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Outline of the talk

@ Unlikely intersections - Bogomolov's conjecture
@ Our results (and work in progress)

@ A generalization of Bogomolov's conjecture related to
Masser-Zannier's theorem on torsion points in families of
elliptic curves.

@ A equidistribution theorem for ‘small points’ (2017)

© Its generalization to ‘real’ small points (2018).

@ Applications related to Barroero-Capuano's theorem on
simultaneous relations (in progress)

@ Proof strategy

@ A corollary of the equidistribution theorem
@ Silverman's results on a variation of heights



Lang's Theorem

X :irreducible complex plane curve.
u : set of roots of unity.

Theorem (lhara-Serre-Tate 1965)

If X contains infinitely many points with both coordinates roots of
unity, then X is given by an equation of the form x"y™ —w = 0 for
(n,m) € 22\ {(0,0)} and w € p.




Lang's Theorem

X :irreducible complex plane curve.
u : set of roots of unity.

Theorem (lhara-Serre-Tate 1965)

If X contains infinitely many points with both coordinates roots of
unity, then X is given by an equation of the form x"y™ —w = 0 for
(n,m) € 22\ {(0,0)} and w € p.

& Oeuxp torsion points of (C*)? <> special
points

Curves <> translates of algebraic subgroups <+ special
curves

x"ym —w=0 of (C*)? by a torsion point



Bogomolov's Conjecture : Tori

Philosophical restatement

If a curve has an infinite (Zariski dense) set of special points, then
it is a special curve.
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points of small logarithmic Weil height h: Q — R>¢?




Bogomolov's Conjecture : Tori

Philosophical restatement

If a curve has an infinite (Zariski dense) set of special points, then
it is a special curve.

Question (Bogomolov)

What if we replace the special points by small points, that is
points of small logarithmic Weil height h: Q — R>¢?

For a € Q\ {0}, h(a) > 0 and h(a) = 0 < «a is a root of unity.



Bogomolov's Conjecture : Tori

X: irreducible plane curve defined over number field K.

Theorem (Zhang 1992, Bombieri-Zannier 1995)

Assume that X is non-special. There is a constant c(X) > 0 such
that

{(x,y) € X(K) : h(x)+ h(y) < c(X)}

is finite.




Bogomolov's Conjecture : Tori

X: irreducible plane curve defined over number field K.

Theorem (Zhang 1992, Bombieri-Zannier 1995)

Assume that X is non-special. There is a constant c¢(X) > 0 such
that

{(x,y) € X(K) : h(x)+ h(y) < c(X)}

is finite.

In other words, if 3 infinitely many (x,, y») € X(K) such that
h(xn) + h(yn) = 0

as n — oo, then X is a special curve.



Bogomolov's Conjecture : Setting

A : abelian variety defined over K.
ha: Neéron-Tate height corresponding to an ample and symmetric
divisor on A.

@ For an elliptic curve E over K and P € E(K), we have
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Bogomolov's Conjecture : Setting

A : abelian variety defined over K.
ha: Neéron-Tate height corresponding to an ample and symmetric
divisor on A.

e For an elliptic curve E over K and P € E(K), we have

h(x([n]P))

2 n—>oo n2

he(P) =
e If A= E; x E; for two elliptic curves E;, we may take

i\1A El( ) X EZ(K) — R>0
(P1, P2) = he, (P1) + he,(Pa).




Bogomolov's Conjecture : Setting

A : abelian variety defined over K.
ha: Neéron-Tate height corresponding to an ample and symmetric
divisor on A.

e For an elliptic curve E over K and P € E(K), we have

h(x([n]P))

2 n—>oo n2

he(P) =
e If A= E; x E; for two elliptic curves E;, we may take

i\1A El( ) X EZ(K) — R>0
(P1, P2) = he, (P1) + he,(Pa).

For P € A(K), we have ha(P) =0 < P € A



Bogomolov's Conjecture : Abelian varieties

torsion points of A “ special points
translates of abelian subvarieties

. . < special subvarieties
by a torsion point

Theorem (Zhang 1998, Ullmo 1998)

For each non-special subvariety X of A, there is a constant
c(X) > 0 such that

{x € X(K) : ha(x) < c(X)}

is not Zariski dense in X.




