0.

In fact, our proof uses Masser-Zannier’s theorem!
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Example: Special sections

Let E1 = E2 = E → B be the Legendre surface.

Et : y2 = x(x − 1)(x − t),

P1,t = (2,
√

2(2− t)) , P2,t = (3,
√

6(3− t)).

Then (P1,P2) is a not special.

• Neither P1 nor P2 is identically torsion; and

• If for n,m ∈ Z \ {0} we have [n]P1,t = [m]P2,t ∀ t ∈ B(C), then

P1,t ∈ (Et) tors ⇔ P2,t ∈ (Et) tors

for each t. However,

P2,3 = (3, 0) ∈ (E3) tors & P1,3 = (2,
√
−2) /∈ (E3) tors.
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Examples

∃ c > 0 such that |{t ∈ Q : ĥE1,t (P1,t)+ĥE2,t (P2,t) < c}| <∞, when:

E1,t = E2,t : y2 =x(x − 1)(x − t),

P1,t =

(
2t,
√

2t2(2t − 1)

)
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)
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(√

t + 1, ∗
)
.

E1,t : y2 = x(x − 1)(x − t) E2,t = E1,−t : y2 = x(x − 1)(x + t)

P1,t = (2,
√

2(2− t)) P2,t = (2,
√

2(2 + t)).
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The geometry of small points

E elliptic curve defined over K (B)
P ∈ E (K (B)) non-torsion.

Theorem (DeMarco, M. 2017)

Let tn ∈ B(K ) be such that ĥEtn (Ptn)→ 0. There is a collection of
probability measures

µP = {µP,v}v∈MK

on Ban
v such that for each v ∈ MK the discrete measures

µtn =
1

|Gal(K/K ) · tn|

∑
t∈Gal(K/K)·tn

δt

converge weakly to the measure µP,v on Ban
v .



Real equidistribution

Let E elliptic curve defined over K (B) and
P ∈ E (K (B)) P ∈ E (K (B))⊗ R non-trivial.

Theorem (DeMarco, M. 2018)

Let tn ∈ B(K ) be such that ĥEtn (Ptn)→ 0. There is a collection of
probability measures

µP = {µP,v}v∈MK

on Ban
v such that for each v ∈ MK the discrete measures

µtn =
1

|Gal(K/K ) · tn|

∑
t∈Gal(K/K)·tn

δt

converge weakly to the measure µP,v on Ban
v .



Equidistribution

To get the equidistribution result, we have to show that the
function

t 7→ ĥEt (Pt),

is a ‘good’ height in the sense of the equidistribution theorem of
Chambert-Loir, Thuillier and Yuan. This involves work of
Silverman from 1992.

In the real case we also make use of work of Moriwaki.



Barroero-Capuano’s theorem

E → B a non-isotrivial elliptic surface defined over K .
Pi : B → E sections defined over K , i = 1, . . . ,m, m ≥ 2.

Theorem (Barroero-Capuano 2016)

Let P1, . . . ,Pm be m ≥ 2 linearly independent sections. Then,
there are at most finitely many t ∈ B(K ) such that

P1,t , . . . ,Pm,t satisty two independent linear relations in Et .

• The case m = 2 is Masser-Zannier’s theorem.

• The constant case follows from work of Viada and Rémond
(2003), Viada (2008) and Galateau (2010).
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A corollary of Silverman’s specialization theorem

For i = 1, . . . ,m, let Pi : E → B be linearly independent sections.

Silverman’s ‘specialization theorem’ implies that the set

{t ∈ B(K ) : P1,t , . . . ,Pm,t are linearly related in Et}

has bounded height.

In particular, it is a ‘sparse’ set (think Northcott property.)

It is natural to expect that

Double sparseness⇒ finiteness.
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Connection with our theorem - ‘Doubly small’ parameters?

Assume that for an infinite sequence tn ∈ B(K ) we have

a1,nP1,tn + · · ·+ am,nPm,tn = O.

Passing to a subsequence, we may assume that a1,n 6= 0 and

ai ,n
a1,n
→ xi ∈ R.

Then, using Silverman’s specialization theorem and the bilinearity
of the height pairing, we get

ĥEtn (P1,tn + x2P2,tn + · · ·+ xmPm,tn)→ 0.



Connection with our theorem - ‘Doubly small’ parameters?

If now for an infinite sequence tn ∈ B(K ) we have

a1,nP1,tn + · · ·+ am,nPm,tn = O &

b1,nP1,tn + · · ·+ bm,nPm,tn = O

for linearly independent (a1,n, . . . , am,n), (b1,n, . . . , bm,n) ∈ Zm,
then

ĥEtn (x1P1,tn + · · ·+ xmPm,tn)→ 0 &

ĥEtn (y1P1,tn + · · ·+ ymPm,tn)→ 0,

for linearly independent ~x = (x1, . . . , xm), ~y = (y1, . . . , ym) ∈ Rm.

So we have a ‘doubly small’ sequence for these ‘real’ heights.



