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Mahler functions

Definition (Mahler function)
A power series F (z) ∈ C[[z]] is k-Mahler for an integer k > 2 provided there is an

integer d > 1 and polynomials a0(z), . . . , ad (z) ∈ C[z] with a0(z)ad (z) 6= 0 such that

a0(z)F (z) + a1(z)F (zk ) + · · ·+ ad (z)F (zk
d

) = 0.

Mahler functions are coordinates of a vector F(z) := [F1(z), . . . ,Fd (z)]T such that

there is a matrix of rational functions A(z) such that

F(z) = A(z)F(zk ).

So for every n, we have F(z) = A(z)A(zk ) · · ·A(zk
n−1

)︸ ︷︷ ︸
matrix cocycle

F(zk
n
).

Two important classes of Mahler functions are the generating series of

• automatic sequences

• regular sequences
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Regular sequences
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Recall that a sequence is linearly recurrent if and only if there exist a positive integer

d , a matrix A ∈ Zd×d , and vectors v,w ∈ Zd such that

f (n) = wTAnv.

Definition (Allouche and Shallit, 1992)
A sequence f is k-regular if and only if there exist a positive integer d , a finite set of

matrices Af = {A0, . . . ,Ak−1} ⊆ Zd×d , and vectors v,w ∈ Zd such that

f (n) = wTAi0 · · ·Ais v,

where (n)k = is · · · i0 is the base-k expansion of n.

We use the terminology ‘k-regular’ also for generating functions F (x) :=
∑

n>0 f (n)xn.

Theorem (Allouche and Shallit, 1992)
The set of k-regular functions form a ring under standard power series addition and

multiplication.
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Example: Stern’s diatomic sequence

Let {s(n)}n>0 be Stern’s diatomic sequence, which is determined by the relations

s(0) = 0, s(1) = 1, and for n > 0, by

s(2n) = s(n), and s(2n + 1) = s(n) + s(n + 1).

One can show that the Stern sequence has linear representation

vT = wT = (1 0), A0 =

(
1 1

0 1

)
, A1 =

(
1 0

1 1

)
.
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Question
What happens to this picture in the limit?

• Maximal growth?

• Almost everywhere?

• On average?
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Stern on average

Set S(z) :=
∑

n>0 s(n)zn. Then S(z) satisfies the functional equation

zS(z)− (z2 + z + 1)S(z2) = 0.

Using the recurrence relations, one can show that

2n+1−1∑
m=2n

s(m) = 3n, and also that
1

N log2 3

∑
n6N

s(n) is well-behaved.

This suggests that there is a “nice enough” function C(z) such that as z → 1− we

have

S(z) ≈
C(z)

(1− z)log2 3
.

8



Stern on average

Set S(z) :=
∑

n>0 s(n)zn. Then S(z) satisfies the functional equation

zS(z)− (z2 + z + 1)S(z2) = 0.

Using the recurrence relations, one can show that

2n+1−1∑
m=2n

s(m) = 3n, and also that
1

N log2 3

∑
n6N

s(n) is well-behaved.

This suggests that there is a “nice enough” function C(z) such that as z → 1− we

have

S(z) ≈
C(z)

(1− z)log2 3
.

8



Stern on average

Set S(z) :=
∑

n>0 s(n)zn. Then S(z) satisfies the functional equation

zS(z)− (z2 + z + 1)S(z2) = 0.

Using the recurrence relations, one can show that

2n+1−1∑
m=2n

s(m) = 3n, and also that
1

N log2 3

∑
n6N

s(n) is well-behaved.

This suggests that there is a “nice enough” function C(z) such that as z → 1− we

have

S(z) ≈
C(z)

(1− z)log2 3
.

8



Eigenvalue test for transcendence of Mahler functions

Let k > 2 and d > 1 be integers and F (z) be a k-Mahler function converging inside

the unit disc satisfying

a0(z)F (z) + a1(z)F (zk ) + · · ·+ ad (z)F (zk
d

) = 0,

for polynomials a0(z), . . . , ad (z) ∈ C[z].

• Set ai := ai (1) and form the polynomial

pF (λ) := a0λ
d + a1λ

d−1 + · · ·+ ad−1λ+ ad .