Bogomolov's Conjecture : Abelian varieties

torsion points of A “ special points
translates of abelian subvarieties

. . < special subvarieties
by a torsion point

Theorem (Zhang 1998, Ullmo 1998)

For each non-special subvariety X of A, there is a constant
c(X) > 0 such that

{x € X(K) : ha(x) < c(X)}

is not Zariski dense in X.

For a non-special X, the set {x € X(K) : ha(x) = 0} is not
Zariski dense in X by the Manin-Mumford Conjecture (Raynaud'’s
theorem 1983).




Setting: An analog in families of abelian varieties

B smooth quasi-projective curve defined over a number field K.
For i = 1,2 we consider

Ei — B elliptic surfaces defined over K < E; over E(K(B)).
eg Sty =x(x—1)(x—t)and &1 y? = x(x — 1)(x + t).



Setting: An analog in families of abelian varieties

B smooth quasi-projective curve defined over a number field K.
For i = 1,2 we consider

Ei — B elliptic surfaces defined over K < E; over E(K(B)).
eg Sty =x(x—1)(x—t)and &1 y? = x(x — 1)(x + t).

P; . B — &; sections defined over K <> P; € Ej(K(B)).
e.g. P17t = (2, 2(2 — t)) € gl,t and P27t = (2, \/2(2 + t)) S 5271:.

P = (P1,P): B— & xpg &, section of & xg & — B.



A Bogomolov-type theorem in families of abelian varieties

Let A= &1 xg &> and

t = ha,(Pe) = he,,(Pre) + hey  (Payt).

Theorem (DeMarco, M. 2017)

For each non-special section P : B — A, there is a constant
¢ = c(P) > 0 such that {t € B(K) : ha,(P:) < c}, is finite.




A Bogomolov-type theorem in families of abelian varieties

Let A= &1 xg &> and

t = ha,(Pe) = he,,(Pre) + hey  (Payt).

Theorem (DeMarco, M. 2017)

For each non-special section P : B — A, there is a constant
¢ = c(P) > 0 such that {t € B(K) : ha,(P:) < c}, is finite.

RENEILS

Let E; & E, be fixed elliptic curves over K. Assume that
A; = E; x E, for each t.

special sections <> special subvarieties of A = E; X E

Our theorem then reduces to Zhang's theorem.




Special sections

Theorem (DeMarco, M. 2017)

If for a sequence t, € B(K) we have

lim_he, ,,(PLt,) =0 & lim he,, (P2s,) =0,

n—o0
then the section P = (P1, P) is special, i.e. one of the following
holds.
e Py is (identically) torsion in &.
@ P, is torsion in &s.

@ There are isogenies ¢ : E1 — &> and ¢ : £y — &, so that

¢(P1) = ¥(P2).




Special sections

Theorem (DeMarco, M. 2017)

If for a sequence t, € B(K) we have

lim_he, ,,(PLt,) =0 & lim he,, (P2s,) =0,

n—o0
then the section P = (P1, P) is special, i.e. one of the following
holds.
e Py is (identically) torsion in &.
@ P, is torsion in &s.

@ There are isogenies ¢ : E1 — &> and ¢ : £y — &, so that

o(P1) = ¥(P>). In particular, for each A € B(K) we have

Pl,)\ S (gl,k)tors = 'D2,)\ S (52,A)t0rs-




Masser and Zannier's theorems in unlikely intersections

Our theorem generalizes Masser-Zannier's theorem to ‘small’
points.

Theorem (Masser-Zannier 2010, 2012, 2014)

If for an infinite sequence t, € B(K) we have

Pl,tn S (51,t,,)tors & P2,t,, S (82,t,,)torS7

then the section P = (P1, Py) is special.

If Pl,t,, S (gl,t,-,)tors & P2,t,, S (52,tn)t0rSr then

i:lgl,t,,(Plztn) + /A782,tn(P2,tn) =0.




Masser and Zannier's theorems in unlikely intersections

Our theorem generalizes Masser-Zannier's theorem to ‘small’
points.