A conjectural generalization

Pi : E → B linearly independent sections, for i = 1, . . . ,m.

For ~x = (x1, . . . , xm) ∈ Rm let h~x : B(K )→ R≥0

t 7→ h~x(t) = ĥEt (x1P1,t + · · ·+ xmPm,t)

=
∑

1≤i ,j≤m
xixj〈Pi ,t ,Pj ,t〉Et .

Conjecture (DeMarco-M.)

If ~x , ~y ∈ Rm are linearly independent, then there is a constant
c = c(P1, . . . ,Pm, ~x , ~y) > 0 such that the set

{t ∈ B(K ) : h~x(t) + h~y (t) < c},

is finite.
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is finite.

Remark

The conjecture implies Baroerro-Capuano’s theorem.

If ~x , ~y ∈ Qm, then we get our theorem (2017).

When m = 2 the conjecture holds true by our theorem and
the parallelogram law.
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Towards our Conjecture for ‘real’ points

So far, we recover Barroero-Capuano’s theorem for 3 sections
P1,P2,P3 : B → E defined over K .

Theorem (DeMarco-M.)

Let ~x = (x1, x2, x3) and ~y = (y1, y2, y3) ∈ R3 be linearly
independent. Assume that

1 ∃ an infinite sequence tn ∈ B(K ) such that

h~x(tn)→ 0 & h~y (tn)→ 0,

and that

2 ∃ λ ∈ B(K ) such that P1,λ,P2,λ,P3,λ satisfy exactly two
independent linear relations in Eλ (over Z).

Then P1,P2,P3 are linearly related.
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A reformulation of our conjecture: a height pairing

P,Q ∈ E (K (B))⊗ R

The Arakelov-Zhang-Moriwaki pairing for metrized line bundles
induces a non-negative, symmetric ‘pairing’ between the ‘heights’

hP · hQ ∈ R≥0.

hP · hQ = 0 ⇔ ∃ tn ∈ B(K ) such that ĥEtn (Ptn) + ĥEtn (Qtn)→ 0.
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A reformulation of our conjecture: a height ‘pairing’

Let Λ = E (K (B)). The assignment

(Λ⊗ R)× (Λ⊗ R)→ R≥0
(P,Q) 7→ hP · hQ

is ‘biquadratic’, in the sense that it is a quadratic form if P ( or Q)
are fixed.

By our theorem (2017), we know that it ‘doesn’t degenerate’ in Λ
in the sense that

hP · hQ = 0⇔ P & Q are linearly related.

We conjecture that it also ‘doesn’t degenerate’ in Λ⊗ R.
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(P,Q) 7→ hP · hQ

is ‘biquadratic’, in the sense that it is a quadratic form if P ( or Q)
are fixed.
By our theorem (2017), we know that it ‘doesn’t degenerate’ in Λ
in the sense that

hP · hQ = 0⇔ P & Q are linearly related.

We conjecture that it also ‘doesn’t degenerate’ in Λ⊗ R.



A reformulation of our conjecture: a height ‘pairing’

In other words, that our assignment can be compared with the
‘biquadratic’ assignment

(Λ⊗ R)× (Λ⊗ R)→ R≥0
(P,Q) 7→ ĥE (P)ĥE (Q)− 〈P,Q〉2E .

Conjecture (DeMarco, M. - reformulation)

For P,Q ∈ E (K (B))⊗ R the following are equivalent.

1 hP · hQ = 0.

2 ĥE (P)ĥE (Q)− 〈P,Q〉2E = 0.



Proof strategy

For ~x = (x1, . . . , xm) ∈ Rm, h~x(t) = ĥEt (x1P1,t + · · ·+ xmPm,t).

The ‘real’ equidistribution theorem yields

Proposition (DeMarco-M. 2017, 2018)

Assume that for infinitely many tn ∈ B(K ) we have that

h~x(tn)→ 0 & h~y (tn)→ 0.

Then for all t ∈ B(K ) we have

h~x(t) = αh~y (t),

with α = ĥE (x1P1+···+xmPm)

ĥE (y1P1+···+ymPm)
.



Rational case - reduction to Masser-Zannier’s theorem

Assume ~x , ~y ∈ Qm are linearly independent.

P = x1P1 + · · ·+ xmPm & Q = y1P1 + · · ·+ ymPm

such that hP · hQ = 0. Then ĥEt (Pt) = αĥEt (Qt) for all t ∈ B(K ).

In particular, for each t ∈ B(K ) we have

ĥEt (Pt) = 0 ⇔ ĥEt (Qt) = 0

Then, we can find infinitely many t ′n ∈ B(K ) such that

ĥEt′n
(Pt′n) = 0 & ĥEt′n

(Qt′n) = 0.

Invoking Masser-Zannier’s theorem we get that

(P,Q) : B → A is a special section.
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Then, we can find infinitely many t ′n ∈ B(K ) such that

ĥEt′n
(Pt′n) = 0 & ĥEt′n

(Qt′n) = 0.