• If a0ad 6= 0 and pF (λ) has distinct roots, then the function F (z) is transcendental
over C(z) provided

• pF (kn) 6= 0 for all n ∈ Z or

• the eigenvalue λF 6= kn for any n ∈ Z.

• If λF = kn for some n ∈ Z, the test is inconclusive.
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An average result

Theorem (Bell and C. 2017)
Let F (z) be a k-Mahler function whose characteristic polynomial pF (λ) has distinct

roots. Then there is an eigenvalue λF with pF (λF ) = 0, such that as z → 1−

F (z) =
C(z)

(1− z)logk λF
(1 + o(1)),

where logk denotes the principal value of the base-k logarithm and C(z) is a real-analytic

nonzero oscillatory term, which on the interval (0, 1) is bounded away from 0 and ∞,

and satisfies C(z) = C(zk ).

Very similar methods allow one to show as well the other direction from a theorem like

this. In particular if f is a k-regular sequence which is nonnegative, then there is an

algebraic number αf and a nonnegative integer mf such that∑
n6N

f (n) � N logk αf logmf N.
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Maximal growth

Theorem (Allouche and Shallit, 1992)
Let f be a k-regular sequence with values in C. Then there is a constant c such that

f (n) = O(nc ).

For the Stern sequence s, one has c = log2 ϕ, where ϕ = (1 +
√

5)/2 is the golden

ratio. This follows from work of Reznick (1990).

Theorem (C. and Tyler, 2014)
Let {s(n)}n≥0 denote the Stern sequence. Then

lim sup
n→∞

s(n)

nlog2 ϕ
=

ϕ
√

5

(
3

2

)log2 ϕ

=
ϕlog2 3

√
5

= 0.9588541900 · · · .

Definition (Growth exponent)
Let k > 1 be an integer and f : Z>0 → C be a (not eventually zero) k-regular sequence.

We define the growth exponent of f , denoted GrExp(f ), by

GrExp(f ) := lim sup
n→∞
f (n) 6=0

log |f (n)|
log n

.
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Maximal growth

Definition (Joint spectral radius)
The joint spectral radius of a finite set of matrices A = {A0,A1, . . . ,Ak−1}, denoted

ρ(A), is defined as the real number

ρ(A) = lim sup
n→∞

max
06i0,i1,...,in−16k−1

∥∥∥Ai0Ai1 · · ·Ain−1

∥∥∥1/n
,

where ‖ · ‖ is any (submultiplicative) matrix norm.

Theorem (C., 2017)
Let k > 1 and d > 1 be integers and f : Z>0 → C be a (not eventually zero) k-regular

sequence. If Af is any “minimal” collection of k integer matrices associated to f , then

logk ρ(Af ) = GrExp(f ),

where logk denotes the base-k logarithm.
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Maximal growth

Recall the Stern sequence has linear representation

vT = wT = (1 0), A0 =

(
1 1

0 1

)
, A1 =

(
1 0

1 1

)
.

For the Stern sequence s, one has

GrExp(s) = log2 ϕ,

where ϕ = (1 +
√

5)/2 is the golden ratio. This follows from work of Reznick (1990).

We have

ρ

({(
1 1

0 1

)
,

(
1 0

1 1

)})
= ϕ = ρ

((
1 1

0 1

)(
1 0

1 1

))1/2

.
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One regular problem: the finiteness conjecture
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The finiteness conjecture

Definition
A finite set of matrices A is said to have the finiteness property provided there is a

specific finite product Ai0 · · ·Aim−1
of matrices from A such that ρ(Ai0 · · ·Aim−1

)1/m =

ρ(A).
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The finiteness conjecture

Definition
A finite set of matrices A is said to have the finiteness property provided there is a

specific finite product Ai0 · · ·Aim−1
of matrices from A such that ρ(Ai0 · · ·Aim−1

)1/m =

ρ(A).

• This was shown to be false by Bousch and Mairesse (2002).

• A constructive counterexample was recently given by Hare, Morris, Sidorov and

Theys (2011).
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The finiteness conjecture

Example (Hare, Morris, Sidorov and Theys, 2011)
Let τ denote the sequence of integers defined by τ0 = 1, τ1, τ2 = 2, and τn+1 =

τnτn−1 − τn−2 for all n > 2, and let Fn be the nth Fibonacci number for n > 0. Define

the real number α∗ ∈ (0, 1] by

α∗ :=
∏
n>1

(
1−

τn−1

τnτn+1

)(−1)nFn+1

= 0.749326546330367 . . . .

