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I. Unit equations in general

K number field, OK ring of integers, O∗K unit group

Unit equation: for fixed α1, α2 ∈ K \ {0}

α1ε1 + α2ε2 = 1 in ε1, ε2 ∈ O∗K (1)

Results:

(1) has finitely many solutions

Siegel (1921), implicit

Lang (1960), in more general form

effective finiteness: Győry (1972–) (Baker’s method),. . .

bound for # (number of solutions): Evertse (1984),. . .

independent of α1, α2



I. Unit equations in general

Generalizations:

S-unit equations


finiteness: Mahler (1933), Parry (1950)

effective finiteness: Győry (1979),. . .

bound for #: Evertse (1984),. . .

finitely generated case

OK → A, O∗K → A∗

A finitely generated

over Z


finiteness: Lang (1960)

effective finiteness: Evertse–Győry (2013)

bound for #: Beukers–Schlickewei (1996)

multivariate unit equations:

for fixed α1, . . . , αm ∈ K \ {0}

α1ε1 + · · ·+ αmεm = 1 in ε1, . . . , εm ∈ O∗K (2)

solution ε1, . . . , εm degenerate if in (2) there is a vanishing subsum

⇒ infinitely many sols if O∗K is infinite



I. Unit equations in general

finiteness of #’ (number of non-degenerate sols): van der

Poorten–Schlickewei (1982), Evertse (1984) (Subspace Theorem)

bound for #’: Schlickewei (1990), Evertse, Schlickewei, Schmidt

(2002), Amoroso, Viada (2011) (Quantitative Subspace Theorem)

Open problem: effective finiteness for the non-degenerate solutions

- extremely rich literature

- great number of various applications

J.-H. Evertse–K. Győry, Unit Equations in Diophantine Number Theory,

Cambridge University Press, 2015



II. Exceptional units

Nagell (1970): ε exceptional unit in K if 1− ε is also a unit

existence of such ε⇐⇒ ε1 + ε2 + ε3 = 0 solvable in εi ∈ O∗K
For any d ≥ 2 there is a number field of degree d , e.g. K = Q(ε)

with ε a root of xd + x + 1 which has exceptional unit

Nagell (1964–70): all exceptional units in number fields K of unit rank 1

(rank O∗K = 1) and in number fields of unit rank 2

m 6≡ 2 (mod 4), Km m-th cyclotomic field, K+
m its maximal real

subfield

Wildanger (2000): all exceptional units in Km resp. K+
m for m ≤ 23

(Baker’s method + reduction algorithms)

Example: in K+
19 28398 exceptional units



II. Exceptional units

Several applications, one of them due to Lenstra (1977):

if OK contains a ”large” subset {ε1, . . . , εn} such that εi − εj is a unit for

each i , j then K (i.e. OK ) is Euclidean

Using this, Lentsra, Mestre, Leutbecher–Martinet, Leutbecher–Niklash,

Huriet obtained several hundreds of new examples for Euclidean number

fields K



III. A generalization of exceptional units

K number field, OK , O∗K as above

Def: L(K ) smallest integer m with m ≥ 3 such that the unit equation

ε1 + · · ·+ εm = 0 is solvable in ε1, . . . , εm ∈ O∗K (3)

with no vanishing subsum on the left hand side.

If ∃ exceptional unit then L(K ) = 3

If no such m exists, set L(K ) =∞

Examples: For K = Q and imaginary quadratic fields K L(K ) =∞,

except for K = Q(
√
−3) when L(K ) = 3



III. A generalization of exceptional units

Results

Theorem 1. For any number field K different from Q and the imaginary

quadratic fields L(K ) is finite. Further,

L(K ) ≤ 2(d + 1) exp{cRK},

where r , d ,RK unit rank, degree and regulator of K and

c =

1/d , if r = 1,

29e
√
r − 1 · r !(log d), if r ≥ 2.

We note that

RK ≤ |DK |1/2(log∗ |DK |)d−1,

DK discriminant of K , log∗ x = max(log x , 1)



III. A generalization of exceptional units

Similar statement for orders1 O of number fields, where L(O) can be defined as

for number fields.

Theorem 2. For any integer m ≥ 3 there exists an order O of some number

field K with L(O) = m.

In fact, O can be chosen as an order of a real quadratic number field.

Apart from some values of m, L(K) can also be an arbitrary integer

m ≥ 3.