Theorem (Masser-Zannier 2010, 2012, 2014)

If for an infinite sequence t, € B(K) we have
'Dl,t,7 S (51,t,,)tors & P2,t,, S (82,t,,)torS7

then the section P = (P1, Py) is special.

| A

Remark
If Pl,t,, S (gl,t,,)tors & P2,t,, S (52,tn)t0rSr then

i:lgl,tn(Plztn) + i:lg2,t,,(P27tn) — O

In fact, our proof uses Masser-Zannier's theorem!



Example: Special sections

Let &1 = & = & — B be the Legendre surface.

Er1y? =x(x —1)(x — t),
Pre=(2,1/2(2— 1)), Poc = (3,/6(3— 1))

Then (P1, Pp) is a not special.

e Neither P; nor P, is identically torsion; and



Example: Special sections

Let & = & = £ — B be the Legendre surface.

Er1y? =x(x —1)(x — t),
Pre= (2,122 1), Por = (3,V/6(3 - 1)).

Then (P1, P2) is a not special.
e Neither P; nor P, is identically torsion; and
e If for n,m € Z\ {0} we have [n]Py ;= [m]P.: V t € B(C), then

Pit € (&) tors & Pot € (&) tors

for each t. However,

P2,3 - (3a0) S (53) tors & P1,3 - (2a \/j2) ¢ (53) tors-



3 ¢ > 0such that [{t € Q: he, ,(P1e)+he,,(Pa:) < c}| < 00, when:

E1e=Exr i y? =x(x —1)(x — t),

Pi: = <2t, \/2t%(2t — 1)) , Poy = <3t, \/m> or



3 ¢ > 0 such that [{t € Q: hg, ,(P1¢)+he,,(Pat) < c}| < 00, when:

E1e=Exr i y? =x(x —1)(x — t),

Pi: = (2t, \/2t%(2t — 1)> , Poy = <3t, \/m> or

Pl,t:(\/E, *).P27t:(\/?+1, * )



3 ¢ > 0 such that [{t € Q: hg, ,(P1¢)+he,,(Pat) < c}| < 00, when:

1t =&t y2 =x(x —1)(x — t),

Pi: = <2t, \/2t%(2t — 1)> , Poy = <3t, \/m> or

Pl,t:(\/E, *).P27t:(\/?+1, * )

Sy =x(x—1(x—1t) Exr=E1-1:y>=x(x—1)(x+1)

Pt =(2,\/2(2—-1t)) Pr: = (2,4/2(2 + t)).



The geometry of small points

E elliptic curve defined over K(B)
P € E(K(B)) non-torsion.

Theorem (DeMarco, M. 2017)

Let t, € B(K) be such that /ALgtn(Ptn) — 0. There is a collection of
probability measures

e = {1p,yvemy

on B3 such that for each v € M the discrete measures

1
Ht, = K Z )
[CalE/ i &l =

converge weakly to the measure jip, on B3".




Real equidistribution

Let E elliptic curve defined over K(B) and

P-cEK{B)Y P € E(K(B)) ® R non-trivial.

Theorem (DeMarco, M. 2018)

Let t, € B(K) be such that /ALgtn(Ptn) — 0. There is a collection of
probability measures

e = {1p,yvemy

on B3 such that for each v € M the discrete measures

1
Ht, = K Z )
[CalE/ i &l =

converge weakly to the measure jip, on B3".




Equidistribution

To get the equidistribution result, we have to show that the
function
t —> hEt(Pt)7

is a ‘good’ height in the sense of the equidistribution theorem of
Chambert-Loir, Thuillier and Yuan. This involves work of
Silverman from 1992.

In the real case we also make use of work of Moriwaki.



Barroero-Capuano’s theorem

€ — B a non-isotrivial elliptic surface defined over K.
P; : B — & sections defined over K, i =1,...,m, m> 2.

Theorem (Barroero-Capuano 2016)

Let Py,..., Py, be m > 2 linearly independent sections. Then,
there are at most finitely many t € B(K) such that

Pit,..., Pm; satisty two independent linear relations in &;.
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Barroero-Capuano’s theorem

€ — B a non-isotrivial elliptic surface defined over K.
P; : B — & sections defined over K, i =1,...,m, m> 2.