Then this infinite product converges unconditionally, and the set{(
1 1

0 1

)
, α∗

(
1 0

1 1

)}

does not have the finiteness property.

Question (Finiteness property for integer matrices)
Determine if finite sets of integer matrices satisfy the finiteness property.
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Another regular problem: Lehmer’s Mahler measure question
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Mahler measure and possible gaps

Definition (Mahler measure)
Let p(z) = a0

∏s
i=0(z − αi ) ∈ C[z]. The logarithmic Mahler measure of p(z) is given

by

m(p) := log |a0|+
s∑

i=0

log(max{|αi |, 1}) =

∫ 1

0
log |p(e2πit)| dt.

Lehmer found

m(1 + z − z3 − z4 − z5 − z6 − z7 + z9 + z10) ≈ log(1.176281).

Question (Lehmer)
Does there exist a constant c > 0 such that any irreducible non-cyclotomic polynomial

p with integer coefficients satisfies m(p) > c ?
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Boyd’s observation and height-one polynomials

Question (Lehmer)
Does there exist a constant c > 0 such that any irreducible non-cyclotomic polynomial

p with integer coefficients satisfies m(p) > c ?

For any integer polynomial p with m(p) < log 2 there is an integer polynomial q such

that pq has height 1.

Boyd observed that, in his experience, such a q can be taken to be cyclotomic of fairly

small degree relative to the degree of p.

We will show that Lehmer’s question, restricted to height-one polynomials, is a

property of a matrix cocycle associated to a binary automatic sequence.
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Binary automatic sequence Example: Thue-Morse

The canonical example of an automatic sequence is the Thue-Morse sequence

{t(n)}n>0 := 0110100110010110100101100110 · · · .

Here t(n) takes the value 1 if the binary expansion of n has an odd number of ones,

and the value 0 if the binary expansion has an even number of ones.

0 1

0 0
1

1

Figure 1: The 2-automaton that produces the Thue-Morse sequence.

The Thue–Morse sequence is given by the substitution

%TM :

{
0 7→ 01

1 7→ 10.
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Binary automatic sequences and their Fourier matrices

Definition
A binary automatic sequence % is given by by

% :

{
0 7→ w0

1 7→ w1 ,
(1)

where w0 and w1 are finite words over {0, 1} of equal length |w0| = |w1| = L > 2.

All sequences will be assumed to be primitive and aperiodic.

For 0 6 i , j 6 1, let Tij be the set of all positions m where the letter i appears in wj ,

and let T := (Tij )06i,j61 be the resulting 2×2-matrix.

The substitution matrix satisfies M% =
(
card(Tij )

)
06i,j61

.

Definition (Fourier matrix of %)
Using T , we build a matrix of pure point measures δT := (δTij

)06i,j61, where δS :=∑
x∈S δx with δ∅ = 0. This gives rise to an analytic matrix-valued function via

B(t) := δ̂T (t),

which we call the Fourier matrix of %.
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Two paradigmatic examples, I

Example
Consider the Thue–Morse substitution, as given by

%TM :

{
0 7→ 01

1 7→ 10.

Here, one has TTM =
(
{0} {1}
{1} {0}

)
, which gives

δTTM
=

(
δ0 δ1

δ1 δ0

)
and BTM(t) =

(
1 e2πit

e2πit 1

)
.
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Two paradigmatic examples, II

Example
For the period doubling substitution,

%pd :

{
0 7→ 01

1 7→ 00,

The corresponding matrices are Tpd =
(
{0} {0,1}
{1} ∅

)
together with

δTpd
=

(
δ0 δ0 + δ1

δ1 0

)
and Bpd(t) =

(
1 1 + e2πit

e2πit 0

)
.
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Lyapunov exponents and Fourier cocycles

B(n)(t) := B(t)B(Lt) · · ·B(Ln−1t).

Due to the ergodicity of the transformation t 7→ Lt mod 1 relative to Lebesgue

measure, Oseledec’s multiplicative ergodic theorem ensures the existence of the

Lyapunov exponents and the corresponding subspaces in which they represent the

asymptotic exponential growth rate of the vector norms.