Theorem 3. For any integer m ≥ 3 which is not of the form 4t4 − 4t + 2

(t ∈ Z \ {0, 1}) there exists a number field K with L(K) = m.

One can choose K to be a complex cubic number field.

Conjecture. For any integer m ≥ 3 there exists a number field K with

L(K) = m.

1A subring O of OK is called an order in K if O contains d linearly independent

elements of K with d = [K : Q]



III. A generalization of exceptional units

Write ξn for a primitive root of unity of order n.

Theorem 4. For any integer m ≥ 3, there are only finitely many

quadratic fields, complex cubic fields and totally complex quartic fields K

with L(K ) ≤ m, in the latter case assuming that K does not have a real

quadratic subfield and ξ3 /∈ K, and all such fields can be effectively

determined.

There are infinitely many exceptional quartic fields with the

properties mentioned.



III. A generalization of exceptional units

Write Lo(K ) for the smallest odd m ≥ 3 for which

ε1 + · · ·+ εm = 0 solvable in ε1, . . . , εm ∈ O∗K . (3)

Further, let Le(K ) be the smallest even m ≥ 4 for which (3) is valid such

that in (3) there is no proper vanishing subsum. If no appropriate m

exists at all, set Lo(K ) =∞ or Le(K ) =∞, resp. We have

L(K ) = min(Lo(K ), Le(K )).

Obviously, if m = Lo(K ) then in (3) there is no proper vanishing subsum.

Theorem 5. Let d ≥ 2. There are infinitely many number fields K of

degree d with Lo(K ) =∞.



III. A generalization of exceptional units

For Le(K ) we have

Theorem 6. Let d ≥ 3. There are infinitely many number fields K of

degree d with Le(K ) = 4.

=⇒ for these number fields K , Le(K ) can take its minimal value 4.

For the cyclotomic fields K = Q(ξn) with n = 1, 2, 4

=⇒ L(K ) =∞. Except these fields, we have

Theorem 7. In every cyclotomic field K = Q(ξn), except n | 4,

Lo(K ) <∞ and Le(K ) <∞ hold.



IV. Application to arithmetic graphs

K number field, A = {α1, . . . , αm} finite ordered subset of OK , G(A) the

graph with vertex set A whose edges [αi , αj ] with

αi − αj ∈ O∗K ;

Győry (1971, 1972). The ordered subsets A = {α1, . . . , αm},
A′ = {α′1, . . . , α′m} of OK equivalent if

α′i = εαi + β with some ε ∈ O∗K , β ∈ OK , i = 1, . . . ,m.

=⇒ G(A),G(A′) isomorphic.

In this terminology, Lenstra (1977) above mentioned theorem says: if

there is a ”large” complete graph G(A) with A ⊂ OK ⇒ OK is Euclidean



IV. Application to arithmetic graphs

For given m ≥ 3 there are infinitely many equivalence classes of ordered

subsets A of OK with |A| = m. Apart from finitely many equivalence

classes, the structure of these graphs have been described by Győry

(1980) =⇒ many important applications to wide classes of diophantine

problems.

Theorem 8. Let K be an algebraic number field different from Q and

the imaginary quadratic fields. Then among the graphs G(A)

(i) there are cycles2 of every even length ≥ 4,

(ii) there are cycles of every odd length ≥ Lo(K ), but there are no

cycles of odd length < Lo(K ).

2A = {α1, . . . , αm} forms a cycle if αi and αj are connected with an edge if and

only if either {i , j} = {1,m} or |i − j | = 1.



IV. Application to arithmetic graphs

This is a complete characterization of the possible lengths of cycles

among the graphs G(A). It is closely related to some results of Ruzsa

(2011) and Győry, Hajdu, Tijdeman (2014, 2016) on graphs G(A).

In our proofs, some diophantine and algebraic number–theoretic

results and methods are combined.

Open question

Is it true that for any d with d ≥ 2 and a ∈ Z≥4 even, b ∈ Z≥3 ∪ {∞}
odd, there exist infintely many number fields K such that deg(K ) = d,

Le(K ) = a and Lo(K ) = b?

Cs. Bertók, K. Győry, L. Hajdu, A. Schinzel, On the smallest number of

terms of vanishing sums of units in number fields, J. Number Theory 192

(2018), 328–347.


	Unit equations in general
	Exceptional units
	A generalization of exceptional units
	Application to arithmetic graphs