Theorem (Barroero-Capuano 2016)

Let Py,..., Py, be m > 2 linearly independent sections. Then,
there are at most finitely many t € B(K) such that

Pit,..., Pm; satisty two independent linear relations in &;.

e The case m = 2 is Masser-Zannier's theorem.

e The constant case follows from work of Viada and Rémond
(2003), Viada (2008) and Galateau (2010).



A corollary of Silverman's specialization theorem

Fori=1,...,m, let P;: £ — B be linearly independent sections.
Silverman'’s ‘specialization theorem’ implies that the set

{teB(K) : Pit,...,Pm: are linearly related in &}
has bounded height.

In particular, it is a ‘sparse’ set (think Northcott property.)



A corollary of Silverman's specialization theorem

Fori=1,...,m, let P;: £ — B be linearly independent sections.
Silverman'’s ‘specialization theorem’ implies that the set

{teB(K) : Pit,...,Pm: are linearly related in &}
has bounded height.

In particular, it is a ‘sparse’ set (think Northcott property.)
It is natural to expect that

Double sparseness = finiteness.



Connection with our theorem - ‘Doubly small’ parameters?

Assume that for an infinite sequence t, € B(K) we have
al,npl,tn + -+ am,n'Dm,t,, =0.
Passing to a subsequence, we may assume that a; , # 0 and

a:
RN x; € R.
al,n

Then, using Silverman's specialization theorem and the bilinearity
of the height pairing, we get

i\)gtn(Pl,tn + X2P2,tn + ce +Xum~,tn) — 0



Connection with our theorem - ‘Doubly small’ parameters?

If now for an infinite sequence t, € B(K) we have

al,n'Dl,t,, + -+ am,an,t,, =0 &
bl,npl,t,, +-+ bm,n'Dm,tn =0
for linearly independent (a1 5, ...,amn), (b1,n,--., bmn) € Z7,

then

he, (APug, + -+ XmPmg,) — 0 &
B&n ()/IPl,tn +---+ }/um,t,,) — 07

for linearly independent X = (x1,...,xm),¥ = (y1,-..,¥m) € R™.

So we have a ‘doubly small" sequence for these ‘real’ heights.



A conjectural generalization

P; : £ — B linearly independent sections, for i = 1,..., m.
For X = (Xl, R ,Xm) € R™ let hg: B(?) — RZO

t— h;((l’) = i)gt(X;[PLt 4+ -+ Xum’t)
= Z xixi(Pi ¢, Pjt)e.-

1<ij<m

Conjecture (DeMarco-M.)

If X, y € R™ are linearly independent, then there is a constant
c=c(Py,...,Pm,X,¥) > 0 such that the set

{t € B(K) : hg(t) + hy(t) < c},

is finite.




A conjectural generalization

Conjecture (DeMarco-M.)

If X, y € R™ are linearly independent, then there is a constant
c=c(Py,...,Pm,X,¥) > 0 such that the set

{t € B(K) : hg(t) + hy(t) < c},

is finite.

@ The conjecture implies Baroerro-Capuano’s theorem.




A conjectural generalization

Conjecture (DeMarco-M.)

If X, y € R™ are linearly independent, then there is a constant
c=c(Py,...,Pm,X,¥) > 0 such that the set

{t € B(K) : hg(t) + hy(t) < c},

is finite.

@ The conjecture implies Baroerro-Capuano’s theorem.
o If X,y € Q™, then we get our theorem (2017).




A conjectural generalization

Conjecture (DeMarco-M.)

If X, y € R™ are linearly independent, then there is a constant
c=c(Py,...,Pm,X,¥) > 0 such that the set

{t € B(K) : hg(t) + hy(t) < c},

is finite.
4

@ The conjecture implies Baroerro-Capuano’s theorem.

o If X,y € Q™, then we get our theorem (2017).

@ When m = 2 the conjecture holds true by our theorem and
the parallelogram law.




Towards our Conjecture for ‘real’ points

So far, we recover Barroero-Capuano’s theorem for 3 sections
Pi, P>, P3: B — £ defined over K.