{0} =: V0 ( V1 ( V2 := C2

A vector v from the Oseledec subspace Vi+1\Vi satisfies the property that for almost

every t ∈ R, the norm ‖vB(n)(t)‖ grows like enχ
B
i+1 as n→∞.

• If v ∈ C2 is any (fixed) row vector, the values

χB(v , t) := lim
n→∞

1

n
log ‖vB(n)(t)‖

exist for almost every t ∈ R and are constant on a set of full measure.

• For invertible cocycles, these exponents have v -independent forms

χB
max(t) := lim

n→∞

1

n
log ‖B(n)(t)‖ and χB

min(t) := − lim
n→∞

1

n
log ‖(B(n)(t))−1‖.

• Lyapunov regularity guarantees for almost every t ∈ R that

χB
min(t) + χB

max(t) = lim
n→∞

1

n
log | detB(n)(t)|.
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asymptotic exponential growth rate of the vector norms.

{0} =: V0 ( V1 ( V2 := C2

A vector v from the Oseledec subspace Vi+1\Vi satisfies the property that for almost

every t ∈ R, the norm ‖vB(n)(t)‖ grows like enχ
B
i+1 as n→∞.

• If v ∈ C2 is any (fixed) row vector, the values

χB(v , t) := lim
n→∞

1

n
log ‖vB(n)(t)‖

exist for almost every t ∈ R and are constant on a set of full measure.

• For invertible cocycles, these exponents have v -independent forms

χB
max(t) := lim

n→∞

1

n
log ‖B(n)(t)‖ and χB

min(t) := − lim
n→∞

1

n
log ‖(B(n)(t))−1‖.

• Lyapunov regularity guarantees for almost every t ∈ R that

χB
min(t) + χB

max(t) = lim
n→∞

1

n
log | detB(n)(t)|.
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Theorem (Baake, C. and Mañibo 2018)
For any primitive binary automatic sequence %, the extremal Lyapunov exponents are

explicitly given by

χB
min = 0 and χB

max = m(Q − R).

Important Point
Using Jenson’s formula, we have

lim
n→∞

1

n
log | detB(n)(t)| = lim

n→∞

1

n
log | det(B(t)B(Lt) · · ·B(Ln−1t)︸ ︷︷ ︸

matrix cocycle

)| = m(Q − R).

Lemma
Let % be a substitution as specified in Eq. (1). Consider the sets

Pa :=
{
m | Cm =

[
0
1

] }
and Pb :=

{
m | Cm =

[
1
0

] }
,

which collect bijective positions of the same type. Further, let z = e2πit and set

Q(z) := δ̂Pa (t) and R(z) := δ̂Pb
(t).

Then, detB(t) = pL(z) ·
(
Q − R

)
(z), where pL(z) = 1 + z + · · ·+ zL−1.
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Lemma
Let % be a substitution as specified in Eq. (1). Consider the sets

Pa :=
{
m | Cm =

[
0
1

] }
and Pb :=

{
m | Cm =

[
1
0

] }
,

which collect bijective positions of the same type. Further, let z = e2πit and set

Q(z) := δ̂Pa (t) and R(z) := δ̂Pb
(t).

Then, detB(t) = pL(z) ·
(
Q − R

)
(z), where pL(z) = 1 + z + · · ·+ zL−1.

Example
Consider the Thue–Morse substitution, as given by

%TM :

{
0 7→ 01

1 7→ 10.

Here (Q − R)(z) = 1− z, so that

χB
min = χB

max = m(1− z) = 0.
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Lehmer’s polynomial, morphism and dynamical analogue

Example (Reverse direction)
Recall that

`(z) = 1 + z − z3 − z4 − z5 − z6 − z7 + z9 + z10

is the polynomial with the smallest known positive logarithmic Mahler measure, m(`) ≈
log(1.176281). Here

%` :

{
0 7→ 00111111000

1 7→ 11100000011

is a morphism that correspond to the polynomial `.

Question (Automatic Lehmer)
Does there exist a constant c > 0 such that, for any primitive binary automatic sequence

with χB
max 6= 0, we have χB

max > c ?
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Thank you (Merci)
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