Invoking Masser-Zannier’s theorem we get that

(P,Q) : B → A is a special section.



A ‘good’ height: Variation of the canonical height (VCH)

hB : Weil height on B relative to a divisor of degree 1.
ĥE (P): ‘geometric’ Néron-Tate height of P ∈ E (k).

Remark

ĥE (P) = 0⇔ P is a torsion section.

Theorem (Silverman 1983)

lim
t∈B(K), hB(t)→∞

ĥEt (Pt)

hB(t)
= ĥE (P).



A ‘good’ height: VCH

Theorem (Tate 1983)

There is a divisor D = D(E ,P) ∈ Pic(C )⊗Q of degree ĥE (P)
such that

ĥEt (Pt) = hD(t) + OP(1),

as t ∈ C (K ) varies.

In particular, if C = P1 we have

ĥEt (Pt) = ĥE (P)h(t) + OP(1).



The variation of local heights

Let v ∈ MK . For t0 ∈ C (Cv ), fix a uniformizer u at t0.

To describe the variation of t 7→ ĥEt (Pt) in a more precise way,
Silverman considered the ‘local components’ of VCH

VP,t0,v (t) := λ̂Et (Pt ; v) + λ̂E (P; ordt0) log |u(t)|v .

Theorem (Silverman 1992)

1 VP,t0,v (t) extends to a continuous function in a neighborhood
of t0.

2 VP,t0,v (t) ≡ 0 for all but finitely many v ∈ MK in a v-adic
neighborhood of t0.

Silverman’s results + dynamical perspective + ingredients from
Silverman’s proof ⇒ ĥEt (Pt) is a ‘good height’ for equidistribution.



The end

Thank you!



Torsion parameters for P2 = (2,
√

2(2− t))



Torsion parameters for P5 = (5,
√

20(5− t))



A ‘good’ metrized line bundle

Assume ĥE (P) 6= 0. We want to show that t 7→ ĥEt (Pt) comes
from a ‘good’ metric in the sense of equidistribution.
Let DE (P) =

∑
γ∈C(K) λ̂E ,ordγ (P) · (γ) ∈ Div(C )⊗Q.

LP : the line bundle on C corresponding to mDE (P) ∈ Div(C ).

We give a collection of metrics ‖ · ‖ = {‖ · ‖v}v∈MK
on LQ .

Let U ⊂ C an
v open. Each section s ∈ LP(U) is identified with a

meromorphic function f on U such that (f ) ≥ −mDE (P). We set

‖s(t)‖v =


e−mλ̂Et ,v (Pt)|f (t)|v if f (t) is finite and nonzero

0 if ordt f > −m λ̂E ,ordt (P)

e−mVP,t,v (t) otherwise.

taking the locally-defined uniformizer u = f 1/ordt f at t in the
definition of VP,t,v .



Parameters yielding small height

Et : y2 = x(x − 1)(x − t),

Pt = (2,
√

2(2− t)) , Qt = (3,
√

6(3− t)) ; t ∈ C \ {0, 1}.

Claim: If tn ∈ B(K ) is such that [n]Ptn − Qtn = O, then

ĥEtn (Ptn)→ 0.

To see this note that

[n]Ptn = Qtn ⇒ ĥEtn (Ptn) =
ĥEtn (Qtn)

n2
.
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To see this note that

[n]Ptn = Qtn ⇒ ĥEtn (Ptn) =
ĥEtn (Qtn)

n2
.



Parameters yielding small height

ĥEtn (Ptn) =
ĥEtn (Qtn)

n2
.

By Silverman’s specialization theorem we know that

{h(tn)} is bounded.

Moreover, by Tate’s theorem we get that

{ĥEtn (Qtn)}n∈N is bounded.

Hence,

ĥEtn (Ptn)→ 0 as n→∞.



‘Pairing’

By work of Chambert-Loir, Thuillier and Moriwaki, we know that if
tn ∈ B(K ) is such that

ĥEtn (Ptn)→ 0,

then

ĥEtn (Qtn)→ hP · hQ
ĥE (P)

.

So the assignment (P,Q) 7→ hP · hQ inherites properties of the
canonical heights.



Unlikely intersections: A conjecture

C smooth projective curve defined over a number field K
k = K (C )

Conjecture (Baker-DeMarco, Ghioca-Hsia-Tucker)

Consider f ∈ K (z) and c1, c2 ∈ K. Assume that for an infinite
sequence tn ∈ C (K ) we have

ĥftn (c1(tn)) + ĥftn (c2(tn)) = 0.

Then one of the following is true;

1 ∃ i ∈ {1, 2} such that ci is preperiodic for f.

2 ∃ a Zariski open Y ⊂ X such that ∀ t ∈ Y (K ) we have c1(t)
is preperiodic for ft ⇔ c2(t) is preperiodic for ft . Moreover, c1
and c2 are ‘dynamically related’.
(e.g. for n,m ∈ N, we have fn(c1) = fm(c2).)