Towards our Conjecture for ‘real’ points

So far, we recover Barroero-Capuano’s theorem for 3 sections
Py, Py, P3 : B — £ defined over K.

Theorem (DeMarco-M.)

Let X = (x1,x0,x3) and y = (y1,y2,y3) € R3 be linearly
independent. Assume that

@ 3 an infinite sequence t, € B(K) such that
h;(tn) —0 & h};'(tn) — 0,

and that

@ J )\ € B(K) such that Py y, P>y, P3 ) satisfy exactly two
independent linear relations in €y (over Z).

Then Py, P,, P3 are linearly related.




A reformulation of our conjecture: a height pairing

P,Qe E(K(B)®R

The Arakelov-Zhang-Moriwaki pairing for metrized line bundles
induces a non-negative, symmetric ‘pairing’ between the ‘heights’

hp - hQ € Rzo.



A reformulation of our conjecture: a height pairing

P,Qe E(K(B)®R

The Arakelov-Zhang-Moriwaki pairing for metrized line bundles
induces a non-negative, symmetric ‘pairing’ between the ‘heights’

hp - hQ € Rzo.

hp-hq =0 < 3It, € B(K) such that he, (Py,)+ he, (Q,) — O.



A reformulation of our conjecture: a height ‘pairing’

Let A = E(K(B)). The assignment

(A@R)X(/\@R)—) RZO
(P7Q) = hPhQ

is ‘biquadratic’, in the sense that it is a quadratic form if P ((or Q)
are fixed.



A reformulation of our conjecture: a height ‘pairing’

Let A = E(K(B)). The assignment

(A@R)X(/\@R)—) RZO
(P,Q) —> hp-hQ

is ‘biquadratic’, in the sense that it is a quadratic form if P ( or Q)
are fixed.

By our theorem (2017), we know that it ‘doesn’t degenerate’ in A
in the sense that

hp-hg=0< P & Q are linearly related.

We conjecture that it also ‘doesn’t degenerate’ in A ® R.



A reformulation of our conjecture: a height ‘pairing’

In other words, that our assignment can be compared with the
‘biquadratic’ assignment

(A@R) X (/\(X)R) — Rzo
(P, Q) — he(P)he(Q) - (P, Q).

Conjecture (DeMarco, M. - reformulation)

For P,Q € E(K(B)) ® R the following are equivalent.
@ hp-hg =0.
@ he(P)he(Q) — (P, Q)2 = 0.




Proof strategy

For X = (Xl, - ,Xm) e R™, h;(t) = i‘lgt(X;lPl’t —+ o+ Xum,t).
The ‘real’ equidistribution theorem yields

Proposition (DeMarco-M. 2017, 2018)
Assume that for infinitely many t, € B(K) we have that

h;((tn) —0 & hy(tn) — 0.

Then for all t € B(K) we have

i’E(XlPl“F”"‘FXum)

with a = = :
hE(y1P1+"'+}/um)




Rational case - reduction to Masser-Zannier's theorem

Assume X, y € Q™ are linearly independent.
P=xiP1+ 4+ xmPm & Q=y1P1+ -+ ymPm
such that hp - hg = 0. Then hg,(P:) = ahe,(Q;) for all t € B(K).

In particular, for each t € B(K) we have
,/:'gt(Pf) =0 & i;gt(Qf) =0



Rational case - reduction to Masser-Zannier's theorem

Assume X, y € Q™M are linearly independent.

P=xiPi1+ - 4+ xmPm & Q:y1P1+"'+}/um

such that hp - hg = 0. Then hg,(P:) = ahe,(Q;) for all t € B(K).

In particular, for each t € B(K) we have
,/:'gt(Pf) =0 & i;gt(Qf) =0

Then, we can find infinitely many t/, € B(K) such that
he, (Py) =0 & he, (Qy) =0.

Invoking Masser-Zannier's theorem we get that

(P,Q): B — Ais a special section.



A ‘good’ height: Variation of the canonical height (VCH)

hg: Weil height on B relative to a divisor of degree 1.
he(P): ‘geometric’ Néron-Tate height of P € E(k).

he(P) =0 < P is a torsion section. I

Theorem (Silverman 1983)

lim
teB(K), hg(t)—oo hB(t)




A ‘good’ height: VCH

Theorem (Tate 1983)

There is a divisor D = D(E, P) € Pic(C) ® Q of degree hg(P)
such that )
he,(Pe) = hp(t) + Op(1),

as t € C(K) varies.

In particular, if C = P! we have

he,(P) = he(P)h(t) + Op(1).



The variation of local heights

Let v € Mk. For ty € C(C,), fix a uniformizer u at tp.

To describe the variation of t +— f)gt(Pt) in a more precise way,
Silverman considered the ‘local components’ of VCH

Vp to.v(t) = th(Pt; v) + /A\E(P; ordy,) log |u(t)]y.

Theorem (Silverman 1992)
@ Vp ., (t) extends to a continuous function in a neighborhood
of ty.
@ Vp . (t) =0 for all but finitely many v € My in a v-adic
neighborhood of tg.

Silverman'’s results + dynamical perspective + ingredients from
Silverman’s proof = hg,(P;) is a ‘good height’ for equidistribution.



Thank you!



Torsion parameters for P, = (2,1/2(2 — t))




Torsion parameters for Ps = (5, 1/20(5 — t))




A ‘good’ metrized line bundle

Assume hg(P) # 0. We want to show that t — he,(P;) comes
from a ‘good’ metric in the sense of equidistribution.

Let De(P) = 3. c iy AEora, (P) - (7) € Div(C) ® Q.
Lp: the line bundle on C corresponding to mDg(P) € Div(C).

We give a collection of metrics || - || = {]| - ||v}vem, on Lq.

Let U C C2" open. Each section s € Lp(U) is identified with a
meromorphic function f on U such that (f) > —mDg(P). We set

e_’"’A\Etwv(Pf)|f(t)|v if f(t) is finite and nonzero
ls(t)[[v =12 0 if ord¢f > —m S\E’Ordt(P)

e mVe,tv(t) otherwise.

taking the locally-defined uniformizer u = f1/°*d¢f at t in the
definition of Vp; .



Parameters yielding small height

Er i y? = x(x —1)(x — t),
P:=(2,/22-1t),Q=3,v6(3-1t); teC\{0,1}.
Claim: If t, € B(K) is such that [n]P;, — Q;, = O, then

he, (P:,) — 0.



Parameters yielding small height

Er i y? = x(x —1)(x — t),
Pe=(2,v202—1), Q=(3,6(B8-1); teC\{0,1}.
Claim: If t, € B(K) is such that [n]P;, — Q;, = O, then
he, (P:,) — 0.
To see this note that

ilgtn ( Qtn)

[n] Ptn = Qtn = i:,gtn(Ptn) = n2



Parameters yielding small height

;75:,, ( an )
— 5

i;gtn(an) = n

By Silverman’s specialization theorem we know that
{h(tn)} is bounded.

Moreover, by Tate's theorem we get that

{he, (Q1,)}nen is bounded.

Hence,

/Avgtn(Ptn) — 0 as n— oo.



By worl:of Chambert-Loir, Thuillier and Moriwaki, we know that if
tn € B(K) is such that

he, (Pt,) — 0,

then

h - :
5tn(an) — hE(P)

So the assignment (P, Q) — hp - hg inherites properties of the
canonical heights.



Unlikely intersections: A conjecture

C smooth projective curve defined over a number field K
k= K(C)

Conjecture (Baker-DeMarco, Ghioca-Hsia-Tucker)

Consider f € K(z) and c1,¢c2 € K. Assume that for an infinite

sequence t, € C(K) we have

h,, (c1(tn)) + he,, (ca(ta)) = 0.

Then one of the following is true;
@ 3 i€ {1,2} such that c; is preperiodic for f.

@ 3 a Zariski open Y C X such thatV t € Y(K) we have ci(t)
is preperiodic for fy < c(t) is preperiodic for f;. Moreover, c1
and cp are ‘dynamically related’.

(e.g. for nym € N, we have f"(c;) = f"(c2).)




